

DEPARTMENT OF HEALTH CARE ACCESS AND INFORMATION OFFICE OF STATEWIDE HOSPITAL PLANNING AND DEVELOPMENT

MANIMA				
PPLICATION FOR HCAI PREAPPROVAL OF		OFFICE USE ONLY		
MANUFACTUR	ER'S CERTIFICATION (OPM)	APPLICATION #: OPM-0203		
HCAI Preapproval	of Manufacturer's Certification (OPM)			
Type: New	X Renewal/Update			
Manufacturer Infor	mation			
Manufacturer: M. W.	Sausse & Co Inc			
Manufacturer's Techni	ical Representative: Nathan Tremblay			
Mailing Address: 287	44 Witherspoon Parkway, Valencia, CA 91355			
Telephone: (661) 425	5-8061 Email: ntremblay@vibrex.ne	t		
	ED FOR CODE COMP			
Product Informatio	n			
Product Name: Hange	er Box Model PR <mark>MXA-1C, SLH-34 & SLW Cable Bracing</mark> Ki	t, HLSH-34/HSLH-1 & SLW Rigid Bracing Kit		
Product Type: Seism	ic support and bracing systems	(rti		
Product Model Number	er: PRMXA-1C (spring hanger), SLH-34 (cable bracing brac bracket), Vibrex Cable Clamp, SLW-38 thru SLW-1 (slot			
General Description: Seismic support and bracing system for suspended mechanical & electrical equipment & Suspended distribution systems (mechanical/plumbing pipe, ductwork, conduit, & cable trays)				
		20/		
Applicant Informat	ion			
Applicant Company Na	ame: M. W. Saussé & Co., Inc.			
Octor Description	- HOOLEDING			

Contact Person: Nathan Tremblay

Mailing Address: 28744 Witherspoon Parkway, Valencia, CA 91355

Telephone: (661) 425-8061 Email: ntremblay@vibrex.net

Title: Principal Engineer

"A healthier California where all receive equitable, affordable, and quality health care"

ENCY

STATE OF CALIFORNIA - HEALTH AND HUMAN SERVICES AGENCY

DEPARTMENT OF HEALTH CARE ACCESS AND INFORMATION OFFICE OF STATEWIDE HOSPITAL PLANNING AND DEVELOPMENT

Registered Design Professonal Preparing Engineer	ring Recommendations
Company Name: M.W. SAUSSÉ & COMPANY, INC.	
Name: Pankaj Kumar Sachdeva	California License Number: CE59644
Mailing Address: 28744 Witherspoon Pkwy, Valencia, CA 9	91355
Telephone: (661) 433-3433 Email:	llawson@vibrex.net
Certification Method	
Testing in accordance with: ICC-ES AC156	FM 1950 ASHRAE 171 FEMA 461
Other(s) (Please Specify):	WWW.COL
and attachments are not permitted. For distribution system, criteria other than those adopted in the CBSC 2019 may be	Building Standards Code, 2019 (CBSC 2019) for component supports interior partition wall, and suspended ceiling seismic bracings, test used when approved by HCAI prior to testing.
Analysis	IVI-0203
Experience Data	Lobo
Combination of Testing, Analysis, and/or Experience D	Pata (Please Specify): FM 1950-10 (testing was performed during the
P DATE:	07/19/2025
HCAI Approval	
Date: <u>7/19/2025</u> Name: Roy Lobo	
Name: Roy Lobo	Title: Principal Structural Engineer
Condition of Approval (if applicable):	

"A healthier California where all receive equitable, affordable, and quality health care"

STATE OF CALIFORNIA - HEALTH AND HUMAN SERVICES AGENCY

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

OPM-0203

SEISMIC RESTRAINT GUIDELINES FOR SUSPENDED DISTRIBUTION SYSTEMS AND EQUIPMENT

2nd EDITION, 2025

OPM-0203-22

Table of Contents

Section 1 – General Notes

1.1
1.3
1.7
1.8
1.11
1.25
1.29
1.31
1.32

Section 2 - Brace Details

1. Single Hung Pipe w/ Welded Lug

BY: ROY LODO	
Cable Kit Details for up to 2" dia. pipe (3/8" hanger rod)	2.1.1 – 2.1.6
Cable Kit Details for up to 3-1/2" dia. pipe (1/2" hanger rod)	2.1.7 - 2.1.18
Cable Kit Details for up to 5" dia. pipe (5/8" hanger rod)	2.1.19 -2.1.26
Cable Kit Details for up to 6" dia. pipe (3/4" hanger rod)	2.1.27-2.1.30
Cable Kit Details for up to 12" dia. pipe (7/8" hanger rod)	2.1.31-2.1.36
Rigid Kit Details for up to 2" dia. pipe (3/8" hanger rod)	2.2.1 – 2.2.6
Rigid Kit Details for up to 3-1/2" dia. pipe (1/2" hanger rod)	2.2.7 - 2.2.12
Rigid Kit Details for up to 5" dia. pipe (5/8" hanger rod)	2.2.13 -2.2.16
Rigid Kit Details for up to 6" dia. pipe (3/4" hanger rod)	2.2.17-2.2.18
Rigid Kit Details for up to 12" dia. pipe (7/8" hanger rod)	2.2.19-2.2.24
Rigid Kit Details for up to 18" dia. pipe (1" hanger rod)	2.2.25-2.2.30

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

Date:

Table of Contents (continued...)

- 2. (Reserved for future use)
- 3. (Reserved for future use)
- 4. Rectangular Sheet Metal Duct

Cable Kit Details max linear duct weight of 30plf (3/8" hanger rod) 2.7.1

Cable Kit Details max linear duct weight of 60plf (1/2" hanger rod) 2.7.5

Cable Kit Details max linear duct weight of 100plf (5/8" hanger rod) 2.7.9

Rigid Kit Details max linear duct weight of 30plf (3/8" hanger rod) 2.8.1

Rigid Kit Details max linear duct weight of 60plf (1/2" hanger rod) 2.8.3

Rigid Kit Details max linear duct weight of 100plf (5/8" hanger rod) 2.8.5

5. Round Sheet Metal Duct

Cable Kit Details max linear duct weight of 30plf (3/8" hanger rod) 2.9.1

Cable Kit Details max linear duct weight of 60plf (1/2" hanger rod) 2.9.5

Cable Kit Details max linear duct weight of 100plf (5/8" hanger rod) 2.9.9

Rigid Kit Details max linear duct weight of 30plf (3/8" hanger rod) 2.10.1

Rigid Kit Details max linear duct weight of 60plf (1/2" hanger rod) 2.10.3

Rigid Kit Details max linear duct weight of 100plf (5/8" hanger rod) 2.10.5

6. Electrical Cable Tray/Raceway

Cable Kit Details max linear tray weight of 20plf (3/8" hanger rod) 2.11.1

Cable Kit Details max linear tray weight of 45plf (1/2" hanger rod) 2.11.5

Cable Kit Details max linear tray weight of 85plf (5/8" hanger rod) 2.11.9

Rigid Kit Details max linear tray weight of 20plf (3/8" hanger rod) 2.12.1

Rigid Kit Details max linear tray weight of 45plf (1/2" hanger rod) 2.12.3

Rigid Kit Details max linear tray weight of 85plf (5/8" hanger rod) 2.12.5

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

ii

Date:

Table of Contents (continued...)

6. Suspended Equipment Cable Bracing	2.13.1
7. Suspended Equipment Rigid Bracing	2.14.1
8. Trapeze Member Size Selection for All Systems	2.15.1

Section 3 – Structural Attachments

Concrete Anchor Inspection and Testing Requirements	3.0.1
Minimum Concrete Filled Deck Dimensions for Expansion Anchors	3.0.2
Minimum Concrete Filled Deck Dimensions for Screw Anchors	3.0.3
Brace Attachments to Concrete over Metal Deck	3.1.1
Brace Attachments to Concrete Slab/Wall/Beam	3.11.1
Brace Attachments to Metal Deck	3.23.1
Brace Attachments to Steel	3.24.1
Brace Attachments to Wood	3.25.1
Brace Attachment to Post-Tension Slab (Cast-in-Place)	3.27.1
Hanger Box Attachments	3.28
Hanger Rod Attachments	3.33

Section 4 – Seismic Brace & Hanger Components

on 4 – Seismic Brace & Hanger Components	
PRMXA Hanger Box Detail	4.1
RS-1 - Rod Stiffener Requirements & Details	4.2, 4.3.1, 4.3.2
SLH-34 Bracket and SLW-38, 12, 58, and 34 Slotted Washer Detail	4.4
Cable Clamp Details and Cable Data	4.5
Pipe Lug PL-38 thru PL-1 Details	4.6 to 4.10
HSLH-34 Bracket & SLW-38 TO SLW-34 Details	4.11
HSLH-1 Bracket and SLW-78 & SLW-1 Details	4.12
DSSN Strut Nut	4.13

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481

Page No.:

Date:

Table of Contents (continued...)

Section D – Design Tables for Suspended Pipe, Duct, & Cable Tray

Suspended Pipe Bracing Kit Detail Selection Tables	D.1.1	
Suspended Pipe Transverse Brace And Hanger Attachment Detail Selection Table & Brace Spacing	D.2.1	
Suspended Pipe Transverse & Longitudinal Brace And Hanger Attachment Detail Selection Table & Brace Spacing	D.3.1	
Design Values for η Variable (For Pipe Bracing Design) & Maximum Transverse Kit Spacing Based on Pipe Stress & Deflection	D.3.3	
Suspended Duct Bracing Kit Detail Selection Tables	D.4.1, D.5.1	
Suspended Duct Bracing and Hanger Attachment Detail Selection Table	D.6.1	
Suspended Duct Brace Spacing Tables	D.6.1	
Suspended Cable Tray/Raceway Bracing Kit Detail Selection Tables	D.7.1	
Suspended Cable Tray/Raceway Bracing And Hanger Attachment Detail Selection Table PM-0203	D.8.1	
Suspended Cable Tray/Raceway; Bracing Kit Spacing Limits	D.8.1	
Brace Attachment Detail Indices	D.9.1-D.12.2	
Hanger Attachment Detailindices: 07/19/2025	D.13.1-D.16.1	
Appendix A – For Reference Only		
Unit Conversion Charts	A.1	
Pipe Weights	A.3	
Duct Weights	A.3, A.4	
Cable Tray Weights	A.4	
Steel Deck W/ Concrete Information	A.5	

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer N. Tremblay
California PE No. S6481

Page No.:

iv

Date:

SECTION 1

GENERAL INFORMATION

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer N. Tremblay
California PE No. S6481

Page No.:

1.0

Date:

1. PREFACE

This OSHPD Pre-approval of Manufacturer's Certification (OPM) is based on the 2022 edition of the California Building Code (2022 CBC).

The demand/design forces for use with this OPM must be based on the 2022 CBC.

The maximum S_{DS} for this OPM is less than or equal to 2.5g.

I. Scope & Limitations:

This pre-approval is for the seismic bracing of interior suspended equipment and mechanical pipe & duct systems as well as electrical cable trays/raceways. It does not address other loads such as, but not limited to, those generated by thermal growth, pressure or pressure thrust, & fluid dynamics. It does not address components that cross seismic separations of buildings or components attached to portions of the structure or equipment that will experience relative seismic drifts other than pipe & duct risers.

II. The ranges of component sizes and material included in the pre-approval are listed as follows:

- a) Mechanical Pipe: Schedule 40 Steel Pipe – 1-1/4", 1-1/2", 2", 2-1/2", 3", 3-1/2", 4", 5", 6", 8", 10" Schedule STD Steel Pipe – 12"
- b) Mechanical Duct steel sheet metal ductwork up 72" diameter round or 184" perimeter rectangular, all galvanized. See full list of sizes and gages.
- c) Electrical Distribution Systems Cable Trays/Raceways
- d) Suspended Equipment fan coils, distribution boxes, VAV's, pumps, air handlers, heaters, tanks, and any other types of equipment of metal construction.

III. The support/attachment substrates included in this pre-approval are as follows:

- a) Concrete
- b) Metal Deck
- c) Composite Deck (concrete cast over metal deck)
- d) Steel
- e) Wood

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer N. Tremblay
California PE No. S6481

Page No.:

1.1

Date:

IV. Construction Tolerances:

- a) Construction tolerances shall be as noted on the drawing details and appendices.
- b) Construction Tolerance for angles of all braces shall be limited to ±5°, out of plan & elevation as shown in the details of section 2.
- c) The recommended brace angle is 45° for the diagonal brace, or 1:1 slope brace ratio. The cable brace shall be installed between 30° to 70° from the vertical. See details in Section 2.
- d) Construction tolerance for the angle of the hanger rod from the vertical when using the PRMXA-1C spring hanger box is limited to ±10° from the vertical.

V. Definitions:

a) Snug Tight: Tightness required to bring the connected plies into firm contact and that the nuts could not be removed without the use of a wrench.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer N. Tremblay
California PE No. S6481

Page No.:

1.2

Date:

2. INTRODUCTION

I. This Manual is a guideline for seismic bracing design for interior equipment and mechanical piping and duct systems, & electrical cable trays/raceways. The following is an outline of the manual:

Section 1 – General Information: Lists general notes and requirements for seismic bracing systems of mechanical systems, electrical systems, and equipment as well as a general guided procedure for seismic bracing design for attachment/support to steel, concrete, and wood structural members using this manual.

Section 2 – Cable Brace Details: Includes seismic bracing details for individually hung and trapeze supported pipe, cable trays/raceways, and duct as well as suspended equipment.

Section 3 – Structural Attachments: Shows structural attachment details and design strengths for attaching the seismic bracing cable to the supporting structure. This includes attachments to concrete slabs/walls/beams, steel deck with minimum sand lightweight concrete, bare steel deck, structural steel members, and structural wood members.

Section 4 – Seismic Brace Components: Includes details and design strengths for seismic bracing components used in the seismic bracing design as well as the brace attachment fittings.

Section D – Design Tables: Tables that utilize either pipe size or distribution system linear weight as well as the calculated "g" value to determine the required cable bracing detail, bracing attachment detail(s), maximum bracing kit spacing, and hanger/rod attachment detail(s). Refer to section D and the examples in pages 1.32 to 1.41 for instructions on use of these tables.

Appendix A: Includes a metric conversion chart and weight charts for pipe, duct, and electrical distribution systems. Utility weights are for reference only and are not within the scope of work of the OPM approval.

II. This pre-approval may be used for the design of seismic sway bracing of interior equipment, pipe, cable tray/raceways and duct systems. A California Licensed Civil Engineer has designed this pre-approval, along with supporting calculations. Therefore, the pre-approved details and calculations are not to be re-reviewed by regional staff. However each system and equipment design requires submittals that must be reviewed and approved by OSHPD.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer N. Tremblay
California PE No. S6481

Page No.:

1.3

Date:

III. Seismic bracing design and layout drawings shall be either prepared by Registered Design Professional licensed in California with experience in the design of seismic bracing for equipment, piping, and duct or prepared by a qualified designer (under the supervision of a Registered Design Professional) with experience in the design of seismic bracing for equipment, pipe, cable trays/raceways and duct, stamped and signed by a Registered Civil or Structural Engineer licensed in California with the same applicable experience. This is the definition of "user".

IV. Modifications and/or changes to the designs shown in this guideline shall be performed or reviewed by a qualified Registered Civil Engineer and approved by OSHPD.

V. When more than one criterion is presented, the more stringent shall be used.

VI. It is the responsibility of the user of this manual to be familiar with all requirements for seismic bracing and shall be proficient in determining and applying utility loads for their application.

VII. The user of this manual shall determine the spacing and layout for the required bracing. The user shall determine the maximum horizontal, vertical and axial force component of the earthquake demand loads. The user's calculations must take into consideration the increases in loads caused by construction tolerances. For use of the **simplified design procedure** the tolerance of the cable angle from the vertical must remain within the values equal to and greater than 45° and less than 60°.

VIII. As with all pre-approved details, systems, etc., construction documents are still required showing how and where this pre-approved support, attachment and bracing system will be applied on a project specific basis. This process is needed to verify that the appropriate detail has been selected and applied for each condition and for the actual substrate that it will be connected/attached to.

IX. The Structural Engineer of Record (SEOR) must review and forward the support, attachment and bracing plans for plan check with a notation indicating that the plans have been reviewed and they have been found to be in general conformance with the design of the project. A "shop drawing stamp" is usually acceptable for compliance with this requirement. The regional staff, on a project specific basis, must review support, attachment, and bracing details and supporting calculations that are not part of this pre-approval. Review of support, attachment and bracing details of this nature does not constitute a pre-approval that may be used on other projects without the benefit of plan review. The Structural Engineer of Record shall verify the adequacy of the supporting structure and its components for the loads applied to the supporting structure and

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer N. Tremblay
California PE No. S6481

Page No.:

1.4

Date:

its components by the seismic bracing systems, and compliance with the applicable codes and standards, as well as performing the following tasks:

- a) Verify that the nonstructural components and/or systems are seismically qualified in accordance with the 2022 California Building Code.
- b) Verify that the installation is in conformance with the 2022 California Building Code & with the details shown in this OPM.
- c) Verify that the structure to which the M. W. Saussé & Co., Inc. seismic brace is anchored to meets the requirements of the applicable ICC-ES Report (ICC ESR).

X. Layout Drawings:

- a. Layout drawings of the support and bracing systems per this pre-approval shall be submitted to the discipline in responsible charge of the project for review to verify that the details are in conformance with all code requirements. The layout drawings shall be accordance with ASCE 7-16 (including supplement number 1 & batch 2 errata) as modified by the 2022 CBC Section 1617A.
 - i. The Structural Engineer of Record (SEOR) shall verify that the supporting structure is adequate for the loads imposed on it by the supports and braces installed per the pre-approval in addition to all other loads.
 - ii. The SEOR will forward the supports, attachments, and bracing plans (including approved change order for supplementary framing where required) to the discipline in charge with a notation indicating that the plans have been reviewed and are in general conformance with this pre-approval & the design of the project.
 - iii. A "shop drawing stamp" may be used to indicate compliance with this requirement.
 - iv. The Registered Design Professional (other than the SEOR) may provide the shop drawing stamp for small installations at the discretion of the District Structural Engineer.
- b. The SEOR must design any supplementary framing that is needed to resist the loads, maintain stability and/or is required for installation of this pre-approval. The supplementary framing shall be submitted to OSHPD as an Amended Construction Document (ACD).

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer N. Tremblay
California PE No. S6481

Page No.:

1.5

Date:

- c. The layout drawings (with the shop drawing stamp) shall be submitted to OSHPD to review:
 - i. Structure supporting the distribution system has adequate capacity.
 - ii. Seismic Design Forces (Fp) are in accordance with the 2022 CBC.
 - iii. Verify that the submittal is within the scope of the OSHPD Pre-approval of Manufacturer's Certification (OPM):
 - 1. Size of distribution system components or equipment.
 - 2. Spacing of bracing and flex joints.
 - 3. Substrate for attachments.
 - 4. Review of those parts not approved through the OPM.
- d. The layout drawings (with the shop drawing stamp) shall be kept on the jobsite and can then be used for installation for the support and bracing. OSHPD field will review the installation.
- e. A copy of this pre-approval shall be on the jobsite prior to starting installation of hangers and/or braces. It is the contractor's and IOR's responsibility to obtain copies of OSHPD Pre-approvals from the OSHPD Pre-approval Program's website.

XI. The bracing components of this pre-approved bracing system may not be substituted with components of another pre-approved bracing system for any single run of pipe, duct, or for a piece of equipment. Any substitution of a component shall require OSHPD review and approval.

XII. Post-installed Anchors:

- a. All post-installed concrete anchors shall meet requirements of 2022 CBC Section 1617A.1.19, and be installed per their ICC ESR report; see Section 3 for specified ICC ESR listing for each anchor.
- b. The special inspector shall be on the jobsite continuously during anchor installation, unless otherwise noted in the ICC ESR.
- c. Expansion anchors shall be torque tested per the requirements specified in Section 1910A.5.2 of the 2022 CBC. See page 3.0.1 for details.
- d. Screw-type anchors shall be tension tested as specified in Section 1910A.5.2 of the 2022 CBC. See page 3.0.1 for details.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer N. Tremblay
California PE No. S6481

Page No.:

1.6

Date:

3. Building Codes, Standards, & Guidelines

I. The Vibrex Seismic Restraint Guidelines are designed to meet or exceed the requirements of the following:

2022 California Building Code (2022 CBC)

AISI Standard for Cold Formed Structural Members (S100-16)

ANSI / AWC NDS-2018

American Concrete Institute (ACI 318-14)

American Institute of Steel Construction (AISC 360-16)

American Society of Civil Engineers (ASCE 7-16)

American Welding Society (AWS D1.1-15)

American Society of Mechanical Engineers (ASME B31Ea-2010)

ESR-4266 (Hilti KB-TZ2, Reissued December 2023)

ESR-2502 (Dewalt Powers SD2, Reissued May 2023)

ESR-3889 (Dewalt Screw-Bolt+ & Hangermate+ Rod Hanger Screw, Reissued November 2023)

ESR-2713 (Simpson Titen HD, Reissued September 2023)

ESR-2818 (Powers SD1, Reissued December 2022)

ESR-3027 (Hilti KH-EZ, Revised April 2022)

ESR-3037 (Simpson Strong-Bolt 2, Reissued August 2023)

ESR-1976 (ITW Buildex TEKS, Revised July 2023)

Note: ESR's for post-installed anchor bolts into concrete & self-tapping screws to steel are in compliance with the 2022 California Building Code.

These guidelines are intended to describe seismic restraints for the HVAC industry's most commonly utilized pipe sizes, duct sizes, cable trays/raceways and equipment.

Determine bracing design utilizing the applicable factors and their specific values listed in Table 13.6-1 of the ASCE 7-16 based on the equipment, pipe, cable tray/raceway or duct construction, material composition and type, as well as proper utilization of the Ω_0 factor (note c. from table 13.6-1 of ASCE 7-16) for anchorage to concrete substrates. See Section 6 for the required equations and factors on page 1.26.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer N. Tremblay
California PE No. S6481

Page No.:

1.7

Date:

4. SEISMIC BRACING GENERAL REQUIREMENTS

- I. Transverse & Longitudinal Seismic Bracing is required for single hung pipe suspended more than 12" from the substrate above under the following parameters:
 - a. For Seismic Design Categories D, E, or F where Ip is equal to 1.0 and Rp is 4.5 or greater, all pipe larger than 3" in diameter.
 - b. For Seismic Design Category D, E, or F where Ip is *greater* than 1.0 and Rp is 4.5 or greater, all pipe larger than 1" in diameter.
 - c. For Seismic Design Category C where Ip is *greater* than 1.0 and Rp is 4.5 or greater, all pipe larger than 2" in diameter.
- II. Transverse & Longitudinal Seismic Bracing is required for trapeze supported pipe systems under the following parameters.
 - a. The total weight supported by any single trapeze is greater than 100lbs, or where the hangers are greater than 12" in length from the substrate to the top of the trapeze member (trapeze supported pipe is not part of this OPM, design will be required on a project-by-project basis using M.W. Saussé cable bracing kit and attachments).
 - b. The total weight supported by any single rod is greater than 50 lbs.
- III. Transverse & Longitudinal Seismic Bracing is required for cable trays, and other electrical distribution systems (raceways) under the following parameters:
 - a. The total weight supported by any single trapeze is greater than 100lbs, or where the hangers are greater than 12" in length from the substrate to top of trapeze member.
 - b. The total weight supported by any single rod is greater than 50 lbs.
- IV. Transverse & Longitudinal Seismic Bracing is required for duct under the following parameters:
 - a. The total weight supported by any single trapeze is 10lb/ft or greater, or greater than 100 lbs, or where the each hanger in the duct run is greater than 12" in length from the substrate to the duct support point.
 - b. A singly supported duct that has a cross-sectional area greater than or equal to 6ft² or weighs more than 20lb/ft.
 - c. The total weight supported by any single rod is greater than 50 lbs.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer N. Tremblay
California PE No. S6481

Page No.:

1.8

Date:

- V. All directional Seismic Bracing is required for suspended equipment where the Seismic Design Category is C with Ip greater than 1.0, and for Seismic Design Category D, E, & F and any value of Ip, as well as under the following parameters:
 - a. Equipment in-line and rigidly attached to duct weighing more than 75 lbs shall be laterally braced independent of duct the duct system.
 - b. Equipment weighing more than 20lbs and connected to the ductwork or piping with flexible connections, or independently suspended.
 - c. Actual connection of equipment to support will have to be done on a project-by-project basis.
- VI. A pipe systems shall not be braced to different parts of the building that may respond differently during seismic activity.
- VII. Refer to the appropriate codes and standards for additional information and requirements.

VIII. Vertical Offsets / Risers:

- a. Tops of vertical offsets/risers exceeding 3' in length shall be provided with a four-way brace. Bracing shall be located within 24" of the end of the vertical run. Refer to partial isometric A on page 1.16.
- b. Distance between four-way braces for risers shall not exceed 25'.
- c. Vertical ductwork systems supported at each floor shall be considered seismically braced if the penetration through each floor is tightly packed and the floor-to-floor spacing is not in excess of 30 feet. Tops of risers exceeding 3 feet shall be provided with a 4-way brace. Where the 4-way brace is attached on the horizontal ductwork, it shall be installed within 2 feet of the centerline of the riser.
- d. Vertical duct risers in an open shaft must be attached to steel supports with both steel supports and connections sized to accept the combined gravity and seismic loads. Thermal loads shall be considered where applicable. Transverse seismic restraint spacing shall not exceed 30 feet. Supports and connections must be engineered on a job by job basis subject to approval by OSHPD. Seismic relative displacement between floors shall be considered in the design.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer N. Tremblay
California PE No. S6481

Page No.:

1.9

Date:

IX. 12" Exception Rule for Pipe and Duct supports:

Pipe and duct need not be seismically braced when the following exceptions apply:

- The pipe is supported by hangers and each hanger in the piping run is 12 in. (305 mm) or less in length from the top of the pipe to the supporting structure, & the total weight supported by any single hanger is less than or equal to 50 lbs. In addition, where I_p > 1.0, pipe size is limited to 1" diameter in structures assigned to SDC D, E, or F. For SDC D, E, or F where I_p = 1.0, pipe size shall be 3" diameter or less.
- The ductwork is supported by hangers and each hanger in the duct run is 12 in.
 (305 mm) or less in length from the duct support point to the supporting
 structure, & total weight support by any single rod is less than or equal to 50
 lbs.

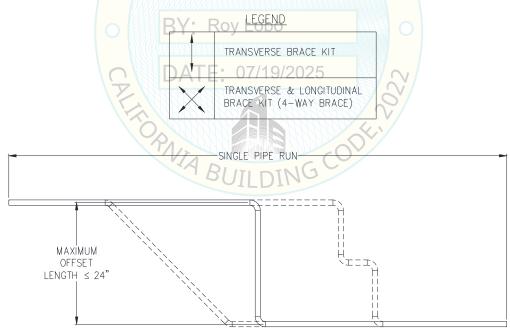
NOTE:

Ductwork designed to carry toxic, highly toxic or flammable gases, or used for smoke control shall be designed and braced without consideration of the above exceptions.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer N. Tremblay
California PE No. S6481

Page No.:

1.10


Date:

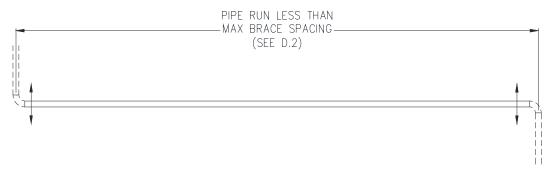
5. SEISMIC BRACING LAYOUT – GENERAL REQUIREMENTS – DUCT, PIPE, CABLE TRAY/RACEWAYS, AND EQUIPMENT

- I. The Vibrex Seismic Restraint Guidelines provide for the protection of suspended pipe, duct, cable trays/raceways, & equipment against excessive movement due to seismic forces.
- II. The seismic restraint assemblies in this guideline are designed to simultaneously resist vertical loads due to the weight of the component and its contents and both horizontal and vertical seismic loads.
- III. Horizontal loads are braced with two types of seismic restraints:
 - a. Transverse bracing to protect pipe, duct, & cable tray/raceway against movement perpendicular to its run.
 - b. Longitudinal bracing to protect pipe, duct, & cable tray/raceway against movement parallel to its run.
 - Spacing must not exceed the values listed in the tables of Section D.

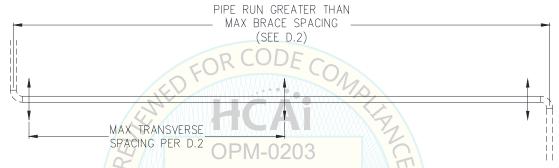
IV. Pipe System bracing distances and requirements:

a. A run of pipe is defined as a continuous straight length, or one with allowable offsets, that are less than 24". If the offset is 24" or greater, each straight segment shall be treated as an independent run and shall be braced. Refer to partial plan under item "f" on page 1.12.

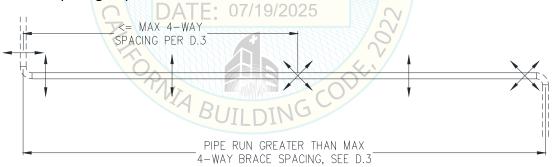
Note: When a run of pipe that requires bracing transitions down to a size that does not, the point of transition is considered the end of the run and will require a transverse brace. For an offset less than 24", this is still considered a single run of pipe.


M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer N. Tremblay

California PE No. S6481


Page No.: **1.11**

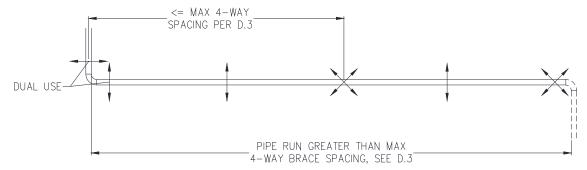
Date:


b. Each run of pipe requires a minimum of two transverse (lateral) bracing kits (perpendicular to the run), one at each end of the run.

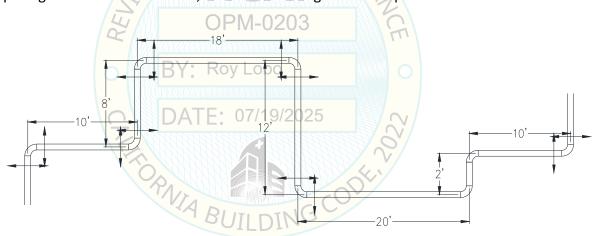
c. If the distance between the two transverse bracing kits exceeds the maximum allowable spacing, add transverse bracing kits as needed.

d. Each pipe run must have at least one transverse and longitudinal (4-way) bracing kit. If the maximum allowable longitudinal spacing is exceeded then add longitudinal bracing kits to meet the spacing requirement.

e. Each run of pipe requires a minimum of one longitudinal bracing kit. However, a transverse bracing kit placed on the run section at the opposite side of an elbow or tee within 24" may act as a longitudinal bracing kit, and is labeled as "DUAL USE" bracing kit. See layout example under ii. on page 1.13.


M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

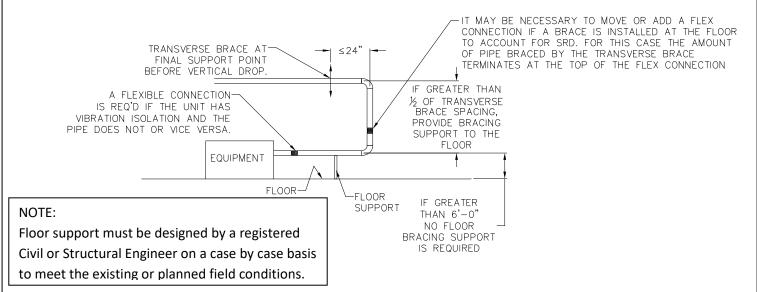

1.12

Date:

- i. Longitudinal and longitudinal "DUAL USE" bracing kits on single support pipe shall be attached directly to the pipe.
- ii. Bracing installed to smaller piping shall not be used to brace larger piping.

f. In some cases several short runs may occur in close proximity. By following the preceding guidelines each run should have longitudinal and transverse bracing. Transverse bracing may be used as longitudinal bracing and vice versa on runs adjacent to each other as long as the total length of pipe tributary to the brace does not exceed the maximum design spacing. In cases where it does, additional bracing kits are required.

g. At vertical pipe drop to equipment, where pipe is connected to the equipment using a flexible connection, provide transverse bracing before the vertical drop. The total length from the transverse brace to the vertical drop should not be more than the design offset previously determined. Provide transverse bracing at the floor after the vertical drop if the total length of the pipe from the transverse brace before the vertical drop to the flexible connection is greater than ½ the maximum transverse brace spacing.



M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer. N. Tremblay
California PE No. S6481

Page No.:

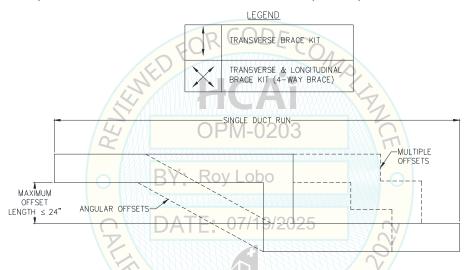
1.13

Date:

- h. When pipe crosses a building seismic separation or seismic joint it must be capable of accommodating the joint displacements as specified by the engineer of record.
- i. A rigid pipe shall not be braced to dissimilar parts of a building structure or two dissimilar building systems that may move different from one another during an earthquake. Bracing should be attached to the part of the building structure that is vertically supporting the pipe.
- j. Transverse and longitudinal braces shall be installed as shown in this guideline up to 30°-70° from the vertical. However, the recommended brace angle range is 45° to 60° from the vertical, or a 1:1 and up to but not including a 1:1.7 brace ratio which conforms to the simplified design procedure
- k. The seismic brace assemblies in this guideline consist of three important components: supports and connections to building structure including the A36 threaded rod with rod stiffeners as occurring, diagonal bracing members consisting of 7x19 cable, and seismic brace attachments. For details of cable brace assemblies see Section 2. For details and load information of structural attachments & spring hanger or rod attachments, see Section 3. The vertical hanger (A36 threaded rod) must be within 6" of the diagonal components to be considered part of the brace assembly.
- I. Transverse bracing kit locations are required to be at or within 6 inches of a vertical component of the seismic brace assembly to protect against vertical movement (typically a stiffened hanger rod). The M.W. Saussé & Co., Inc. seismic brace attachment may be connected directly to the threaded vertical hanger rod <u>not</u> used for supporting system gravity loads.
- m. Steel bolt connections to structural steel members or components shall not have a diameter less than 1/16" than that of the mounting hole. Steel bolt connections to concrete structure shall not have a diameter less than 1/8" than that of the mounting hole.

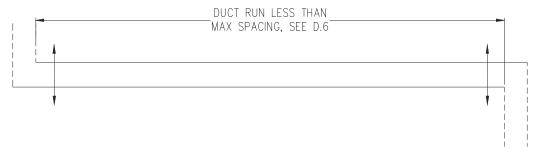
M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer. N. Tremblay
California PE No. S6481

Page No.:


1.14

Date:

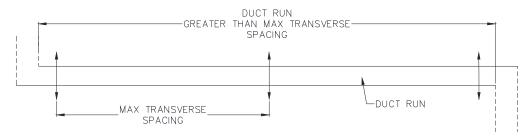
- n. Bracing may be omitted for short runs of pipe if its tributary seismic load can be transferred to an adjacent run of pipe that is braced and can properly restrain the additional seismic loads.
- o. Splicing of the pipe may be achieved with the following methods:
 - UL Listed rigid grooved couplings for horizontal runs and flexible grooved couplings in vertical risers (to accommodate inter-story drift movement of the surrounding structure). Couplings must meet UL Standard 213. Non-listed couplings are not permitted.
 - ii. Welding of pipe must conform to the ASME B31 and AWS D1.1 standards.


V. Duct Systems bracing distances and requirements:

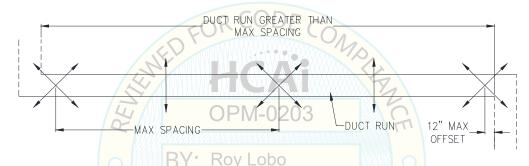
a. A run of duct is defined as a continuous straight length, or one with allowable offsets, that are less than 24". If the offset is 24" or greater, each straight segment shall be treated as an independent run and shall be braced. Refer to partial plan under item "f" on page 1.16.

Note: When a run of duct that requires bracing transitions down to a size that does not, the point of transition is considered the end of the run and will require a transverse brace. For an offset less than 24", this is still considered a single run of duct.

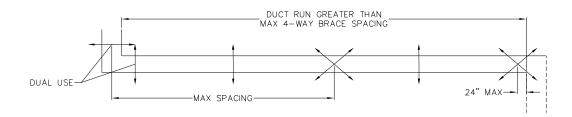
b. Each run of duct requires a minimum of two transverse bracing kits, one at each end of the run.



M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer. N. Tremblay
California PE No. S6481

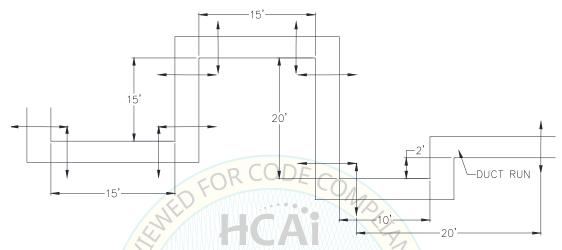

Page No.: **1.15**

Date:

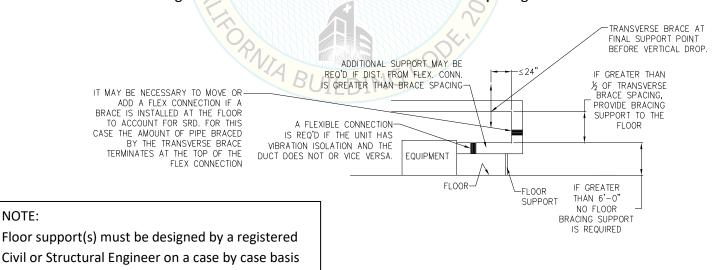

c. If the distance between the two transverse bracing kits exceeds the maximum allowable spacing, add lateral bracing kits as needed.

d. Each duct run must have at least one longitudinal bracing kit. If the maximum allowable longitudinal spacing is exceeded then add longitudinal bracing kits to meet the spacing requirement.

- e. Each run of duct requires a minimum of one transverse & longitudinal (4-way) bracing kit parallel to the run. However, a transverse bracing kit placed on the run section at the opposite side of an elbow or tee within 24" may act as a longitudinal bracing kit, and is labeled as "DUAL USE" bracing kit. See layout example below.
 - iii. Transverse "DUAL USE" bracing kits on a duct support shall be attached directly to the duct.
 - iv. Bracing installed to smaller duct shall not be used to brace larger duct.



M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer. N. Tremblay
California PE No. S6481


Page No.: **1.16**

Date:

In some cases several short runs may occur in close proximity. By following the preceding guidelines, each run should have longitudinal and transverse bracing. Transverse bracing may be used as longitudinal bracing and vice versa on runs adjacent to each other as long as the total length of duct tributary to the brace does not exceed the maximum design spacing. In cases where it does, additional bracing kits are required.

g. At vertical pipe drop to equipment, where duct is connected to the equipment using a flexible connection, provide transverse bracing before the vertical drop. The total length from the transverse brace to the vertical drop should not be more than the design offset previously determined. Provide transverse bracing at the floor after the vertical drop if the total length of the duct from the transverse brace before the vertical drop to the flexible connection is greater than ½ the maximum transverse brace spacing.

to meet the existing or planned field conditions.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer. N. Tremblay California PE No. S6481

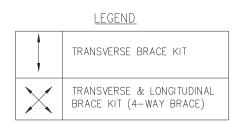
Page No.: 1.17

Date:

February 5, 2025

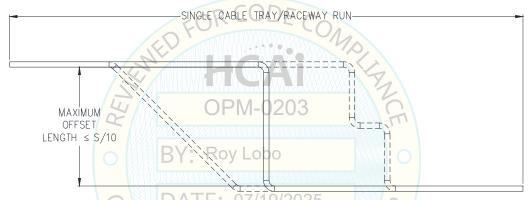
NOTE:

- h. When duct crosses a building seismic separation or seismic joint it must be capable of accommodating the joint displacements as specified by the engineer of record.
- i. A rigid duct shall not be braced to dissimilar parts of a building structure or two dissimilar building systems that may move different from one another during an earthquake. Bracing should be attached to the part of the building structure that is supporting the duct.
- j. Transverse and longitudinal braces that project up to the structure above shall be installed as shown in this guideline up to 30°-70° from the vertical. However, the recommended brace angle range is equal to or greater than 45° & less than 60° from the vertical, or a 1:1 and up to but not including a 1:1.7 brace ratio which conforms to the **simplified design procedure.**
- k. The seismic brace assemblies in this guideline consist of three important components; supports and connections to building structure including the A36 threaded rod with rod stiffeners as occurring, diagonal bracing members consisting of 7x19 cable, and seismic brace attachments. For details of cable brace assemblies see Section 2. For details and load information of structural attachments & spring hanger or rod attachments, see Section 3. The vertical hanger (A36 threaded rod) must be within 6" of the diagonal components to be considered part of the brace assembly.
- I. Transverse bracing kit locations are required to be at or within 6 inches of a stiffened hanger rod to protect against vertical movement.
- m. Steel bolt connections to structural steel members or components shall not have a diameter less than 1/16" than that of the mounting hole. Steel bolt connections to concrete structure shall not have a diameter less than 1/8" than that of the mounting hole.
- n. Bracing may be omitted for short runs of duct if its tributary seismic load can be transferred to an adjacent run of duct that is braced and can properly restrain the additional seismic loads.
- o. Wall penetrations may be considered transverse brace locations where duct is tightly blocked unless smoke dampers are installed in the wall, subject to approval by the SEOR.
- p. Floor penetrations of vertical duct may be considered transverse and longitudinal brace locations where duct is tightly blocked, no smoke dampers are installed, and the distance from the floor penetration to the inside of the 90 degree turn horizontal is less than 2 feet.

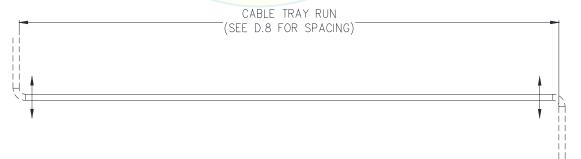

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer. N. Tremblay
California PE No. S6481

Page No.:

1.18


Date:

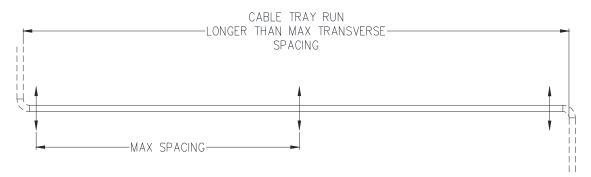
- VI. For bracing distances and requirements of trapeze suspended cable tray/raceway systems:
 - a. A run of cable tray/raceway is defined as a continuous straight length, or one with design offsets, that are less than S/10 (w/ S = maximum transverse brace spacing, see page D.8 for spacing limits). If the offset is S/10 or greater, each straight segment shall be treated as an independent run and shall be braced. Refer to partial plan under item "f" on page 1.21.


CRITICAL BRACE SPACING NOTE:

Cable tray must be approved on a project specific basis or preapproved by OSHPD. The spacing limits shown on D.8 are based solely on the strength of the cable kits as shown in Section 2. The maximum spacing limits of the specific cable tray itself shall not be exceeded.

Note: When a run of a cable tray/raceway that requires bracing transitions down to a size that does not, the point of transition is considered the end of the run and will require a transverse brace. For an offset less than S/10, this is still considered a single run of cable tray/raceway.

b. Each run of cable tray/raceway requires a minimum of two transverse bracing kits, one at each end of the run.

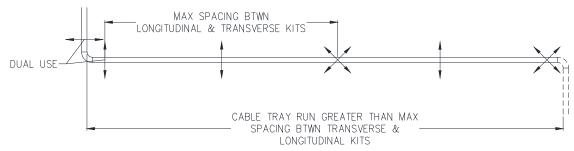

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer. N. Tremblay
California PE No. S6481

Page No.:

1.19

Date:

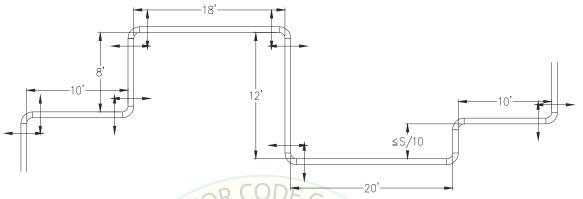
c. If the distance between the two transverse bracing kits exceeds the maximum design spacing, add lateral bracing kits as needed.



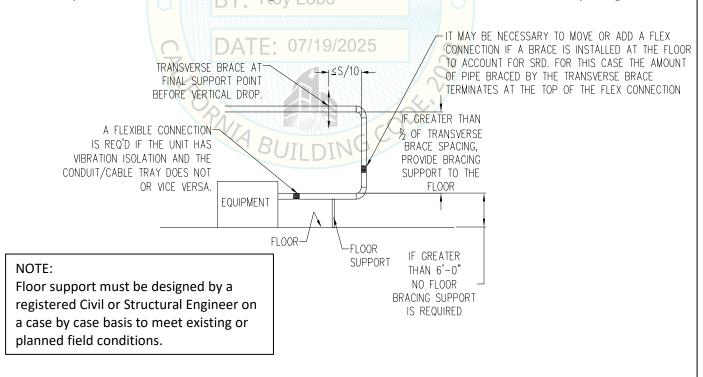
d. Each cable tray/raceway run must have at least one longitudinal bracing kit. If the maximum design transverse & longitudinal (4-way) spacing is exceeded then add transverse & longitudinal bracing kits to meet the spacing requirement.

Each run of cable tray/raceway requires a minimum of one longitudinal bracing kit. However, a transverse bracing kit placed on the run section at the opposite side of an elbow or tee within 24" may act as a longitudinal bracing kit, and is labeled as "DUAL USE" bracing kit. See layout example below.

- i. Longitudinal and longitudinal "DUAL USE" bracing kits on single support cable tray/raceway shall be attached directly to the cable tray or raceway.
- ii. Bracing installed to smaller cable tray/raceway shall not be used to brace a larger cable tray/raceway.



M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481


Page No.: **1.20**

Date:

e. In some cases several short runs may occur in close proximity. By following the preceding guidelines each run should have longitudinal and transverse bracing. Transverse bracing may be used as longitudinal bracing and vice versa on runs adjacent to each other as long as the total length of cable tray/raceway tributary to the brace does not exceed the maximum design spacing. In cases where it does, additional bracing kits are required.

f. At vertical pipe drop to equipment, where cable tray/raceway is connected to the equipment using a flexible connection, provide transverse bracing before the vertical drop. The total length from the transverse brace to the vertical drop should not be more than the design offset previously determined. Provide transverse bracing at the floor after the vertical drop if the total length of the pipe from the transverse brace before the vertical drop to the flexible connection is greater than ½ the maximum transverse brace spacing.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

1.21

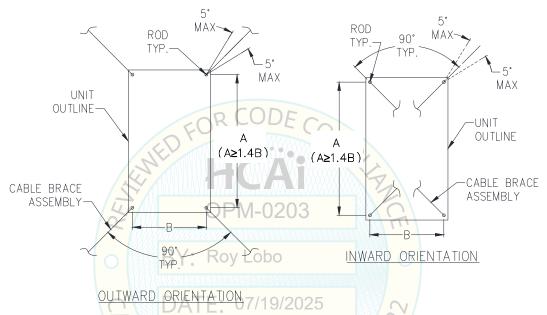
Date:

- g. When pipe crosses a building seismic separation or seismic joint it must be capable of accommodating the joint displacements as specified by the engineer of record.
- h. A rigid pipe shall not be braced to dissimilar parts of a building structure or two dissimilar building systems that may move different from one another during an earthquake. Bracing should be attached to the part of the building structure that is vertically supporting the pipe.
- i. Transverse and longitudinal braces shall be installed as shown in this guideline up to 30° to 70° from the vertical. However, the recommended brace angle range is equal to or greater than 45° & less than 60° from the vertical, or a 1:1 and up to but not including a 1:1.7 brace ratio, which conforms to the **simplified design procedure.**
- j. The seismic brace assemblies in this guideline consist of three important components; supports and connections to building structure, bracing members consisting of 7x19 cable, and seismic brace attachments. For details of cable brace assemblies see Section 2. For details and load information of structural attachments & spring hanger or rod attachments, see Section 3. The vertical hanger (A36 threaded rod) must be within 6" of the diagonal components to be considered part of the brace assembly.
- k. Transverse bracing kit locations are required to be at or within 6 inches of a vertical seismic brace assembly to protect against vertical movement (typically a stiffened hanger rod).
- I. Steel bolt connections to structural steel members or components shall not have a diameter less than 1/16" than that of the mounting hole. Steel bolt connections to concrete structure shall not have a diameter less than 1/8" than that of the mounting hole.
- m. Bracing may be omitted for short runs of cable tray if its tributary seismic load can be transferred to an adjacent run of cable tray that is braced and can properly restrain the additional seismic loads.
- n. Final brace spacing must not exceed the maximum design spacing permitted for the cable tray itself as stated in the critical spacing note on page 1.19.

4 BUILDING

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer. N. Tremblay
California PE No. S6481


Page No.:

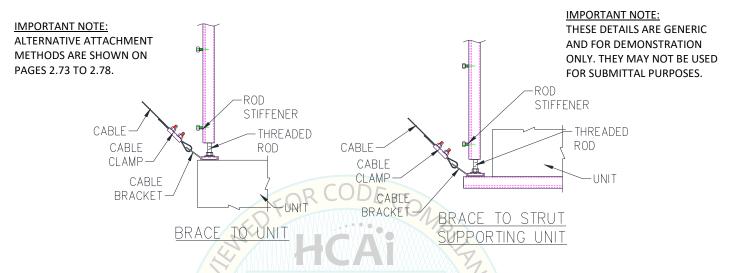
1.22

Date:

VII. Suspended Equipment Bracing Requirements:

- a. Suspended equipment is defined as a unit of any kind that is supported by and attached to the structure above using threaded rod. The rod is connected directly to the unit or to a steel trapeze member that the unit is attached to.
- b. Each piece of equipment requires (4) cable brace assemblies, (1) in each orthogonal direction in the plan view. The cables must be splayed outward (or inward) from each corner of the unit. A variance of ±5° of the plan view angle of the cable is permitted for installation purposes.

- c. Transverse and longitudinal braces shall be installed as shown in this guideline up to 90° from the vertical. However, the recommended brace angle range is equal to or greater than 45° & less than 60° from the vertical, or a 1:1 and up to but not including a 1:1.7 brace ratio.
- d. The seismic brace assemblies in this guideline consist of three important components: anchorage and connections to the building structure, bracing members consisting of 7x19 cable, and seismic brace attachments. For details of cable brace assemblies see Section 2. For details and load information of structural attachments & spring hanger or rod attachments, see Section 3. The vertical hanger (A36 threaded rod) must be within 6" of the diagonal components to be considered part of the brace assembly.


M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer. N. Tremblay
California PE No. S6481

Page No.:

1.23

Date:

e. The cable bracing assemblies must be attached at the same location where the threaded rods are attached to the equipment. The unit connection point to either the rod or the supporting member <u>must be verified to ensure failure will not occur on a case by case basis</u> (either via equipment OSP # or through project specific analysis of the attachment point).

- f. Connection point to the unit must be of steel construction with a tapped hole or welded nut that is internally attached to the unit and part of the structural elements of the unit itself. See drawings on pages 2.73 to 2.78 for more detail.
- g. Steel bolt connections to structural steel members or components shall not have a diameter less than 1/16" than that of the mounting hole. Steel bolt connections to concrete structure shall not have a diameter less than 1/8" than that of the mounting hole.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

1.24

Date:

6. GENERAL DESIGN PROCEDURE

The following is a general procedure for the design of seismic bracing and assumes that a piping, duct or electrical distribution system has been provided. The following also assumes that seismic bracing has been determined to be required.

I. Seismic Force Coefficient

Determine the total design lateral seismic force coefficient based on the applicable code, project drawings, and specifications. This coefficient is commonly referred to as the "G-factor"; i.e. $F_p = 0.5g * Wp$. In case of a conflict, use the more stringent criteria. The total design horizontal seismic force coefficient, when multiplied by the weight of the piping, duct, or electrical distribution systems, represents the total design lateral seismic force. To utilize the design tables in section D, use the value of "g" along with the specific pipe size or duct/cable tray linear weight to find the required cable bracing kit detail, cable brace attachment detail, and rod or hanger attachment detail. To calculate the value of "g" use the equations below less the value of Wp.

According to the 2022 CBC the total design lateral seismic force, F_p , and the total vertical seismic force F_{pv} , shall be determined from the following formulas. The final F_p and F_{pv} will be utilized at either 100% value for LRFD (Load Resistance Factored Design) or SD (Strength Design). This is necessary as the brace design, spacing, and anchorage methods are based on these design methods.

Per Section 13.3.1 of the ASCE 7-16, the horizontal seismic force is:

$$F_p = \frac{0.4a_p S_{DS}Wp}{R_p/I_p} \left(1 + 2\frac{Z}{h_r}\right)$$

But is not required to be taken greater than:

$$F_p = 1.6S_{DS}I_pWp$$

And shall not be taken as less than:

$$F_p = 0.3S_{DS}I_pWp$$

The additional vertical seismic force shall be:

$$F_p = \pm 0.2S_{DS}Wp$$

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer. N. Tremblay
California PE No. S6481

Page No.:

1.25

Date:

Where:

- F_p = the horizontal seismic force
- S_{DS} = spectral acceleration, short period. This is either provided within the structural plans of the project through the SEOR or can be determined using the project address at the following URL -https://seismicmaps.org/
 - For additional information, see section 1613A.2 of the 2022 CBC.
- a_p = component amplification factor. See the table below for all applicable values.
- R_p = component response modification factor. See the table below for all applicable values.
- I_p = component importance factor. Use 1.0 for a building I value of 1.0 or 1.25, and 1.5 for a building I value of 1.5, when the system is critical to life safety and operation after a seismic event, or the system contains materials/chemicals that are hazardous.
- Wp = the operating weight of the component.
- z = vertical location from grade of the component or system where it is supported by the structure.
- h_r = height of the roof of the structure from grade.

SUMMARY OF TABLE 13.6-1 OF ASCE 7-16 (including Supplement Number 1 & Errata):

MECHANICAL & ELECTRICAL COMPONENTS	a _p ^a	Rpb	Ω_0^{c}
Air-side HVACR, fans, air handlers, air conditioning units, cabinet heaters, air distribution boxes, & other mechanical components constructed of sheet metal framing.	2½	6	2
Wet-side HVACR, atmospheric tanks & bins, air separators, pumps, pressure vessels, & other mechanical components constructed of high deformability materials. /2025	1	2½	2
Lighting Fixtures	1	1½	1½
Other Mechanical or electrical components	1	1½	1½
VIBRATION ISOLATED COMPONENTS & SYSTEMS ^b			
Suspended vibration isolated equipment including in-line duct devices and suspended internally isolated components.	2½	2½	2
DISTRIBUTION SYSTEMS			
Piping in accordance with ASME B31 (2001, 2002, 2008, 2010) including in-line components with joints made by welding or brazing.	2½	9 ^d	2
Piping in accordance with ASME B31, including in-line components, constructed of high or limited deformability materials, with joints made by threading, bonding, compression couplings, or grooved couplings.	2½	6	2
Piping and tubing not in accordance with ASME B31, including in- line components, constructed of high-deformability materials, with joints made by welding or brazing.	2½	6	2

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer. N. Tremblay
California PE No. S6481

Page No.:

1.26

Date:

Piping and tubing not in accordance with ASME B31, including in-	2½	4½	2
line components, constructed of high- or limited-deformability			
materials, with joints made by threading, bonding, compression			
couplings, or grooved couplings.			
Piping and tubing constructed of low-deformability materials,	2½	3	2
such as cast iron, glass, and non-ductile plastics.			
Duct systems, including in-line components, constructed of high-	2½	6	2
deformability materials, with joints made by welding or brazing.			
Duct systems, including in-line components, constructed of high-	2½	6	2
or limited-deformability materials with joints made by means			
other than welding or brazing.			
Duct systems, including in-line components, constructed of low-	2½	3	2
deformability materials, such as cast iron, glass, and non-ductile			
plastics.			
Electrical conduit, cable trays, & raceways	2½	6	2
Bus Ducts	1	2½	2
Plumbing	1	2½	2
Pneumatic tube transport systems	2½	6	2

Table Notes:

- a. A lower value for a_p is permitted where justified by detailed dynamic analysis. The value for a_p shall not be less than 1. The value of a_p equal to 1 is for rigid components and rigidly attached components. The value of a_p equal to $2\frac{1}{2}$ is for flexible components and flexibly attached components.
- b. Components mounted on vibration isolators shall have a bumper restraint or snubber in each horizontal direction. The design force shall be taken as 2F_p if the nominal clearance (air gap) between the equipment support frame and restraint is greater than 0.25in. If the nominal clearance specified on the construction documents in not greater than 0.25in the design force is permitted to be taken as F_p.
- c. Overstrength for anchorage to concrete & masonry required for anchorage to concrete regardless. See sections 2.3.6 & 12.4.3 of the ASCE 7-16 & Chapter 17 of the ACI 318-14 for inclusion of the overstrength factor in the horizontal seismic load effect (F_o).
- d. R_p must not exceed 6.0 for design of the force in the attachments of the pipe bracing.

II. Seismic Bracing Detail

Select a seismic bracing detail. For example, if a cable transverse brace is required for installation, go to page 2.1 through 2.78 in Section 2 "Cable Brace Details" for all applicable transverse and longitudinal brace details. For quick detail selection use the tables on pages D.1.1, D.1.2, D.4.1, D.4.2, D.5.1, D.5.2, and D.7.1 & D.7.2.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer. N. Tremblay
California PE No. S6481

Page No.:

1.27

Date:

III. Structural Attachment Details

Select a structural attachment detail. For example, if a Hilti KB-TZ2 wedge anchor into normal weight (NW) concrete slab is required for installation at a seismic brace location, go to page 3.11 in Section 3 "Structural Attachments". All types of concrete, steel, and wood supports & attachments are covered with various fastener types in pages 3.1 through 3.42 for the cable brace, rod & spring hanger box attachment to the structure. For quick detail selection utilize the tables on pages D.2.1, D.2.2, D.3.1, D.3.2, D.6.1, D.6.2, D.8.1 and D.8.2 to determine the required minimum. Attachment Designation (i.e. load category). From there, find a corresponding Attachment Type listed in the tables on pages D.9 to D.12 that meets the requirements to attach to the surrounding building structure. For the same quick detail selection method of the required rod or hanger, use the same tables on pages D.2.1, D.2.2, D.3.1, D.3.2, D.6.1, D.6.2, D.8.1 & D.8.2 to obtain a Hanger/Rod Attachment Designation and select the subsequent Hanger/Rod Attachment Type in the tables on pages D.13.1 to D.16.1 that meets the requirements to attach to the surrounding building structure.

IV. Brace Spacing

Determine the maximum transverse and longitudinal brace spacing from the Section 3 "Structural Attachments". This brace spacing is based on the allowable loads for the specific structural attachment detail previously selected.

The brace spacing shall not exceed the maximum allowable brace spacings listed on the tables on pages D.2, D.3, D.6, and D.8.

For pipe distribution systems, the pipe may not deflect from the at rest position more than 6" or L/60 with L equal to the spacing between the transverse/lateral braces. Design strength for seismic loads in combination with service loads must be based on the following mechanical properties:

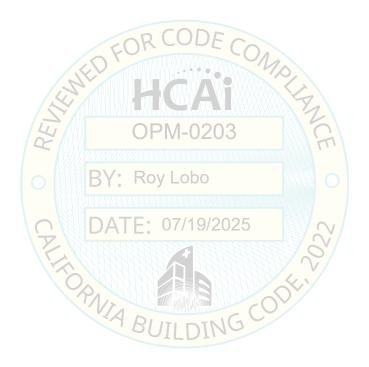
- a. For mechanical components constructed of ductile materials (e.g., steel, aluminum, or copper), 90% of the minimum specified yield strength.
- b. For threaded or coupled connections in piping constructed of ductile materials, 70% of the minimum specified yield strength.

For threaded and bonded connections the maximum spacing of the lateral braces must be reduced by a factor of 1.7 per ASME B31Ea-2010, "Design by Rule" method, section 3.3.2s. For pre-calculated maximum brace spacing based on the stress and deflection limits of the pipe itself, see the top table on page D.3.1.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer. N. Tremblay
California PE No. S6481

Page No.:

1.28


Date:

V. Brace Cable

Select a cable kit size. The horizontal bracing capacity as well as the maximum cable kit tension are listed on the bracing kit details in Section 2. The maximum applied horizontal seismic load shall be equal to or less than the maximum design horizontal seismic loads. If the design tables in Section D are utilized, the cable size is specified accordingly in the preselected detail pages.

VI. Bracing Layout

Layout the seismic bracing as explained in part 5 of Section 1 "Seismic Bracing Layout – General Requirements – Duct, Pipe, & Equipment".

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer. N. Tremblay
California PE No. S6481

Page No.:

1.29

Date:

7. GENERAL INSTALLATION NOTES:

I. Single Hanger Cable Brace Installation Guideline

- a. The design of all gravity hangers is included in the scope of this pre-approval for both use of threaded rod alone or use of the Vibrex type PRMXA-1C spring hanger box.
- b. All rod hangers that correspond with a bracing cable must be stiffened. In some instances rod stiffeners will not be required and will be indicated accordingly.
- c. For **simplified design approach**, the brace angle range from the vertical is equal to or greater than 45° & less than 60° for the diagonal brace, or a 1:1 and up to but not including a 1:1.7 brace ratio. However, the brace may be installed between 30° to 70° degrees from the vertical. Note, when angle "x" is outside the **simplified design approach** angle range the design requires analysis as the tables in section D will not be applicable.
- d. All lateral and longitudinal braces have an in-plane alignment tolerance of 5° from center in both plan and elevation without adversely affecting the given capacities. See Section 2 for more information.
- e. All stiffened rods suspended from the PRMXA-1C hanger have an alignment tolerance of 10° without adversely affecting the given capacities. See page 4.1 for more information.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

1.30

Date:

8. COMPONENT PART NUMBER REFERENCE:

PART NAME	PART	DESCRIPTION
	NUMBER	
SLH-34	315-1002	Attachment bracket for 1/8" & 3/16" cable
HSLH-34	315-1072	Attachment bracket for rigid brace, up to ¾" rod
HSLH-1	315-1073	Attachment bracket for rigid brace, up to 1" rod
SLW-38	315-1039	Slotted Washer for 3/8" dia. rod and anchors
SLW-12	315-1003	Slotted Washer for 1/2" dia. rod and anchors
SLW-58	315-1040	Slotted Washer for 5/8" dia. rod and anchors
SLW-34	315-1004	Slotted Washer for 3/4" dia. rod & anchors
SLW-78	315-1031	Slotted Washer for 7/8" dia. rod & anchors
SLW-1	315-1075	Slotted Washer for 1" dia. rod & anchors
RS-1	315-1037	Rod Stiffener Clamp
1/8" DIA. CABLE	313-1800	7x19 Steel Cable, 1/8" dia., ASTM 1023
1/8" VIBREX CABLE CLAMP	315-1042	Cable clamp for 1/8" dia. cable with integrated
		fastening system.
3/16" DIA. CABLE	313-3600	7x19 Steel Cable, 3/16" dia., ASTM 1023
3/16" VIBREX CABLE	315-1043	Cable clamp for 3/16" dia. cable with integrated
CLAMP	())	fastening system.
PL-38 PIPE LUG	315-1101 O	Welded pipe lug for 3/8" A36 ATR from A500 Gr.
The state of the s		B 46ksi HSS STEEL
PL-12 PIPE LUG	315-1102 07	Welded pipe lug for 1/2" A36 ATR from A500 Gr.
(天)		B 46ksi HSS STEEL V
PL-58 PIPE LUG	315-1103	Welded pipe lug for 5/8" A36 ATR from A500 Gr.
		B 46ksi HSS STEEL
PL-34 PIPE LUG	315-1104	Welded pipe lug for 3/4" A36 ATR from A500 Gr.
	A BUIL	B 46ksi HSS STEEL
PL-78 PIPE LUG	315-1105	Welded pipe lug for 7/8" A36 ATR from A500 Gr.
		B 46ksi HSS STEEL
PL-1 PIPE LUG	315-1106	Welded pipe lug for 1" A36 ATR from A500 Gr. B
		46ksi HSS STEEL
PRMXA-1C	203-3001	Spring hanger box with vertical limit stops with
		allowable 10° angularity of the hanger rod.
		Maximum spring load: 225#
DSSN STRUT NUT	315-1038	Double Strut Nut for HSLH-34 & HSLH-1

-See Section 4 for details of all parts listed above.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer. N. Tremblay

California PE No. S6481

Page No.:

1.31

Date:

TYPICAL SUSPENDED EQUIPMENT DESIGN EXAMPLE (NON-RIGID BRACING)

A. GENERAL

1. The Registered Design Professional (RDP) reviews Section 1 – overview of this OPM.

B. DEMAND

1. The RDP determines the lateral and vertical acceleration "g" for the seismic forces F_p and F_{pv} using information provided in the project documents. In the example below, the maximum factors utilized to determine horizontal and vertical forces on the seismic braces are calculated for use anywhere within the State of California where $z/h_r \le 0.434$. Please note that these maximum factor values may be reduced for the site specific project location as well as for the location within the height of a building in order to obtain lower demand values if so required to meet bracing criteria.

ASCE 7-16 AS AMENDED BY THE 2022 CBC

The equipment being suspended is a unit weighing 265 lbs. It is a fan coil (containing a fan with coils) with min. 18 gage steel housing and internal fully threaded connection points suspended using threaded rod and the PRMXA-1C spring hanger. The hangers are attached to the underside of structural sand light weight concrete over 3" metal deck on the 4th floor of 9 floors total at the elevation provided in the figure.

Determine the horizontal and vertical seismic forces of the unit to design the cable bracing and attachment requirements to the structure.

DATE ATAMOS SEC. -

→ ALL FORCES ARE IN LBS & LENGTHS ARE IN INCHES

SECTION	13.3	HORIZONTAL SEISMIC FORCES FOR NON-STRUCTURAL	
	1	COMPONENTS IN LRFD, UNO BLDG.	
		OUTLINE—	
EQUATION	13.3.1	$F_p = \frac{0.4a_p S_{DS}Wp}{R_p/I_p} \left(1+2\frac{Z}{h_r}\right) = 742.4$	LVL 9 (ROOF)
TABLE	13.6.1	$a_p = 2.5$ (unit w/vib. isolation)	LVL 8
		R _p = 2.5 (unit w/ vib. isolation)	LVL 7
		Ω_0 = 2.0 (for anchorage to conc.)	LVL 6
		$S_{DS} = 2.5$ (short period design value) $_{136'-0''}$	LVL 5
		Wp = 265	
SECTION	13.1.3	I _p = 1.5 (Located in a Hosp.)	LVL 3
		$z/h_r = 59/136$ (Attached to flr shown)	
EQUATION	13.3.2	Max $F_p = 1.6S_{DS}I_pWp = 1590.0$	LVL 2
EQUATION	13.3.3	Min $F_p = 0.3S_{DS}I_pWp = 298.13$	LVL 1
SECTION	13.3.1.2B	Fpv = +/- 0.2S _{DS} Wp = +/- 132.5	GRND
			(0'-0")

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

1.32

Date:

GOVERNING EQN. IS 13.3.1, THEREFORE

 $F_{\rm p} = 742.4$

AND THE SUPPLEMENTAL VERTICAL FORCE IS

 $F_{pv} = +/-132.5$

→ DETERMINE THE CABLE FORCE TO SIZE THE CABLE:

 $x = 45^{\circ}$

 $T_{cable} = F_p/(SIN x) = 742.4/0.707 = 1050.1$

USE 1/8" CABLE, LRFD KIT CAPACITY = 1411 (SEE PG. 2.13.1)

*F_D IS LESS THAN TABULATED CAPACITY VALUE OF 1001 lbs ON 2.13.1 FOR X = 45°

→ DESIGN THE ANCHORAGE OF THE CABLE: USING THE VALUE OF T_{cable}, SELECT AN APPLICABLE ATTACHMENT DETAIL IN SECTION 3, FIND THE VALUE OF Φ TO SELECT THE CORRECT ATTACHMENT TYPE FOR 3" DECK W/ SAND LIGHTWEIGHT CONCRETE FILL: FOR THIS EXAMPLE $\Phi = 45^{\circ}$ ($\Phi = 90^{\circ} - x = 45^{\circ}$)

USE ATTACHMENT TYPE 2TZ2D35 ON PAGE 3.1.1

(FOR ATTACHMENT MAX T_{cable} = 1648lbs FOR THE SELECTED

CABLE ANGLE & > 1411 CAPACITY OF CABLE KIT. OKAY!)

→ DESIGN THE ANCHORAGE OF THE HANGERS TO THE

STRUCTURE:

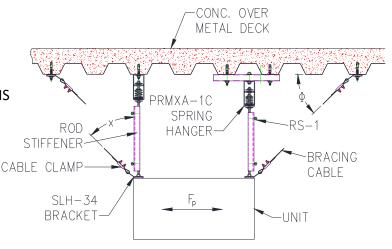
OVERTURNING OF THE UNIT MUST BE TAKEN INTO

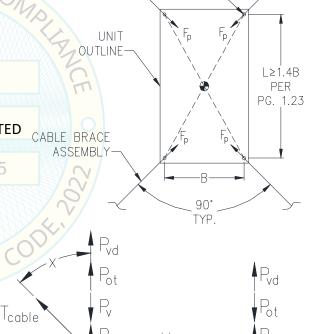
ACCOUNT, UNITS ARE IN INCHES...

B = 20 (SHORT DIM. BTWN RODS)

L = 42 (LONG DIM. BTWN RODS) -

CHECK \rightarrow 1.4B = 1.4*20 = 28 < 42 = L OK!


 $H_{CG} = 10$ (DIST. TO C.G. FROM TOP¹ OF UNIT)


NOTE 1.: HCG MUST BE TAKEN FROM THE THE HORIZONTAL PLANE IN WHICH THE **RODS & CABLE ARE ATTACHED TO** THE UNIT

 $P_{ot} = \Omega_0 F_p H/[(L^2+B^2)^{1/2}] = 319.2$

 $P_{vd} = F_{pv}/4 = 33.13$ (Ω_0 DOESN'T APPLY TO VERT. SEISMIC FORCE)

 $P_w = Wp/4 = 66.25$

Hcg

ROD TYP.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

1.33

Date:

APPLYING EQUATIONS FROM §2.3.6 OF THE ASCE 7-16

6. U = $(1.2 + 0.2S_{DS})D + Q_E + 0.2S$

7. $U = (0.9-0.2S_{DS})D + Q_E + 1.6H$

 $P MIN = P_{ot} + P_{vd} + 1.2P_w = 511.63$

USE AN EXPANSION ANCHOR TO INSTALL TO THE DECK. USE ATTACHMENT TYPE HDE31 ON PAGE 3.28 IN SECTION 3. P_{capacity} = 1041 lbs > P MIN = 511.63 lbs

CHECK THE ROD STIFFENER CLAMP RS-1 SPACING BASED ON THE MAXIMUM COMPRESSION IN THE ROD (TOTAL ROD LENGTH NOT TO EXCEED VALUES LISTED ON PAGE 4.2):

 $P_v = T_{cable}COS x = 742.4 (\Omega_0 EXCLUDED, FORCE IS UPWARD)$

 $P MAX = P_{ot}/\Omega_0 + P_v + P_{vd} - 0.9P_w = 875.5$

d_r = 0.417 (DIAMETER OF THREADED ROD FOR ½" DIA. ALL THREAD ROD)

 $r = d_r/4 = 0.1043$

L = 21 (STD. THREADED ROD RS-1 SPACING)

K = 1.0 (SET AS 1 FOR SIMPLIFIED ANALYSIS)

KL/r = 201.3

E = 29,000,000psi

 $F_v = 36,000psi$

USING THE AISC 360-16, CHAPTER E/ Roy Lobo

 $4.71(E/F_v)^{1/2} = 134 < KL/r \rightarrow EQN. E3-3 OF AISC GOVERNS...$

 $F_{cr} = 0.877F_e = 6191.9psi$

WITH $F_e = \pi^2 E / (KL/r)^2 = 7060.4psi$

 $P_{cr} = 0.9F_{cr}d_r^2\pi/4 = 757.2 < P$ MAX = 875.5 \rightarrow STD. ROD RS-1 SPACING OF 21" IS INADEQUATE TRY ABOVE ANALYSIS WITH RS-1 SPACING OF 19"...

KL/r = 182.2, $F_{cr} = 0.877\pi^{2}E/(KL/r)^{2} = 7564.1psi$

 $P_{cr} = 0.9F_{cr}d_r^2\pi/4 = 925.8 > P MAX \rightarrow USE A MAX. 19" RS-1 SPACING$

CHECK THE CAPACITY OF THE CONNECTION OF THE UNIT TO THE ROD:

INTERNALLY THERE IS A NUT WELDED TO SHEET METAL THAT THE ROD CONNECTS TO. THE TENSION CAPACITY IS THE PUNCHING SHEAR OF THE SHEET METAL AND THE SHEAR CAPACITY IS THE BEARING STRENGTH OF THE HOLE IN THE SHEET METAL...

FIND THE PUNCHING SHEAR STRENGTH OF THE SHEET METAL (J6.1 OF AISI S100-16)

 $P_{nt} = V_n = \phi 0.6 F_u A_{nv}$

 $A_{nv} = L*t$

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355

8744 Witherspoon Parkway | Valencia, CA 913! Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

1.34

Date:

t = 0.048" (SHEET METAL THICKNESS – 18 GAGE) L = 3.04" (PERIMETER LENGTH AROUND STD. HVY NUT)

 $F_u = 45$ ksi (TENSILE STRENGTH OF Gr. 33 SHEET METAL)

 $\phi = 0.65$

 $P_{nt} = V_n = 2560.9 lbs$

FIND THE BEARING STRENGTH OF THE HOLE w/ CONSIDERATION OF DEFORMATION (J3.3.2-1)

 $P_{nv} = \phi(4.64\alpha t + 1.53) d_r t F_u$

 $d_r = 0.5"$ (ROD DIA.)

 α = 1.0

 $\phi = 0.65$

 $P_{nv} = 1230.4 lbs$

CHECK COMBINED LOADING OF CONNECTION:

 $T_u = P MIN = 511.63 lbs$

 $V_u = F_p = 742.4 \text{ lbs}$

 $1.0 \ge V_u/P_{nv} + T_u/P_{nt} = 0.803$ CONNECTION OKAY

C. CAPACITY

- 1. The RDP must select the necessary hardware based on the determined loads in part B of this example. See Section 3 for attachment details (i.e. concrete anchor bolt to deck) and Section 4 for component pieces of the cable kit.
- 2. The RDP must specify on the drawing the maximum design cable load specific to each unit so that the SEOR can verify the capacity of the local structure that the equipment is braced to and supported by.
- D. DESIGN OF DISTRIBUTION SYSTEMS GOING TO AND FROM THE UNIT AS WELL AS THROUGHOUT THE STRUCTURE
 - 1. The RDP must layout the bracing locations per Section 1 Part 5 in the relevant mechanical plans showing the systems (pipe, duct, and cable tray or raceways).
 - 2. Based on the brace locations shown, the RDP must determine the linear weight of the system and calculate the maximum tributary seismic weight to a single transverse kit and a single transverse/longitudinal kit (or more depending on the variety of distribution system sizes or levels of the structure as the seismic forces can vary greatly).
 - 3. Using the design equations and methods specified for the equipment the RDP must apply the tributary weight(s) determined in item 2 and design the cable kit and attachment methods accordingly. Geometric considerations (height to center of gravity, L, B, etc) need not be considered since there is only a single threaded rod per kit location for pipe, but should be accounted for with duct. See pages 1.36 through 1.41 for distribution system design examples.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

1.35

Date:

TYPICAL SUSPENDED PIPE DESIGN EXAMPLE (NON-RIGID BRACING)

A. GENERAL

1. The Registered Design Professional (RDP) reviews Section 1 – overview of this OPM.

B. DEMAND

1. The RDP determines the lateral and vertical acceleration "g" for the seismic forces F_p and F_{pv} using information provided in the project documents. In the example below, the maximum horizontal and vertical forces on the seismic braces are calculated for use anywhere within the State of California $z/h_r = 0.434$. Please note that these maximum values may be reduced for the site specific project location as well as for the location within the height of a building in order to obtain lower demand values if so required to meet bracing criteria.

ASCE 7-16 AS AMENDED BY THE 2022 CBC

The pipe being suspended is 5" diameter schedule 40 steel pipe filled with water and wrapped in insulation (Wp = 24.83plf). Pipe is assembled in accordance with ASME B31 and the joints are made by welding. The pipe system being braced is located in the same structure and level on page 1.32 as the equipment being suspended on the same page. Note: demand loads will increase at higher levels of the structure.

For simplified design, determine the maximum horizontal "g" value and select the necessary details for the cable kit and attachment to the structure for the cable and the rod. Cable must be at an angle range of $45^{\circ} \le x < 60^{\circ}$ for this simplified design method to be applied, with x measured from the vertical axis. For this example use a specific angle of 45° .

→ ALL FORCES ARE IN LBS & LENGTHS ARE IN INCHES

SECTION	13.3	COMPONENTS IN LRFD, UNO
EQUATION	13.3.1	$F_p = \frac{0.4a_p S_{DS}Wp}{R_p/I_p} \left(1 + 2\frac{Z}{h_r}\right) = 1.17*Wp \text{ where g = 1.17}$
TABLE	13.6.1	a_p = 2.5 (pipe w/ welded joints & ASME B31 compliant) R_p = 6.0 (pipe w/ welded joints & ASME B31 compliant) Ω_0 = 2.0 (for anchorage to conc.) S_{DS} = 2.5 (short period design value)
SECTION	13.1.3	$I_p = 1.5$ (Located in a Hosp.) z = 59/136 (Same as equipment example on page 1.32)
EQUATION EQUATION SECTION	13.3.2 13.3.3 13.3.1	Max $F_p = 1.6S_{DS}I_pWp = 6.0*Wp$ Min $F_p = 0.3S_{DS}I_pWp = 1.13*Wp$ $Fpv = +/-0.2S_{DS}Wp = 0.5*Wp$

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

1.36

Date:

GOVERNING EQN. IS 13.3.3 (THE LOWER BOUND), THEREFORE $F_{p}=1.17^{*}Wp\ \, \text{(LRFD)}$ AND THE SUPPLEMENTAL VERTICAL FORCE IS

 $F_{pv} = 0.5*Wp$ (LRFD)

NOTE: PIPE VERTICAL SUPPORT (ROD HANGER) SPACING TO CONFORM TO CPC TABLE 313.3

*IN THIS EXAMPLE, ROD HANGER SPACING IS 11' DUE TO BRACE SPACING LIMITATION

ightarrow SELECT THE CORRECT TRANSVERSE AND TRANSVERSE & LONGITUDINAL CABLE BRACING KIT DETAILS BASED ON THE ANGLE RANGE SELECTED ON PAGE 1.36: g = 1.17, SO ROUND UP TO 1.5. FROM THE TABLES ON PAGE D.1.1, USE DETAIL PAGES 2.1.25 & 2.1.26.

 \rightarrow SELECT THE CORRECT CABLE BRACING ATTACHMENT TO THE STRUCTURE: AGAIN, g = 1.5...

FROM THE TABLES ON PAGE D.2.1 USING CABLE BRACING, USE ATTACHMENT DESIGNATION B7 AND SELECT A CORRESPONDING ATTACHMENT TYPE WITHIN THE TABLES ON PAGES D.9.1 TO D.12.2. FOR 3" CONCRETE FILLED DECK (PAGE D.9.2), USE 4TZ2D33 ON PAGE 3.1.2.

→ DETERMINE THE MAXIMUM BRACING KIT SPACING (FOR TRANSVERSE AND TRANSVERSE/LONGITUDINAL KITS):

SEE PG. 4.3.1 FOR ROD LENGTH LIMITS AND RS-1 STIFFENER SPACING

ON PAGE D.2.1 IN THE LOWER TABLE, THE MAXIMUM SPACING IN FEET FOR THE TRANSVERSE BRACING KITS OF THE PIPE IS 11.0' O.C.

ON PAGE D.3.1 IN THE LOWER TABLE, THE MAXIMUM SPACING IN FEET FOR THE TRANSVERSE & LONGITUDINAL BRACING KITS OF THE PIPE IS 26.7' O.C.

- THIS RESULTS IN (2) TRANSVERSE KITS BETWEEN EACH TRANSVERSE AND LONGITUDINAL KIT.
- MAXIMUM TRANSVERSE Fp = 24.83plf * 11' * 1.17g = 320lbs ≤ 329 lbs
 - \circ NOTE: TO DETERMINE THE CABLE TENSION, F_p MUST BE MULTIPLIED BY THE η VALUE LISTED ON PAGE D.3.3. IN THIS CASE IT WOULD BE 6.04.
- ightarrow SELECT THE CORRESPONDING ROD ATTACHMENT DETAIL FOR THE TRANSVERSE KIT LOCATIONS:

ON PAGE D.2.1 FOR 5" PIPE TRANSVERSE KITS, USE A ROD DESIGNATION OF R2 AND SELECT A CORRESPONDING ROD ATTACHMENT TYPE IN THE TABLES ON PAGES D.14.1 TO D.16.1. FOR 3" CONCRETE FILLED DECK AND 5/8" DIAMETER ROD (STANDARD FOR 5" DIAMETER PIPE), USE RDE33 ON PAGE 3.33 (5/8" DIA. KB-TZ2 WITH ROD COUPLING).

THE SAME METHOD APPLIES FOR THE TRANSVERSE AND LONGITUDINAL KITS ON PAGE D.3.1.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

1.37

Date:

→FOR MANUAL DESIGN OF PIPE BRACING:

- THIS APPROACH IS FOR ANGLES OUTSIDE THE ANGLE RANGE OF THE SIMPLIFIED METHOD OR FOR DETERMINING MORE EXACT DESIGN VALUES FOR THE CABLE BRACING ASSEMBLY AND ATTACHMENTS.
- 1) CALCULATE THE EXACT FORCES PER KIT
 - a. SELECT A TRIBUTARY SPACING FOR THE TRANSVERSE KIT WITH THE SPACING NOT TO EXCEED THE SPACING LIMITS LISTED IN THE LOWER TABLE ON PAGE D.3.1.
 - b. SELECT THE DESIRED CABLE BRACING ANGLE RANGE (BETWEEN $30^{\circ} \le x \le 70^{\circ}$ MEASURED FROM VERTICAL PLANE).
 - c. FIND F_p USING THE EQUATIONS AND THE TRIBUTARY WEIGHT PER TRANSVERSE CABLE KIT. NOTE: THIS LOAD APPLIES TO THE TRANSVERSE COMPONENT OF THE TRANSVERSE AND LONGTIDUTINAL KITS.
 - d. FIND THE Fp FOR THE LONGITUDINAL PORTION OF THE TRANSVERSE AND LONGITUDINAL KITS USING A MAXIMUM SPACING OF 80'-0" O.C. (RECOMMENDED NOT TO EXCEED 2 TO 3 TIMES THE TRANSVERSE KIT SPACING).
- 2) APPLY THE η FACTOR LISTED ON D.3.3 FOR THE ANGLE RANGE TO GET THE CABLE TENSION T_{cable} FOR THE TRANSVERSE BRACING:

 $T_{cable} = F_p \eta B Y$ Roy Lobo

3) APPLY PYTHAGOREAN THEOREM TO OBTAIN THE CABLE TENSION Tcable FOR THE LONGITDUINAL BRACING: TF 07/19/2025

 $T_{cable} = F_p/SIN x$

4) SELECT THE APPROPRIATE BRACING KIT AND ATTACHMENT DETAILS FROM SECTIONS 2 & 3 RESPECTIVELY BASED ON THE VALUE OF Tcable.

C. CAPACITY

- 1. The RDP must select the necessary hardware based on the determined loads in part B of this example. See Section 3 for attachment details (i.e. concrete anchor bolt to deck) and Section 4 for component pieces of the cable kit.
- 2. The RDP must specify on the drawing the maximum design cable load specific to each bracing kit so that the SEOR can verify the capacity of the local structure that the pipe is braced to and supported by.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355

Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

1.38

Date:

TYPICAL SUSPENDED DUCT (OR CABLE TRAY) DESIGN EXAMPLE

(NON-RIGID BRACING)

- A. GENERAL
 - 1. The Registered Design Professional (RDP) reviews Section 1 overview of this OPM.
- B. DEMAND
 - 1. The RDP determines the lateral and vertical acceleration "g" for the seismic forces F_p and F_{pv} using information provided in the project documents. In the example below, the maximum horizontal and vertical forces on the seismic braces are calculated for use anywhere within the State of California & $z/h_r = 0.66$. Please note that these maximum values may be reduced for the site specific project location as well as for the location at a lower elevation within the height of a building in order to obtain lower demand values if so required to meet bracing criteria. Note: the demand loads in the example below will be even higher if the duct is at a higher elevation within the structure.

ASCE 7-16 AS AMENDED BY THE 2022 CBC

*For this example, a duct system will be used, however the same method applies for cable trays (Min. 12 ga.). The duct being suspended is 36x28 rectangular duct made of 20 gage sheet metal and is insulated, weighing 15.6lb/ft. The duct system being braced is located in the same structure on page 1.32, but on a higher level at 90' above grade (resulting in a $z/h_r = 0.66$). The ductwork has gravity supports at every 10'-0'' o.c.

For simplified design, determine the maximum horizontal "g" value and select the necessary details for the cable kit and attachment to the structure for the cable and the rod. Cable must be at an angle range of $45^{\circ} \le x < 60^{\circ}$ for this simplified design method to be applied. For this example, use 45° specifically.

→ ALL FORCES ARE IN LBS & LENGTHS ARE IN INCHES

SECTION	13.3	HORIZONTAL SEISMIC FORCES FOR NON-STRUCTURAL
		COMPONENTS IN LRFD, UNO

EQUATION	13.3.1	$F_p = \frac{0.4a_p S_{DS}Wp}{R_p/I_p} \left(1+2\frac{Z}{h_r}\right) = 1.45*Wp \text{ where } g = 1.45$
TABLE	13.6.1	$a_p = 2.5$ (suspended ductwork)
		$R_p = 6.0$ (suspended ductwork)
		Ω_0 = 2.0 (for anchorage to conc.)
		S _{DS} = 2.5 (highest design value)
SECTION	13.1.3	I _p = 1.5 (Located in a Hosp.)
		z = 90/136 (Using same figure as equipment example on page 1.32)
EQUATION	13.3.2	$Max F_p = 1.6S_{DS}I_pWp = 6.0*Wp$
EQUATION	13.3.3	$Min F_p = 0.3S_{DS}I_pWp = 1.13*Wp$
SECTION	13.3.1	$Fpv = +/- 0.2S_{DS}Wp = 0.5*Wp$

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355

Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

1.39

Date:

GOVERNING EQN. IS 13.3.1, THEREFORE

 $F_p = 1.45*Wp = 1.45*30*15.6plf = 679 lbs$ = 1.45*60*15.6plf = 1357 lbs

AND THE SUPPLEMENTAL VERTICAL FORCE IS

 $F_{pv} = 0.5*Wp = 0.5*10*15.6 = 62 lbs$

→ SELECT THE CORRECT CABLE BRACING KIT DETAIL:

g = 1.45, SO ROUND UP TO 1.5 AND ROUND UP THE DUCT LINEAR WEIGHT TO 20lb/ft. FROM THE TABLES ON PAGE D.4.1, USE DETAIL PAGE 2.7.1 FOR TRANSVERSE BRACING AND 2.7.2 FOR TRANSVERSE AND LONGITUDINAL BRACING.

→ SELECT THE CORRECT CABLE BRACING ATTACHMENT TO THE STRUCTURE:

AGAIN, g = 1.5 & DUCT IS 20lb/ft...

FROM THE TABLES ON PAGE D.6.1, USE ATTACHMENT DESIGNATION B6 AND SELECT A CORRESPONDING ATTACHMENT TYPE WITHIN THE TABLES ON PAGES D.9.1 TO D.12.2. FOR 3" CONCRETE FILLED DECK, USE 4TZ2D33 ON PAGE 3.1.2.

- → DETERMINE THE MAXIMUM BRACING KIT SPACING FOR TRANSVERSE KITS: ON PAGE D.6.1 IN THE MIDDLE TABLE, THE MAXIMUM SPACING IN FEET FOR THE BRACING KITS OF THE DUCT IS 30' O.C.
- → DETERMINE THE MAXIMUM BRACING KIT SPACING FOR TRANSVERSE & LONGITUDINAL KITS (4-WAY KITS): DATF: 07/19/2025

BY: Roy Lobo

ON PAGE D.6.1 IN THE LOWER TABLE, THE MAXIMUM SPACING IN FEET FOR THE BRACING KITS OF THE DUCT IS 60' O.C.

IMPORTANT NOTE: TRANSVERSE KITS MUST BE UTILIZED IN CONJUNCTION WITH THE TRANSVERSE/LONGIDTUDINAL KITS SO THAT THE DUCT IS BRACED TRANSVERSELY EVERY 30' O.C. (THE MAXIMUM TRANSVERSE KIT SPACING)

→ SELECT THE CORRESPONDING ROD ATTACHMENT DETAIL:

SEE PG. 4.3.1 FOR ROD **LENGTH LIMITS AND RS-1** STIFFENER SPACING

 $T_{ROD} = 15.6*10 + F_{pv} = 218 lbs (MANUAL CALCULATION)$

ON PAGES 2.7.1 & 2.7.2 FOR DUCT 30plf OR SMALLER THE ROD SIZE IS 3/8". USE A ROD DESIGNATION OF R1 AS LISTED ON PAGE D.6.1 AND SELECT A CORRESPONDING ROD ATTACHMENT TYPE IN THE TABLES ON PAGES D.14.1. FOR 3" CONCRETE FILLED DECK AND 3/8" DIAMETER ROD, USE RDE31 ON PAGE 3.33 (3/8" DIA. KB-TZ2 WITH ROD COUPLING). NOTE: THE MIN. REQ'D ATTACHMENT IS RDE37 FOR THE ROD LOAD. BUT RDE31 SELECTED TO USE THE SAME ANCHOR MANUFACTURER AS THE BRACE ATTACHMENT AND HAS GREATER CAPACITY.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481

1.40

Date:

Page No.:

LOAD SUMMARY:

 $z/h_r = 0.662$ $F_p = 679$ lbs (TRANSVERSE), 1357 lbs (LONG.) $T_{ROD} = 218$ lbs

→FOR MANUAL DESIGN OF DUCT (OR CABLE TRAY) BRACING:

- THIS APPROACH IS FOR ANGLES OUTSIDE THE ANGLE RANGE OF THE SIMPLIFIED METHOD OR FOR DETERMINING MORE EXACT DESIGN VALUES FOR THE CABLE BRACING ASSEMBLY AND ATTACHMENTS.
- 1) CALCULATE THE EXACT FORCES PER KIT
 - a. SELECT A TRIBUTARY SPACING FOR THE TRANSVERSE KIT WITH THE SPACING NOT TO EXCEED 30'-0" FOR TRANSVERSE BRACING AND 60'-0" FOR TRANSVERSE & LONGITUDINAL BRACING, OR THE PREDETERMINED SPACING LIMITS OF THE PROJECT DEPENDING ON THE CAPACITY OF THE DUCT ITSELF.
 - b. SELECT THE DESIRED CABLE BRACING ANGLE RANGE (BETWEEN $30^{\circ} \le x \le 70^{\circ}$).
 - c. FIND F_p USING THE EQUATIONS AND THE TRIBUTARY WEIGHT PER TRANSVERSE CABLE KIT. NOTE: THIS LOAD APPLIES TO THE TRANSVERSE COMPONENT OF THE TRANSVERSE AND LONGTIDUTINAL KITS.
 - d. FIND THE F_p FOR THE LONGITUDINAL PORTION OF THE TRANSVERSE AND LONGITUDINAL KITS USING A MAXIMUM SPACING OF 60'-0" O.C. (RECOMMENDED NOT TO EXCEED 2 TO 3 TIMES THE TRANSVERSE KIT SPACING).
- 2) APPLY PYTHAGOREAN THEOREM TO OBTAIN THE CABLE TENSION T_{cable} FOR THE TRANSVERSE BRACING: ATE: 07/19/2025

 T_{cable} = F_p/SIN x
- 3) APPLY PYTHAGOREAN THEOREM TO OBTAIN THE CABLE TENSION T_{cable} FOR THE TRANSVERSE & LONGITUUINAL BRACING (IN THIS CASE x=60 TO COVER THE RANGE):

 $T_{cable} = F_p/SIN x$

4) SELECT THE APPROPRIATE BRACING KIT AND ATTACHMENT DETAILS FROM SECTIONS 2 & 3 RESPECTIVELY BASED ON THE VALUE OF T_{cable}.

C. CAPACITY

- 1. The RDP must select the necessary hardware based on the determined loads in part B of this example. See Section 3 for attachment details (i.e. concrete anchor bolt to deck) and Section 4 for component pieces of the cable kit.
- The RDP must specify on the drawing the maximum design cable load specific to each bracing kit so that the SEOR can verify the capacity of the local structure that the duct is braced to and supported by.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

1.41

Date:

TYPICAL SUSPENDED EQUIPMENT DESIGN EXAMPLE (RIGID BRACING)

A. GENERAL

1. The Registered Design Professional (RDP) reviews Section 1 – overview of this OPM.

B. DEMAND

1. The RDP determines the lateral and vertical acceleration "g" for the seismic forces F_p and F_{pv} using information provided in the project documents. In the example below, the maximum factors utilized to determine horizontal and vertical forces on the seismic braces are calculated for use anywhere within the State of California where $z/h \le 0.434$. Please note that these maximum factor values may be reduced for the site specific project location as well as for the location within the height of a building in order to obtain lower demand values if so required to meet bracing criteria.

ASCE 7-16 AS AMENDED BY THE 2022 CBC

The equipment being suspended is a unit weighing 320 lbs. It is a duct silencer (containing sheet metal baffling to reduce equipment noise) with min. 18 gage steel housing and internal fully threaded connection points suspended using 3/8" diameter threaded rod. The hangers are attached to the underside of structural sand light weight concrete over 3" metal deck on the 4th floor of 9 floors total at the elevation provided in the figure.

Determine the horizontal and vertical seismic forces of the unit to design the rigid bracing and attachment requirements to the structure.

→ ALL FORCES ARE IN LBS & LENGTHS ARE IN INCHES

SECTION	13.3	HORIZONTAL SEISMIC FORCES FOR NON-STRUCTURAL	
	7	COMPONENTS IN LRFD, UNO BLDG.	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	OUTLINE—	
EQUATION	13.3.1	$F_{p} = \frac{0.4a_{p}S_{DS}Wp}{R_{p}/I_{p}} \left(1 + 2\frac{Z}{h_{r}}\right) = 373.5$	LVL 9 (ROOF)
TABLE	13.6.1	a _p = 2.5 (Air-side HVACR Equipment)	LVL 8
		R _p = 6.0 (Air-side HVACR Equipment)	LVL 7
		Ω_0 = 2.0 (for anchorage to conc.)	LVL 6
		S _{DS} = 2.5 (short period design value) _{136'-0"}	LVL 5
		Wp = 320	
SECTION	13.1.3	I _p = 1.5 (Located in a Hosp.)	LVL 3
		z = 59/136 (Attached to flr shown)	
EQUATION	13.3.2	Max $F_p = 1.6S_{DS}I_pWp = 1920.0$	LVL 2
EQUATION	13.3.3	Min $F_p = 0.3S_{DS}I_pWp = 360.0$	LVL 1
SECTION	13.3.1.2B	$Fpv = +/- 0.2S_{DS}Wp = +/- 160.0$	GRND
			(0'-0")

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355

8744 Witherspoon Parkway | Valencia, CA 913! Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

1.42

Date:

GOVERNING EQN. IS 13.3.1, THEREFORE $F_p = 373.5$

AND THE SUPPLEMENTAL VERTICAL FORCE IS

 $F_{pv} = +/-160.0$

→ DETERMINE THE BRACE FORCE TO SIZE THE BRACE. ROD LENGTH IS 36", MAKING THE BRACE ARM APPROXIMATELY 51" LONG: $x = 45^{\circ}$

CONC. OVER METAL DECK RS-1ROD STIFFENER-ARM HSI H BRACKET UNIT

 $T_{brace} = 0.5*F_p/(SIN x) = 0.5*373.5/0.707 = 264.1$

PER PAGE 2.14.1, HSLH-34 WITH SLW-38 IS ADEQUATE

WITH A CAPACITY OF 1776 LBS.

PER PAGE 2.15.2, USE 1 5/8 X 1 5/8 X 12 GA SLOTTED

STRUT IS ADEQUATE WITH A CAPACITY OF 3652 LBS

FOR A BRACE LENGTH OF 60".

RIGID BRACE ASSEMBLY → DESIGN THE ANCHORAGE OF THE BRACE; UNIT **OUTLINE-**

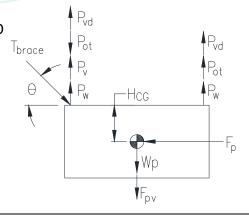
ROD 90' TYP.-TYP

USING THE VALUE OF Tbrace, SELECT AN APPLICABLE ATTACHMENT DETAIL IN SECTION 3. FIND THE VALUE OF Φ TO SELECT THE CORRECT ATTACHMENT TYPE FOR 3" DECK W/ SAND LIGHTWEIGHT CONCRETE FILL: FOR THIS EXAMPLE $\Phi = 45^{\circ}$ ($\Phi = 90^{\circ} - x = 45^{\circ}$) USE ATTACHMENT TYPE 2TZ2DR32 ON PAGE 3.1.3 (FOR ATTACHMENT MAX T_{brace} = 353lbs FOR THE SELECTED BRACE ANGLE & < 1776 CAPACITY OF RIGID BRACE KIT. OKAY!)

→ DESIGN THE ANCHORAGE OF THE HANGER RODS TO THE

STRUCTURE, & BRACE IS UNDER COMPRESSION:

OVERTURNING OF THE UNIT MUST BE TAKEN INTO


ACCOUNT, UNITS ARE IN INCHES...

B = 20 (SHORT DIM. BTWN RODS)

L = 42 (LONG DIM. BTWN RODS) -

 $H_{CG} = 15$ (DIST. TO C.G. FROM TOP¹ OF UNIT)

NOTE 1.: H_{CG} MUST BE TAKEN FROM THE THE HORIZONTAL PLANE IN WHICH THE **RODS & CABLE ARE ATTACHED TO** THE UNIT

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

1.43

Date:

 $P_{ot} = 0.5*F_pH/[(L^2+B^2)^{1/2}] = 60.2$

 $P_{vd} = F_{pv}/4 = 40.0$ (Ω_0 DOESN'T APPLY TO VERT. SEISMIC FORCE)

 $P_w = Wp/4 = 80.0$

 $P_v = T_{brace} * 0.707 = 186.7$

APPLYING EQUATIONS FROM §2.3.6 OF THE ASCE 7-16

5. $U = (1.2 + 0.2S_{DS})D + Q_E + 0.2S$

7. $U = (0.9-0.2S_{DS})D + Q_E + 1.6H$

P MIN = $-P_{ot} + P_{vd} + 1.2P_w + \Omega_0 P_v = 449.2$ lbs (TENSION)

USE AN EXPANSION ANCHOR TO INSTALL TO THE DECK. USE ATTACHMENT TYPE RDE31 ON PAGE 3.33 IN SECTION 3. P_{capacity} = 1038 lbs > P MIN = 449.2 lbs

CHECK THE ROD STIFFENER CLAMP RS-1 SPACING BASED ON THE MAXIMUM COMPRESSION IN THE ROD:

 $P_v = T_{brace}COS x = 186.7$

 $P MAX = P_{ot} + P_{v} + P_{vd} - 0.9P_{w} = 214.9$

 $d_r = 0.307$ (DIAMETER OF THREADED ROD)

 $r = d_r/4 = 0.0768$

L = 15 (STD. THREADED ROD RS-1 SPACING)

K = 1.0 (SET AS 1 FOR SIMPLIFIED ANALYSIS)

KL/r = 195.3

E = 29,000,000psiG

 $F_v = 36,000$ psi

USING THE AISC 360-16, CHAPTER E

 $4.71(E/F_v)^{1/2} = 134 < KL/r \rightarrow EQN. E3-3 OF AISC GOVERNS...$

 $F_{cr} = 0.877F_e = 6581psi$

WITH $F_e = \pi^2 E / (KL/r)^2 = 7504.0psi$

 $P_{cr} = 0.9F_{cr}d_r^2\pi/4 = 438.4 > P MAX = 214.9 \rightarrow STD. ROD RS-1 SPACING OF 15" IS ADEQUATE$

DATE: 07/19/2025

CHECK THE CAPACITY OF THE CONNECTION OF THE UNIT TO THE ROD:

INTERNALLY THERE IS A NUT WELDED TO SHEET METAL THAT THE ROD CONNECTS TO. THE TENSION CAPACITY IS THE PUNCHING SHEAR OF THE SHEET METAL AND THE SHEAR CAPACITY IS THE BEARING STRENGTH OF THE HOLE IN THE SHEET METAL...

vibration & seismic control systems

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

1.44

Date:

FIND THE PUNCHING SHEAR STRENGTH OF THE SHEET METAL (J6.1 OF AISI S100-16)

$$P_{nt} = V_n = \phi 0.6 F_u A_{nv}$$

$$A_{nv} = L^*t$$

t = 0.048" (SHEET METAL THICKNESS – 18 GAGE)

L = 3.04" (PERIMETER LENGTH AROUND STD. HVY NUT)

F_u = 45ksi (TENSILE STRENGTH OF Gr. 33 SHEET METAL)

$$\phi = 0.65$$

 $P_{nt} = V_n = 2560.9 lbs$

FIND THE BEARING STRENGTH OF THE HOLE w/ CONSIDERATION OF DEFORMATION (J3.3.2-1)

 $P_{nv} = \phi(4.64\alpha t + 1.53) d_r t F_u$

 $d_r = 0.375'' (ROD DIA.)$

 α = 1.0

 $\phi = 0.65$

 $P_{nv} = 922.8 lbs$

CHECK COMBINED LOADING OF CONNECTION:

 $T_u = P MIN (WITHOUT \Omega_0) = 262.5 lbs$

 $V_u = 0.5 * F_p = 186.75 lbs$

 $1.0 \ge V_u/P_{nv} + T_u/P_{nt} = 0.305$ CONNECTION OKAY

C. CAPACITY

- The RDP must select the necessary hardware based on the determined loads in part B of this example. See Section 3 for attachment details (i.e. concrete anchor bolt to deck) and Section 4 for component pieces of the bracing kit.
- 2. The RDP must specify on the drawing the maximum design brace load specific to each unit so that the SEOR can verify the capacity of the local structure that the equipment is braced to and supported by. The RDP is responsible for all components including the method of attachment to the structure, and the SEOR is responsible for the adequacy of the supporting structure itself.
- D. DESIGN OF DISTRIBUTION SYSTEMS GOING TO AND FROM THE UNIT AS WELL AS THROUGHOUT THE STRUCTURE
 - 1. The RDP must layout the bracing locations per Section 1 Part 5 in the relevant mechanical plans showing the systems (pipe, duct, and cable tray or raceways).
 - 2. Based on the brace locations shown, the RDP must determine the linear weight of the system and calculate the maximum tributary seismic weight to a single transverse kit and a single transverse/longitudinal kit (or more depending on the variety of distribution system sizes or levels of the structure as the seismic forces can vary greatly).

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

1.45

Date:

3. Using the design equations and methods specified for the equipment the RDP must apply the tributary weight(s) determined in item 2 and design the bracing kit and attachment methods accordingly. Geometric considerations (height to center of gravity, L, B, etc) need not be considered since there is only a single threaded rod per kit location for pipe, but should be accounted for with duct. See pages 1.47 through 1.53 for distribution system design examples. For single hung pipe, depending upon the method of support, an additional design factor for determining the rigid brace load may be required per page D3.3.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

1.46

Date:

TYPICAL SUSPENDED PIPE DESIGN EXAMPLE (RIGID BRACING)

A. GENERAL

1. The Registered Design Professional (RDP) reviews Section 1 – overview of this OPM.

B. DEMAND

1. The RDP determines the lateral and vertical acceleration "g" for the seismic forces F_p and F_{pv} using information provided in the project documents. In the example below, the maximum horizontal and vertical forces on the seismic braces are calculated for use anywhere within the State of California where $z/h \le 0.434$. Please note that these maximum values may be reduced for the site specific project location as well as for the location within the height of a building in order to obtain lower demand values if so required to meet bracing criteria.

ASCE 7-16 AS AMENDED BY THE 2022 CBC

The pipe being suspended is 5" diameter schedule 40 steel pipe filled with water and wrapped in insulation (Wp = 24.83plf). Pipe is assembled in accordance with ASME B31 and the joints are made by welding. The pipe system being braced is located in the same structure and level on page 1.42 as the equipment being suspended on the same page. Note: demand loads will increase at higher levels of the structure.

For simplified design, determine the maximum horizontal "g" value and select the necessary details for the rigid bracing kit and attachment to the structure for the rigid brace hand the rod. Brace must be at an angle range of $45^{\circ} \le x < 60^{\circ}$ for this simplified design method to be applied, with x measured from the vertical axis. For this example use a specific angle of 45° .

HORIZONTAL SEISMIC FORCES FOR NON-STRUCTURAL

→ ALL FORCES ARE IN LBS & LENGTHS ARE IN INCHES

13.3

		COMPONENTS IN LRFD, UNO
EQUATION	13.3.1	$F_p = \frac{0.4a_p S_{DS}Wp}{R_p/I_p} \left(1 + 2\frac{Z}{h_r}\right) = 1.17*Wp \text{ where g = 1.17}$
TABLE	13.6.1	$a_p = 2.5$ (pipe w/ welded joints & ASME B31 compliant) $R_p = 6.0$ (pipe w/ welded joints & ASME B31 compliant)
		Ω_0 = 2.0 (for anchorage to conc.)
		$S_{DS} = 2.5$ (short period design value)
SECTION	13.1.3	$I_p = 1.5$ (Located in a Hosp.)
		z = 59/136 (Same as equipment example on page 1.42)
EQUATION	13.3.2	$Max F_p = 1.6S_{DS}I_pWp = 6.0*Wp$
EQUATION	13.3.3	Min $F_p = 0.3S_{DS}I_pWp = 1.125*Wp$
SECTION	13.3.1	$Fpv = +/- 0.2S_{DS}Wp = 0.5*Wp$

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355

3744 Witherspoon Parkway | Valencia, CA 9135 Ph: (661) 257-3311 | Fax: (661) 257-6050 Civil Engineer: P.K. Sachdeva California PE No. C59644 Page No.:

1.47

Date:

February 5, 2025

SECTION

GOVERNING EQN. IS 13.3.3 (THE LOWER BOUND), THEREFORE $F_p = 1.17^* \text{Wp (LRFD)}$

AND THE SUPPLEMENTAL VERTICAL FORCE IS $F_{pv} = 0.5*Wp \text{ (LRFD)}$

NOTE: PIPE VERTICAL SUPPORT (ROD HANGER) SPACING TO CONFORM TO CPC TABLE 313.3

*IN THIS EXAMPLE, ROD HANGER SPACING IS 12' PER TABLE 313.3 OF THE CALIFORNIA PLUMBING CODE

ightarrow SELECT THE CORRECT TRANSVERSE AND TRANSVERSE & LONGITUDINAL RIGID BRACING KIT DETAILS BASED ON THE ANGLE RANGE SELECTED ON PAGE 1.47: g = 1.17, SO ROUND UP TO 1.5. FROM THE TABLES ON PAGE D.1.2, USE DETAIL PAGES 2.2.15 &

2.2.16.

 \rightarrow SELECT THE CORRECT RIGID BRACING ATTACHMENT TO THE STRUCTURE: AGAIN, g = 1.5...

FROM THE TABLES ON PAGE D.2.2, USE ATTACHMENT DESIGNATION B7 AND SELECT A CORRESPONDING ATTACHMENT TYPE WITHIN THE TABLES ON PAGES D.9.3 TO D.12.2. FOR 3" CONCRETE FILLED DECK (PAGE D.9.4), USE 2TZ2DR37 ON PAGE 3.1.3.

→ DETERMINE THE MAXIMUM BRACING KIT SPACING (FOR TRANSVERSE AND TRANSVERSE/LONGITUDINAL KITS):

ON PAGE D.2.2 IN THE LOWER TABLE, THE MAXIMUM SPACING IN FEET FOR THE TRANSVERSE BRACING KITS OF THE PIPE IS 32.5' O.C.

ON PAGE D.3.2 IN THE LOWER TABLE, THE MAXIMUM SPACING IN FEET FOR THE TRANSVERSE & LONGITUDINAL BRACING KITS OF THE PIPE IS 64.0' O.C.

- THIS RESULTS IN (1) TRANSVERSE KIT BETWEEN EACH TRANSVERSE AND LONGITUDINAL KIT.
- MAXIMUM TRANSVERSE Fp = 24.83plf * 32.5' * 1.13g = 912lbs ≤ 1256 lbs
 - o Note: To determine the brace tension, Fp must be multiplied by the η value listed on page D.3.3. In this case it would be 1.41.

ightarrow SELECT THE CORRESPONDING ROD ATTACHMENT DETAIL FOR THE TRANSVERSE KIT LOCATIONS:

SEE PG. 4.3.2 FOR ROD LENGTH LIMITS AND RS-1 STIFFENER SPACING

ON PAGE D.2.2 FOR 5" PIPE TRANSERSE KITS, USE A ROD DESIGNATION OF R8 AND SELECT A CORRESPONDING ROD ATTACHMENT TYPE IN THE TABLES ON PAGE D.14.1. FOR 3" CONCRETE FILLED DECK AND 5/8" DIAMETER ROD (STANDARD FOR 5" DIAMETER PIPE), USE 4RDE31 ON PAGE 3.33.1 ((4) 5/8" DIA. KB-TZ2 WITH ROD COUPLING).

THE SAME METHOD APPLIES FOR THE TRANSVERSE AND LONGITUDINAL KITS ON PAGE D.3.2.

vibration & seismic control systems

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Civil Engineer: P.K. Sachdeva California PE No. C59644 Page No.:

1.48

Date:

→FOR MANUAL DESIGN OF PIPE BRACING:

- THIS APPROACH IS FOR ANGLES OUTSIDE THE ANGLE RANGE OF THE SIMPLIFIED METHOD OR FOR DETERMINING MORE EXACT DESIGN VALUES FOR THE RIGID BRACING ASSEMBLY AND ATTACHMENTS.
- 1) CALCULATE THE EXACT FORCES PER KIT
 - a. SELECT A TRIBUTARY SPACING FOR THE TRANSVERSE KIT WITH THE SPACING NOT TO EXCEED THE SPACING LIMITS LISTED IN THE TOP TABLE ON PAGE D.3.2.
 - b. SELECT THE DESIRED RIGID BRACING ANGLE RANGE (BETWEEN $30^{\circ} \le x < 70^{\circ} \& 60^{\circ} \le x \le 70^{\circ}$).
 - c. FIND Fp USING THE EQUATIONS AND THE TRIBUTARY WEIGHT PER TRANSVERSE RIGID BRACING KIT. NOTE: THIS LOAD APPLIES TO THE TRANSVERSE COMPONENT OF THE TRANSVERSE AND LONGTIDUTINAL KITS.
 - d. FIND THE Fp FOR THE LONGITUDINAL PORTION OF THE TRANSVERSE AND LONGITUDINAL KITS USING A MAXIMUM SPACING OF 80'-0" O.C. (RECOMMENDED NOT TO EXCEED 2 TO 3 TIMES THE TRANSVERSE KIT SPACING).
- 2) APPLY THE η FACTOR LISTED ON D.3.3 FOR THE ANGLE RANGE TO GET THE BRACE ARM TENSION T_{brace} FOR THE TRANSVERSE BRACING:

 $T_{\text{brace}} = F_p \eta$

3) APPLY PYTHAGOREAN THEOREM TO OBTAIN THE BRACE ARM TENSION T_{brace} FOR THE LONGITDUINAL BRACING:

 $T_{brace} = F_p/SIN \times TE$: 07/19/2025

4) SELECT THE APPROPRIATE BRACING KIT AND ATTACHMENT DETAILS FROM SECTIONS 2 & 3 RESPECTIVELY BASED ON THE VALUE OF T_{brace}.

C. CAPACITY

- 1. The RDP must select the necessary hardware based on the determined loads in part B of this example. See Section 3 for attachment details (i.e. concrete anchor bolt to deck) and Section 4 for component pieces of the rigid bracing kit.
- 2. The RDP must specify on the drawing the maximum design rigid brace load specific to each bracing kit so that the SEOR can verify the capacity of the local structure that the pipe is braced to and supported by.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355

8744 Witherspoon Parkway | Valencia, CA 913 Ph: (661) 257-3311 | Fax: (661) 257-6050 Civil Engineer: P.K. Sachdeva California PE No. C59644 Page No.:

1.49

Date:

TYPICAL SUSPENDED DUCT (OR CABLE TRAY) DESIGN EXAMPLE (RIGID BRACING)

A. GENERAL

1. The Registered Design Professional (RDP) reviews Section 1 – overview of this OPM.

B. DEMAND

1. The RDP determines the lateral and vertical acceleration "g" for the seismic forces F_p and F_{pv} using information provided in the project documents. In the example below, the maximum horizontal and vertical forces on the seismic braces are calculated for use anywhere within the State of California & $z/h_r = 0.66$. Please note that these maximum values may be reduced for the site specific project location as well as for the location at a lower elevation within the height of a building in order to obtain lower demand values if so required to meet bracing criteria. Note: the demand loads in the example below will be even higher if the duct is at a higher elevation within the structure.

ASCE 7-16 AS AMENDED BY THE 2022 CBC

*For this example, a duct system will be used, however the same method applies for cable trays. The duct being suspended is 36x28 rectangular duct made of 20 gage sheet metal and is insulated, weighing 15.6lb/ft. The duct system being braced is located in the same structure on page 1.32, but on a higher level at 90' above grade (resulting in a $z/h_r = 0.66$). The ductwork has gravity supports at every 10'-0" o.c.

For simplified design, determine the maximum horizontal "g" value and select the necessary details for the rigid brace kit and attachment to the structure for the rigid brace and the rod. Rigid brace must be at an angle range of $45^{\circ} \le x < 60^{\circ}$ for this simplified design method to be applied.

F· 07/19/2025

For this example, use 45° specifically.

→ ALL FORCES ARE IN LBS & LENGTHS ARE IN INCHES

SECTION	13.3	HORIZONTAL SEISMIC FORCES FOR NON-STRUCTURAL
		COMPONENTS IN LRFD, UNO

EQUATION	13.3.1	$F_p = \frac{0.4a_p S_{DS}Wp}{R_p/I_p} \left(1 + 2\frac{Z}{h_r}\right) = 1.45*Wp \text{ where g = 1.45}$
TABLE	13.6.1	$a_p = 2.5$ (suspended ductwork)
		$R_p = 6.0$ (suspended ductwork)
		Ω_0 = 2.0 (for anchorage to conc.)
		S _{DS} = 2.5 (highest design value)
SECTION	13.1.3	$I_p = 1.5$ (Located in a Hosp.)
		z = 90/136 (Same as equipment example on page 1.32)
EQUATION	13.3.2	$Max F_p = 1.6S_{DS}I_pWp = 6.0*Wp$
EQUATION	13.3.3	Min $F_p = 0.3S_{DS}I_pWp = 1.13*Wp$
SECTION	13.3.1	$F_{pv} = +/- 0.2S_{DS}Wp = 0.5*Wp$

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

1.50

Date:

GOVERNING EQN. IS 13.3.1, THEREFORE

 $F_p = 1.45*Wp = 1.45*30*15.6plf = 679 lbs$ = 1.45*60*15.6plf = 1357 lbs

AND THE SUPPLEMENTAL VERTICAL FORCE IS

 $F_{pv} = 0.5*Wp = 0.5*10*15.6 = 62 lbs$

→ SELECT THE CORRECT RIGID BRACING KIT DETAIL:

g = 1.45, SO ROUND UP TO 1.5 AND ROUND UP THE DUCT LINEAR WEIGHT TO 20lb/ft. FROM THE TABLES ON PAGE D.4.2, USE DETAIL PAGE 2.8.1 FOR TRANSVERSE BRACING AND 2.8.2 FOR TRANSVERSE AND LONGITUDINAL BRACING.

ightarrow Select the correct rigid bracing attachment to the structure:

AGAIN, g = 1.5 & DUCT IS 20lb/ft...

FROM THE TABLES ON PAGE D.6.2, USE ATTACHMENT DESIGNATION B6 AND SELECT A CORRESPONDING ATTACHMENT TYPE WITHIN THE TABLES ON PAGES D.9.3 TO D.12.2. FOR 3" CONCRETE FILLED DECK, USE 4TZ2DR33 ON PAGE 3.1.4.

- → DETERMINE THE MAXIMUM BRACING KIT SPACING FOR TRANSVERSE KITS:

 ON PAGE D.6.2 IN THE LOWER LEFT TABLE, THE MAXIMUM SPACING IN FEET FOR THE BRACING KITS OF THE DUCT IS 30′ O.C.
- → DETERMINE THE MAXIMUM BRACING KIT SPACING FOR TRANSVERSE & LONGITUDINAL KITS (4-WAY KITS):

 DATE: 07/19/2025

BY: Roy Lobo

ON PAGE D.6.2 IN THE LOWER RIGHT TABLE, THE MAXIMUM SPACING IN FEET FOR THE BRACING KITS OF THE DUCT IS 60' O.C.

IMPORTANT NOTE: TRANSVERSE KITS MUST BE UTILIZED IN CONJUNCTION WITH THE TRANSVERSE/LONGIDTUDINAL KITS SO THAT THE DUCT IS BRACED TRANSVERSELY EVERY 30' O.C. (THE MAXIMUM TRANSVERSE KIT SPACING)

SEE PG. 4.3.2 FOR ROD

ightarrow Select the corresponding rod attachment details:

LENGTH LIMITS AND RS-1
STIFFENER SPACING

AT TRANSVERSE KITS: $T_{ROD,T} = 15.6*10 + F_{pv} + Fp/SIN 45^{\circ} * COS 45^{\circ} = 897 lbs (MANUAL CALCULATION)$

ON PAGES 2.8.1 & 2.8.2 FOR DUCT 30plf OR SMALLER THE ROD SIZE IS 3/8". USE A ROD DESIGNATION OF AT LEAST R5 (NOTE: R5 & R6 NOT AVAILABLE FOR 3" DECK, USE R7) AS LISTED ON PAGE D.6.2 AND SELECT A CORRESPONDING ROD ATTACHMENT TYPE IN THE TABLES ON PAGES D.14.1. FOR 3" CONCRETE FILLED DECK AND 3/8" DIAMETER ROD, USE 2RDE31 ON PAGE 3.33.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

1.51

Date:

AT TRANSVERSE & LONGITUDINAL KITS: $T_{ROD,T\&L} = 15.6*10 + F_{pv} + Fp/SIN 45° * COS 45° = 1,575 lbs (MANUAL CALCULATION)$

ON PAGES 2.8.1 & 2.8.2 FOR DUCT 30plf OR SMALLER THE ROD SIZE IS 3/8". USE A ROD DESIGNATION OF R6 (NOTE: IN THIS CASE R6 NOT AVAILABLE, GO TO R7) AS LISTED ON PAGE D.6.2 AND SELECT A CORRESPONDING ROD ATTACHMENT TYPE IN THE TABLES ON PAGES D.14.1. FOR 3" CONCRETE FILLED DECK AND 3/8" DIAMETER ROD, USE 2RDE31 ON PAGE 3.33 ((2) 5/8" DIA. KB-TZ2 W/ HSS SPANNING (2) FLUTES).

LOAD SUMMARY:

 $z/h_r = 0.662$ F_p = 679 lbs (TRANSVERSE), 1357 lbs (LONG.)

 $T_{ROD,T} = 897 \text{ lbs } T_{ROD,T\&L} = 1,575 \text{lbs}$

→FOR MANUAL DESIGN OF DUCT (OR CABLE TRAY) BRACING:

- THIS APPROACH IS FOR ANGLES OUTSIDE THE ANGLE RANGE OF THE SIMPLIFIED METHOD OR FOR DETERMINING MORE EXACT DESIGN VALUES FOR THE RIGID BRACING ASSEMBLY AND ATTACHMENTS.
- 1) CALCULATE THE EXACT FORCES PER KIT
 - a. SELECT A TRIBUTARY SPACING FOR THE TRANSVERSE KIT WITH THE SPACING NOT TO EXCEED 30'-0" FOR TRANSVERSE BRACING AND 60'-0" FOR TRANSVERSE & LONGITUDINAL BRACING, OR THE PREDETERMINED SPACING LIMITS OF THE PROJECT DEPENDING ON THE CAPACITY OF THE DUCT ITSELF.
 - b. SELECT THE DESIRED RIGID BRACING ANGLE RANGE (BETWEEN $30^{\circ} \le x \le 70^{\circ}$).
 - c. FIND F_p USING THE EQUATIONS AND THE TRIBUTARY WEIGHT PER TRANSVERSE RIGID BRACING KIT. NOTE: THIS LOAD APPLIES TO THE TRANSVERSE COMPONENT OF THE TRANSVERSE AND LONGTIDUTINAL KITS.
 - d. FIND THE F_p FOR THE LONGITUDINAL PORTION OF THE TRANSVERSE AND LONGITUDINAL KITS USING A MAXIMUM SPACING OF 60'-0" O.C. (RECOMMENDED NOT TO EXCEED 2 TO 3 TIMES THE TRANSVERSE KIT SPACING).
- 2) APPLY PYTHAGOREAN THEOREM TO OBTAIN THE BRACE ARM TENSION T_{brace} FOR THE TRANSVERSE BRACING:

 $T_{brace} = F_p/SIN x$

3) APPLY PYTHAGOREAN THEOREM TO OBTAIN THE BRACE ARM TENSION T_{brace} FOR THE TRANSVERSE & LONGITDUINAL BRACING (IN THIS CASE x=60 TO COVER THE RANGE):

 $T_{brace} = F_p/SIN x$

4) SELECT THE APPROPRIATE BRACING KIT AND ATTACHMENT DETAILS FROM SECTIONS 2 & 3 RESPECTIVELY BASED ON THE VALUE OF T_{brace}.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355

3744 Witherspoon Parkway | Valencia, CA 913 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

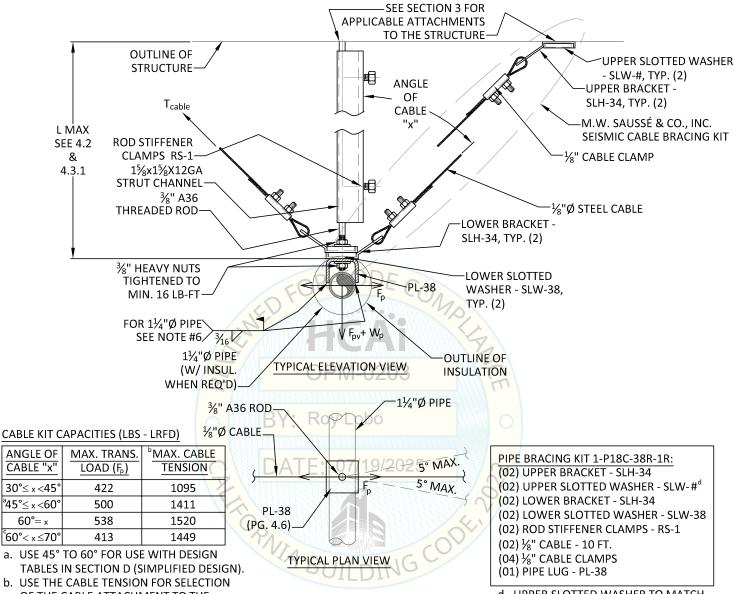
Page No.:

1.52

Date:

C. CAPACITY

- 1. The RDP must select the necessary hardware based on the determined loads in part B of this example. See Section 3 for attachment details (i.e. concrete anchor bolt to deck) and Section 4 for component pieces of the rigid brace kit.
- 2. The RDP must specify on the drawing the maximum design rigid brace load specific to each bracing kit so that the SEOR can verify the capacity of the local structure that the duct is braced to and supported by.


M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

1.53

Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE $1\frac{1}{4}$ "Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{1}{8}$ "Ø CABLE)

a. USE 45° TO 60° FOR USE WITH DESIGN TABLES IN SECTION D (SIMPLIFIED DESIGN).

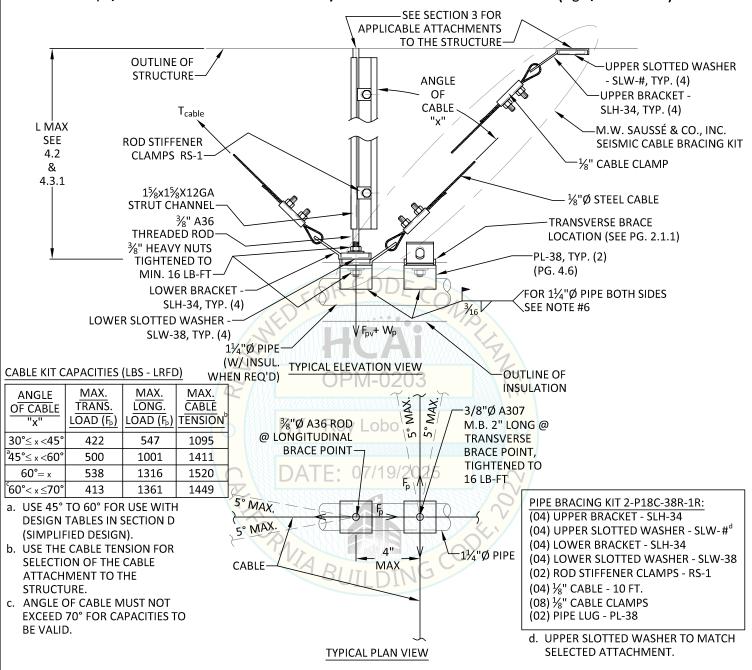
b. USE THE CABLE TENSION FOR SELECTION OF THE CABLE ATTACHMENT TO THE STRUCTURE.

c. ANGLE OF CABLE MUST NOT EXCEED 70° FOR CAPACITIES TO BE VALID.

d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

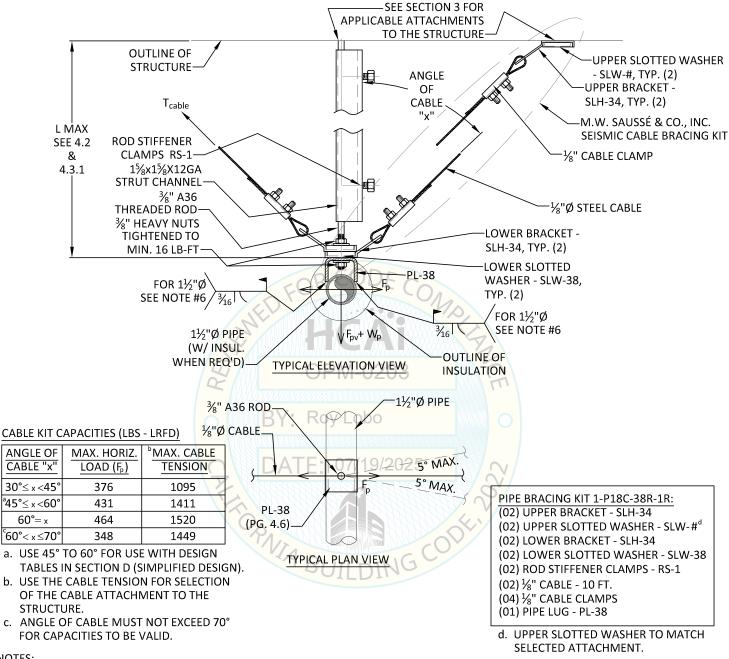
2.1.1

Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE $1\frac{1}{4}$ "Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{1}{8}$ "Ø CABLE)

NOTES:

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay California PE No. \$6481 Page No.:

2.1.2

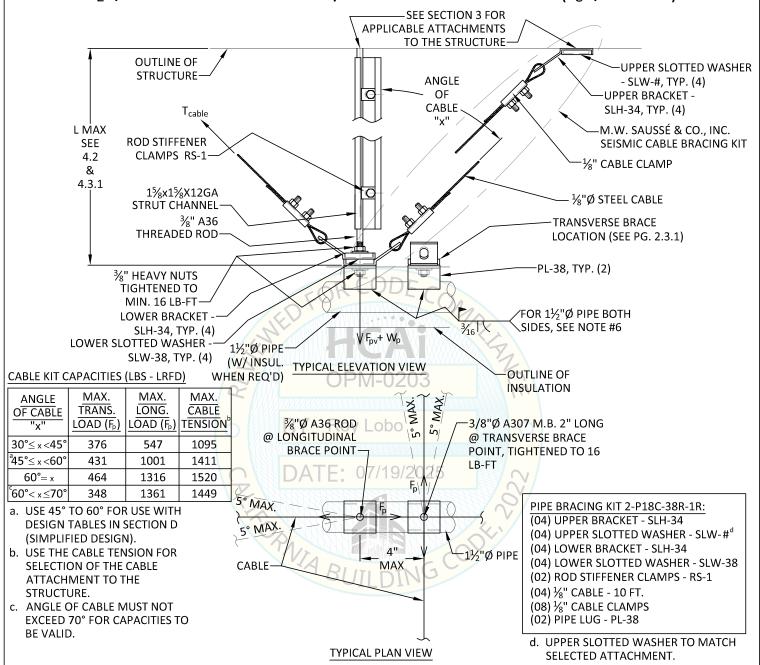
Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE $1\frac{1}{2}$ "Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{1}{2}$ " CABLE)

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer N. Tremblay California PE No. S6481

Page No.:

2.1.3

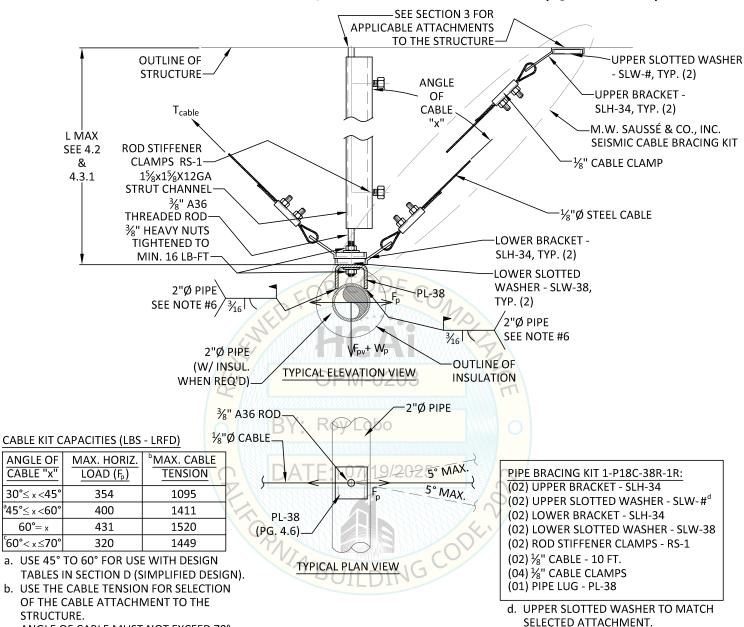
Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE $1\frac{1}{2}$ "Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{1}{8}$ "Ø CABLE)

NOTES:

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.1.4

Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE 2"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{1}{2}$ "Ø CABLE)

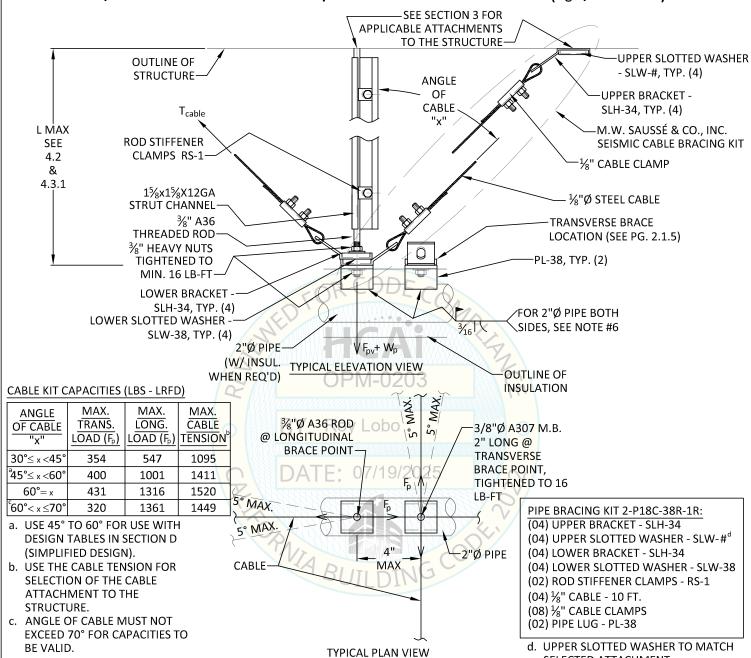
NOTES:

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.

c. ANGLE OF CABLE MUST NOT EXCEED 70° FOR CAPACITIES TO BE VALID.

6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355


Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

2.1.5

Date:

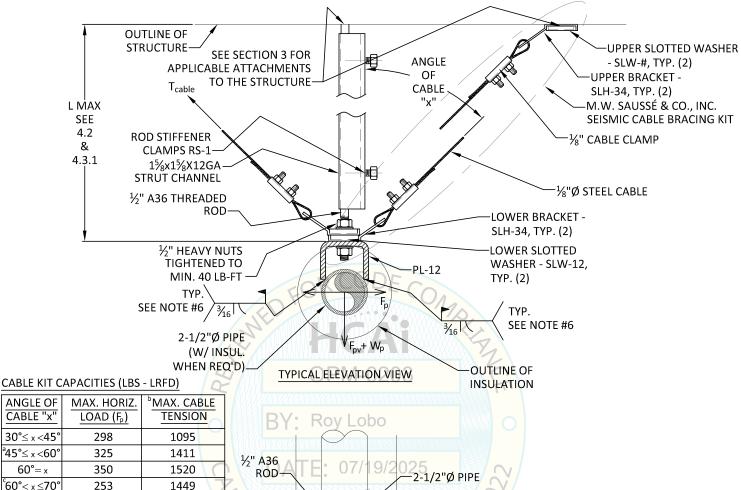
CABLE BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE 2"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{1}{2}$)"Ø CABLE)

NOTES:

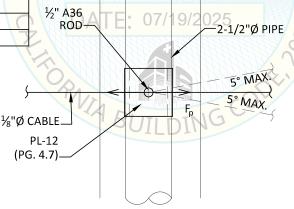
- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481


Page No.:

2.1.6


Date:

SELECTED ATTACHMENT.

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE $2\frac{1}{2}$ "Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{1}{8}$ "Ø CABLE)

- a. USE 45° TO 60° FOR USE WITH DESIGN TABLES IN SECTION D (SIMPLIFIED DESIGN).
- b. USE THE CABLE TENSION FOR SELECTION OF THE CABLE ATTACHMENT TO THE STRUCTURE.
- c. ANGLE OF CABLE MUST NOT **EXCEED 70° FOR CAPACITIES TO** BF VALID.

TYPICAL PLAN VIEW

PIPE BRACING KIT 1-P18C-12R-1R:

- (02) UPPER BRACKET SLH-34
- (02) UPPER SLOTTED WASHER SLW-#d
- (02) LOWER BRACKET SLH-34
- (02) LOWER SLOTTED WASHER SLW-12
- (02) ROD STIFFENER CLAMPS RS-1
- $(02)\frac{1}{8}$ " CABLE 10 FT.
- (04) 1/8" CABLE CLAMPS
- (01) PIPE LUG PL-12
- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.

NOTES:

CABLE "x"

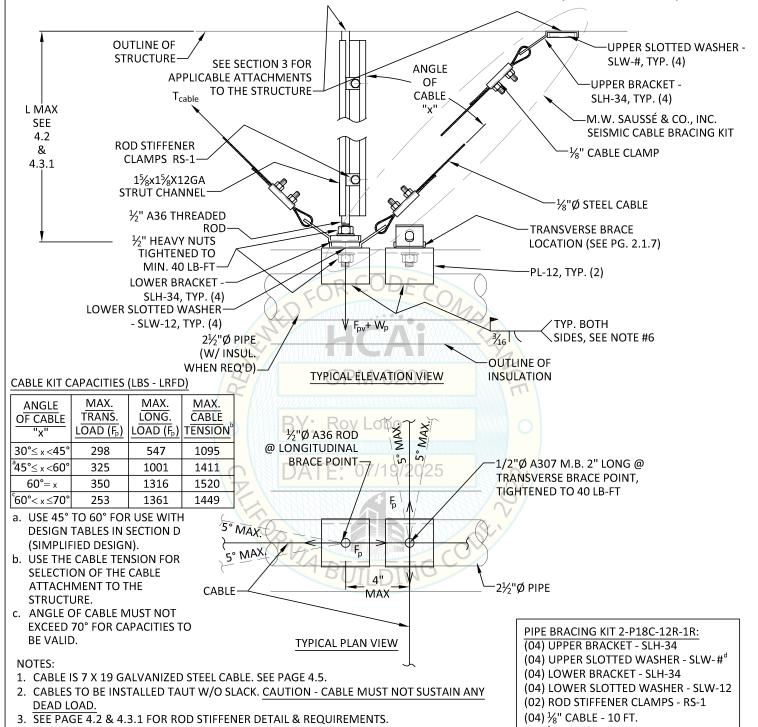
30°≤ x <45°

45°≤ x <60°

 $60^{\circ} = x$

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

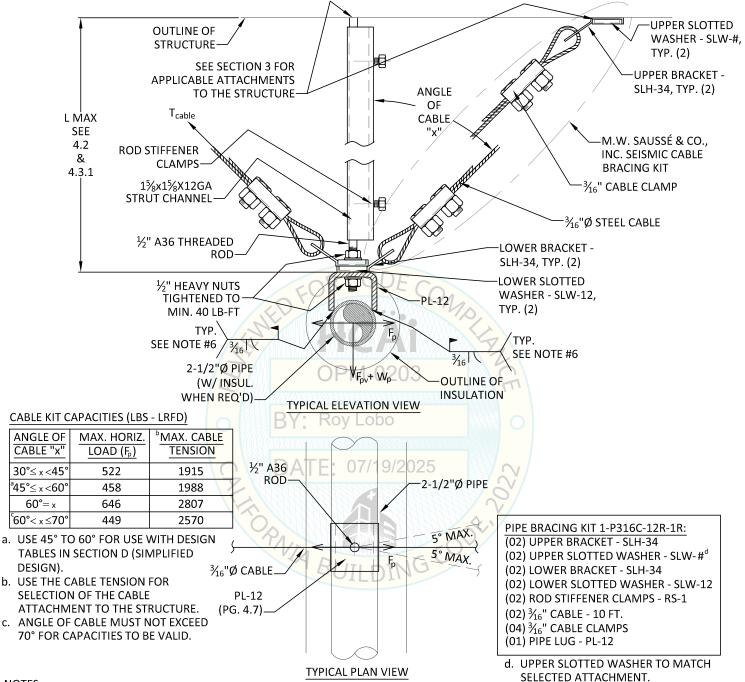
2.1.7

Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE $2\frac{1}{2}$ "Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{1}{8}$ "Ø CABLE)

- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.
- (08) 1/8" CABLE CLAMPS
- (02) PIPE LUG PL-12
- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.1.8

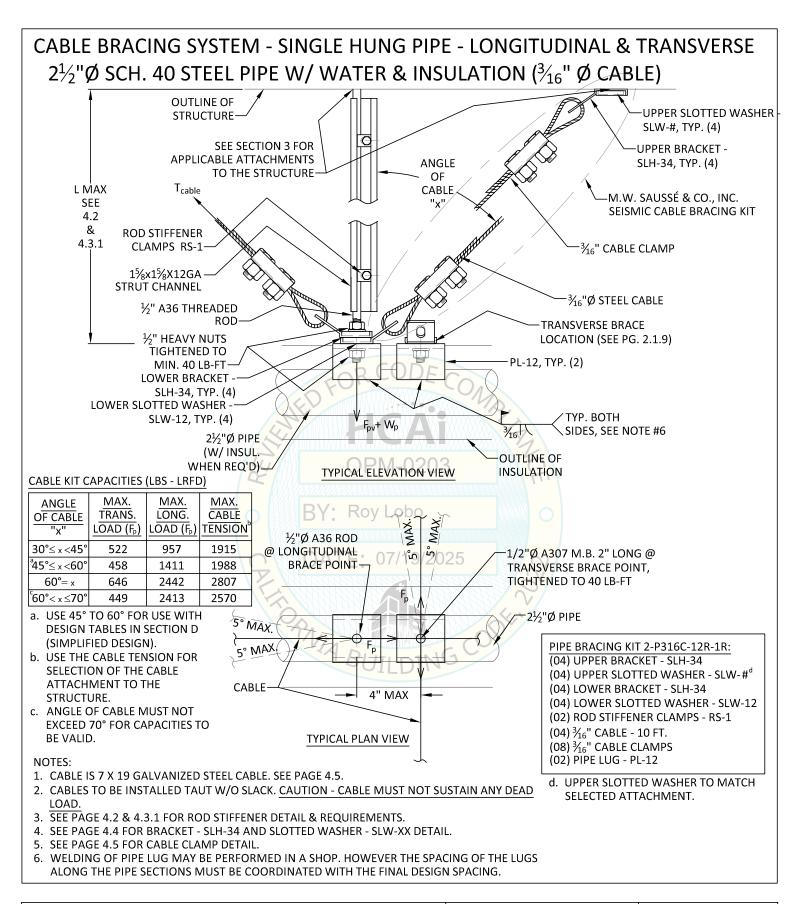
Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE $2\frac{1}{2}$ "Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{3}{16}$ "Ø CABLE)

NOTES:

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay California PE No. S6481 Page No.:

2.1.9

Date:

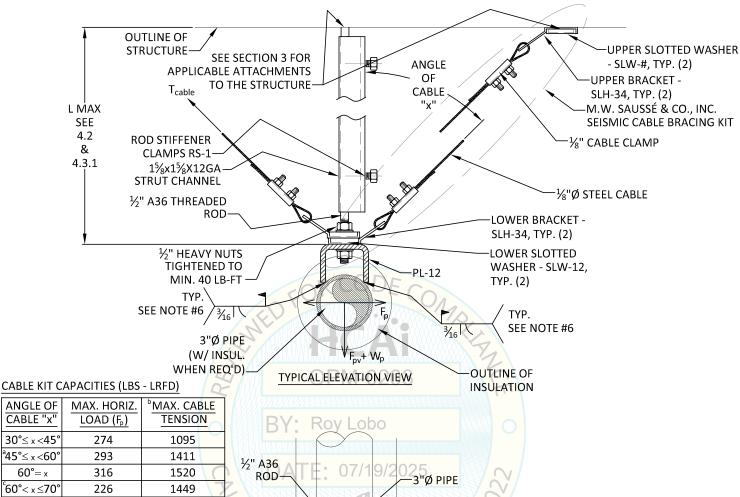
February 5, 2025

70 of 337

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

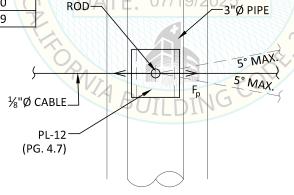
Structural Engineer: N. Tremblay California PE No. S6481


Date:

Page No.:

February 5, 2025

2.1.10


CABLE BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE 3"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{1}{2}$ "Ø CABLE)

a. USE 45° TO 60° FOR USE WITH DESIGN TABLES IN SECTION D (SIMPLIFIED DESIGN).

b. USE THE CABLE TENSION FOR SELECTION OF THE CABLE ATTACHMENT TO THE STRUCTURE.

c. ANGLE OF CABLE MUST NOT **EXCEED 70° FOR CAPACITIES TO** BF VALID.

TYPICAL PLAN VIEW

PIPE BRACING KIT 1-P18C-12R-1R:

- (02) UPPER BRACKET SLH-34
- (02) UPPER SLOTTED WASHER SLW-#d
- (02) LOWER BRACKET SLH-34
- (02) LOWER SLOTTED WASHER SLW-12
- (02) ROD STIFFENER CLAMPS RS-1
- $(02)\frac{1}{8}$ " CABLE 10 FT.
- (04) 1/8" CABLE CLAMPS
- (01) PIPE LUG PL-12

d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.

NOTES:

ANGLE OF

CABLE "x"

30°≤ x <45°

45°≤ x <60°

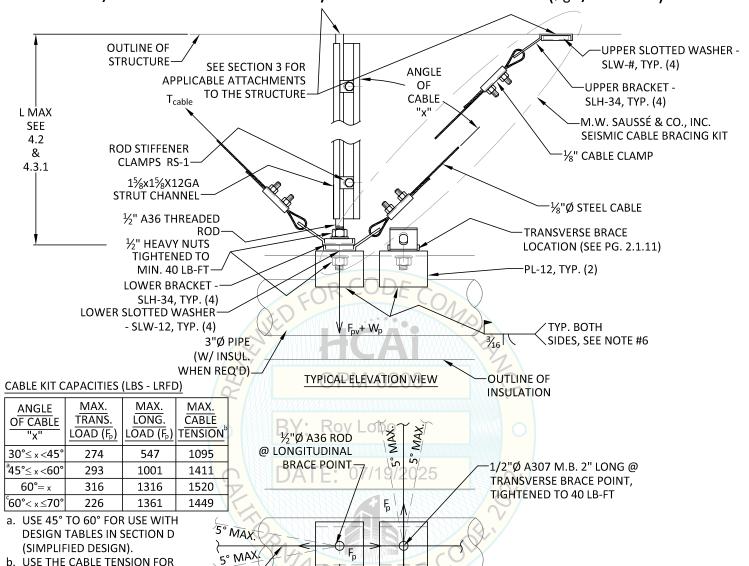
 $60^{\circ} = x$

ີ60°< x≤70°

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: M. Tremblay California PE No. S6481

Page No.:

2.1.11

Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE 3"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{1}{8}$ "Ø CABLE)

4"

MAX

TYPICAL PLAN VIEW

(SIMPLIFIED DESIGN).

- b. USE THE CABLE TENSION FOR SELECTION OF THE CABLE ATTACHMENT TO THE STRUCTURE.
- c. ANGLE OF CABLE MUST NOT **EXCEED 70° FOR CAPACITIES TO** BE VALID.

PIPE BRACING KIT 2-P18C-12R-1R:

- (04) UPPER BRACKET SLH-34
- (04) UPPER SLOTTED WASHER SLW-#d
- (04) LOWER BRACKET SLH-34
- (04) LOWER SLOTTED WASHER SLW-12
- (02) ROD STIFFENER CLAMPS RS-1
- (04) 1/8" CABLE 10 FT.
- (08) 1/8" CABLE CLAMPS
- (02) PIPE LUG PL-12
- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.

NOTES:

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.

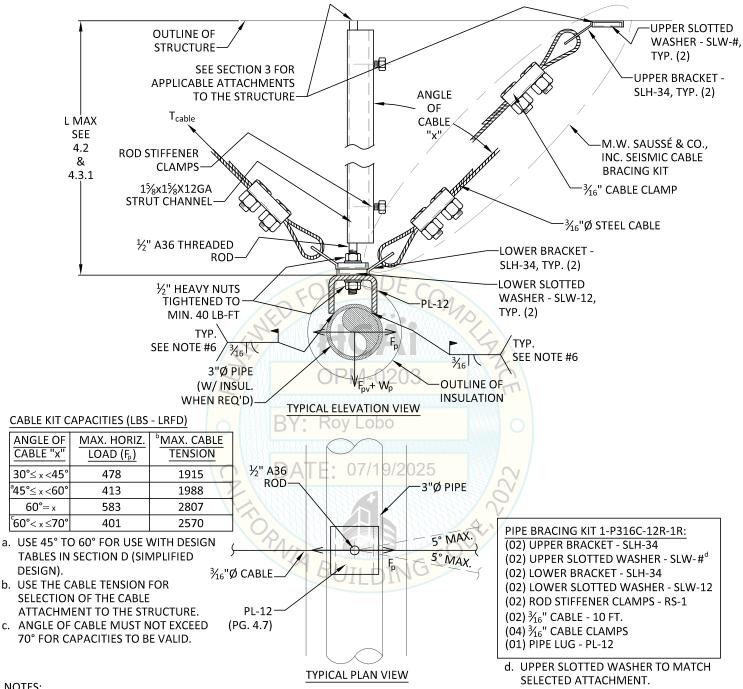
CABLE

- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481


3"Ø PIPE

Page No.:

2.1.12

Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE 3"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{3}{16}$ "Ø CABLE)

NOTES:

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK, CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

2.1.13

Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE 3"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{3}{16}$ "Ø CABLE) **OUTLINE OF STRUCTURE UPPER SLOTTED WASHER -**SEE SECTION 3 FOR SLW-#, TYP. (4) APPLICABLE ATTACHMENTS **ANGLE** UPPER BRACKET -TO THE STRUCTURE OF SLH-34, TYP. (4) L MAX T_{cable} **CABLE** SEE M.W. SAUSSÉ & CO., INC. 4.2 SEISMIC CABLE BRACING KIT & **ROD STIFFENER** 4.3.1 CLAMPS RS-1 $\frac{3}{16}$ " CABLE CLAMP 1%x1%X12GA STRUT CHANNEL 3/16"Ø STEEL CABLE ½" A36 THREADED ROD TRANSVERSE BRACE **%" HEAVY NUTS** LOCATION (SEE PG. 2.1.13) TIGHTENED TO PL-12, TYP. (2) MIN. 40 LB-FT LOWER BRACKET -SLH-34, TYP. (4) LOWER SLOTTED WASHER - $V F_{pv} + W_p$ TYP, BOTH SLW-12, TYP. (4) SIDES, SEE NOTE #6 3"Ø PIPE (W/INSUL-OUTLINE OF WHEN REQ'D)_ TYPICAL ELEVATION VIEW INSULATION CABLE KIT CAPACITIES (LBS - LRFD) MAX. MAX. MAX. ANGLE TRANS. LONG. CABLE OF CABLE MAX. LOAD (F_p) LOAD (F_p) TENSION[®] ½"Ø A36 ROD 30°≤ x <45° 478 957 1915 @ LONGITUDINAL 1/2" A307 M.B. 2" LONG @ \° ³45°≤ x <60° 413 1411 1988 **BRACE POINT-**TRANSVERSE BRACE POINT, 2442 **TIGHTENED TO 40 LB-FT** $60^{\circ} = x$ 583 2807 ີ 60°< x ≤70° 401 2413 2570 a. USE 45° TO 60° FOR USE WITH -3"Ø PIPE 5° MAX. DESIGN TABLES IN SECTION D (SIMPLIFIED DESIGN). PIPE BRACING KIT 2-P316C-12R-1R: 5° MAX b. USE THE CABLE TENSION FOR (04) UPPER BRACKET - SLH-34 **SELECTION OF THE CABLE** (04) UPPER SLOTTED WASHER - SLW-#d 4" MAX ATTACHMENT TO THE CABLE (04) LOWER BRACKET - SLH-34 STRUCTURE. (04) LOWER SLOTTED WASHER - SLW-12 c. ANGLE OF CABLE MUST NOT (02) ROD STIFFENER CLAMPS - RS-1 **EXCEED 70° FOR CAPACITIES TO** $(04)\frac{3}{16}$ " CABLE - 10 FT. BE VALID. TYPICAL PLAN VIEW $(08)^{3/16}$ " CABLE CLAMPS (02) PIPE LUG - PL-12 NOTES: 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5. d. UPPER SLOTTED WASHER TO MATCH 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION - CABLE MUST NOT SUSTAIN ANY DEAD SELECTED ATTACHMENT. LOAD 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS. 4. SEE PAGE 4.4 FOR BRACKET - SLH-34 AND SLOTTED WASHER - SLW-XX DETAIL.

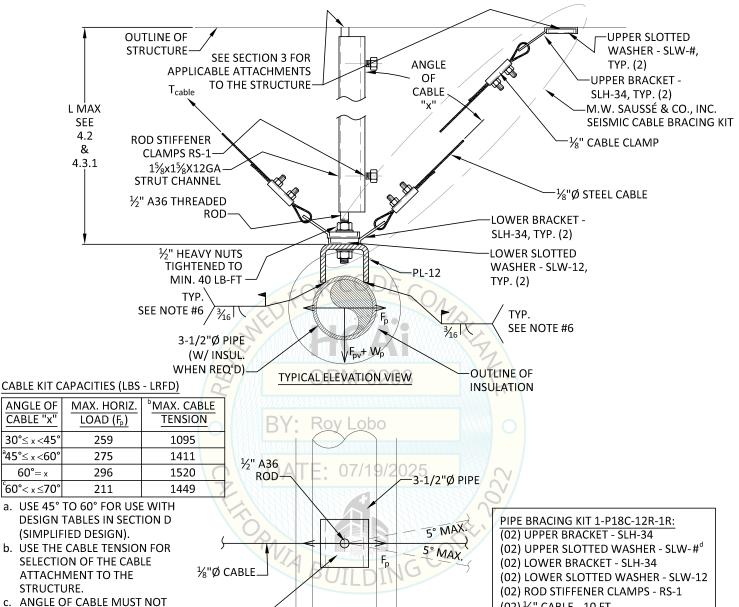
SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355

6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

> Structural Engineer: N. Tremblay California PE No. S6481

Page No.:


2.1.14

Date:

February 5, 2025

Ph: (661) 257-3311 | Fax: (661) 257-6050

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE $3\frac{1}{2}$ "Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{1}{8}$ "Ø CABLE)

NOTES:

BF VALID.

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.

EXCEED 70° FOR CAPACITIES TO

6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

PL-12

(PG. 4.7)

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481

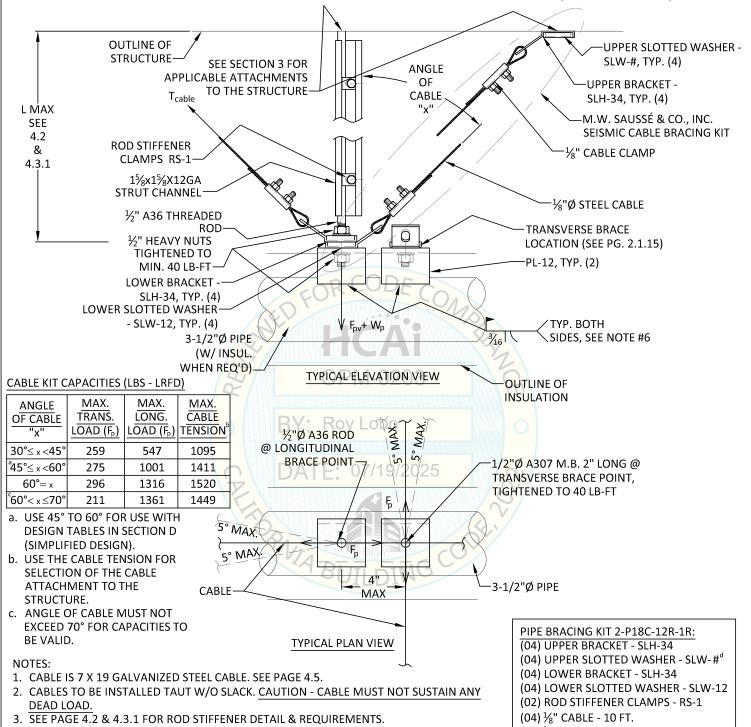
 $(02)\frac{1}{8}$ " CABLE - 10 FT.

(04) 1/8" CABLE CLAMPS

d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.

(01) PIPE LUG - PL-12

Page No.:


2.1.15

Date:

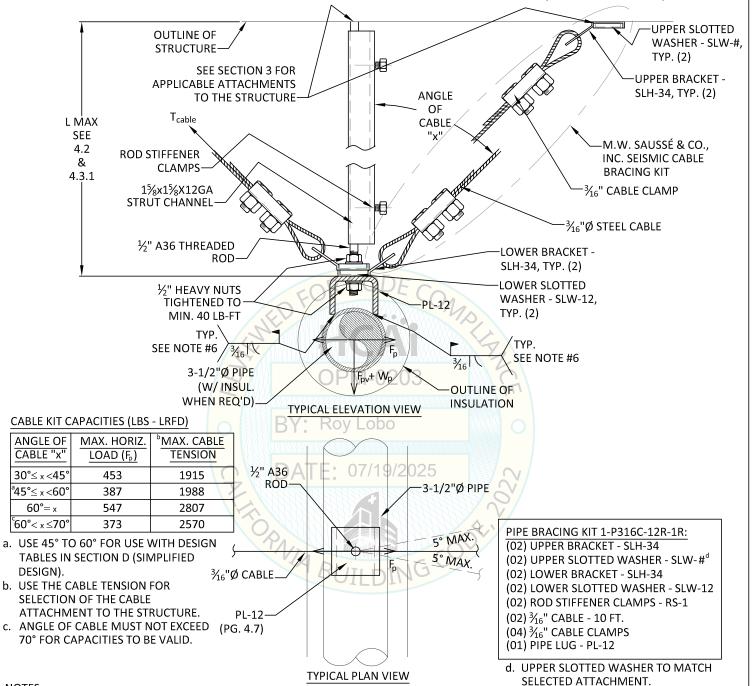
February 5, 2025

TYPICAL PLAN VIEW

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE $3\frac{1}{2}$ "Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{1}{8}$ "Ø CABLE)

- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.
- (08) 1/8" CABLE CLAMPS
- (02) PIPE LUG PL-12
- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.: 2.1.16

2.1.1

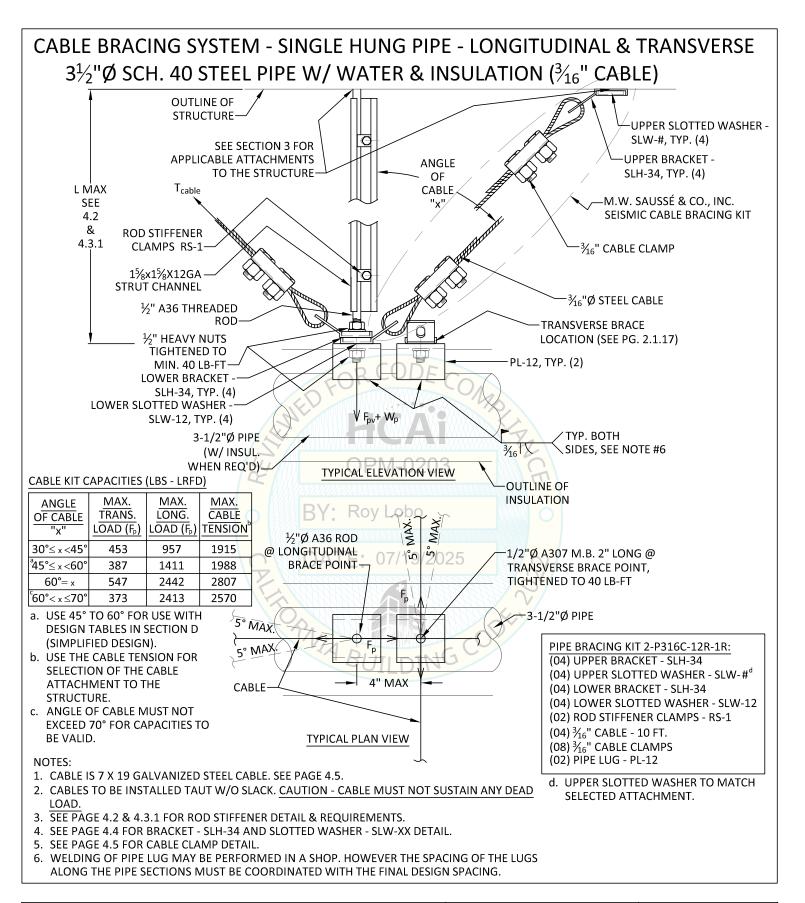
Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE $3\frac{1}{2}$ "Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{3}{16}$ "Ø CABLE)

NOTES:

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK, CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

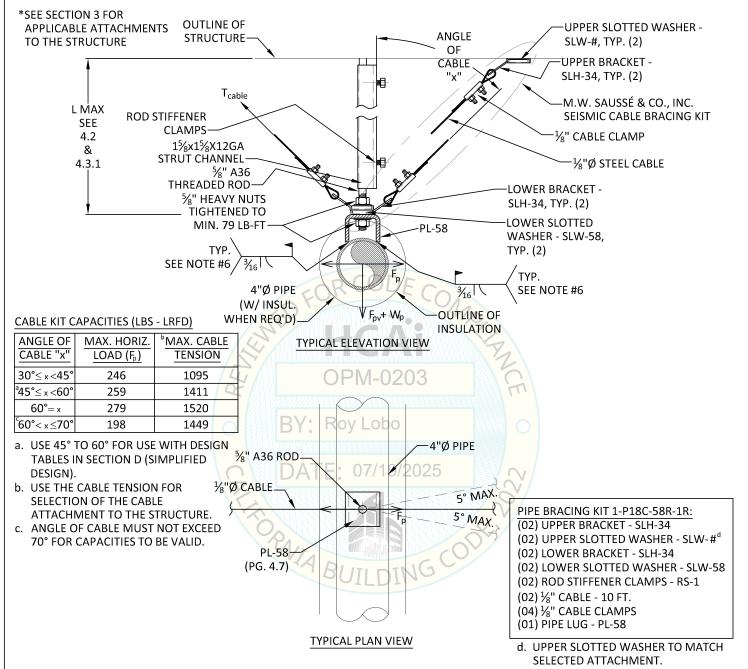
Structural Engineer: N. Tremblay California PE No. S6481

2.1.17

Page No.:

Date:

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

2.1.18

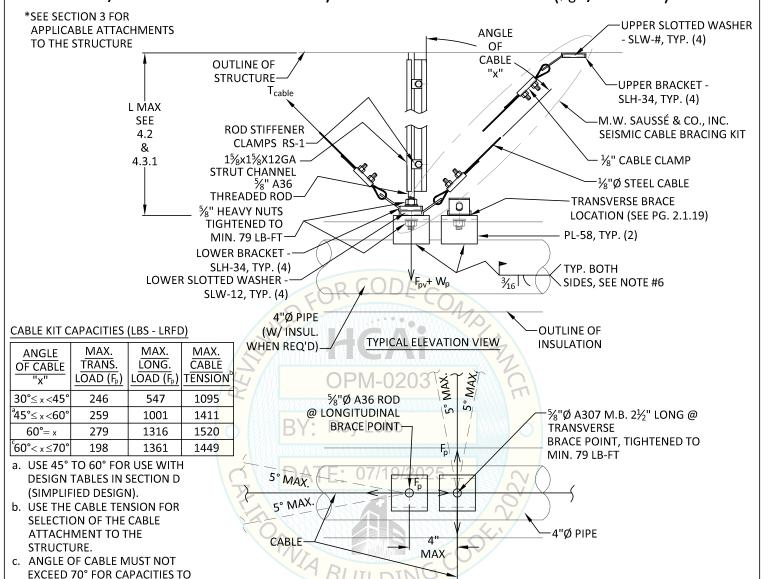
Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE 4"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{1}{8}$ "Ø CABLE)

NOTES:

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer, N. Tremblay
California PE No. S6481

Page No.:

2.1.19

Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE 4"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{1}{2}$)"Ø CABLE)

TYPICAL PLAN VIEW

NOTES:

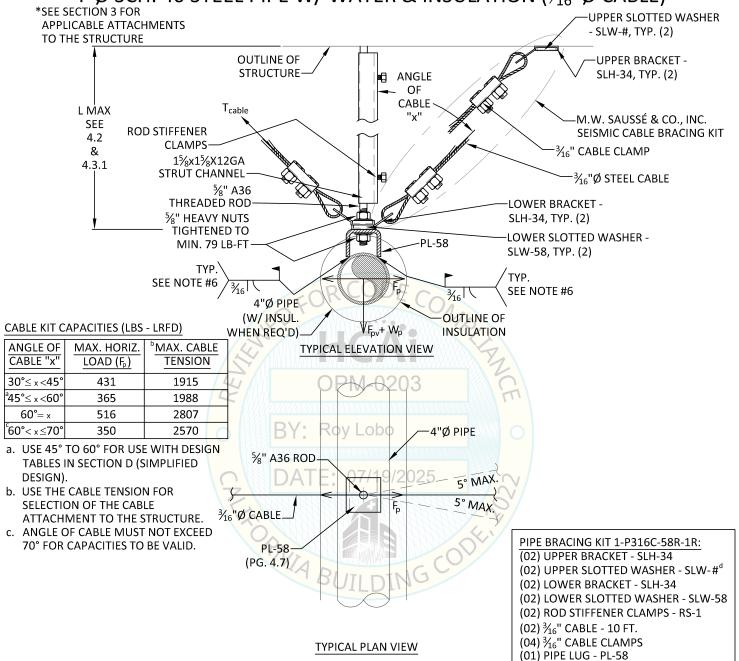
BE VALID.

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. <u>CAUTION CABLE MUST NOT SUSTAIN ANY</u> DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

PIPE BRACING KIT 2-P18C-58R-1R:

- (04) UPPER BRACKET SLH-34
- (04) UPPER SLOTTED WASHER SLW-#d
- (04) LOWER BRACKET SLH-34
- (04) LOWER SLOTTED WASHER SLW-58
- (02) ROD STIFFENER CLAMPS RS-1
- (04) 1/8" CABLE 10 FT.
- (08) 1/8" CABLE CLAMPS
- (02) PIPE LUG PL-58
- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.1.20

Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE 4"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{3}{16}$ "Ø CABLE)

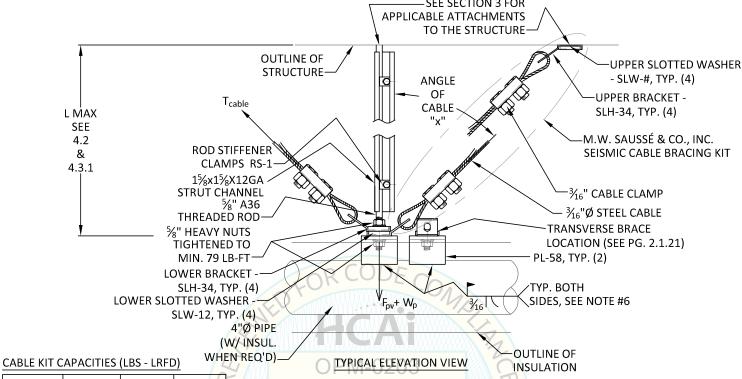
NOTES:

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer N. Tremblay
California PE No. S6481

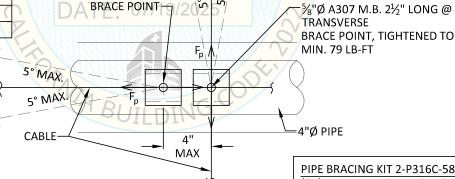
Page No.:


2.1.21

Date:

d. UPPER SLOTTED WASHER TO MATCH

SELECTED ATTACHMENT.


CABLE BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE 4"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{3}{16}$ "Ø CABLE)

ANGLE OF CABLE "x"	MAX. TRANS. LOAD (F _p)	MAX. LONG. LOAD (F _p)	MAX. CABLE TENSION
30°≤ x <45°	431	957	1915
^a 45°≤ x <60°	365	1411	1988
60°= x	516	2442	2807
^c 60°< x≤70°	350	2413	2570

a. USE 45° TO 60° FOR USE WITH DESIGN TABLES IN SECTION D (SIMPLIFIED DESIGN).

- b. USE THE CABLE TENSION FOR SELECTION OF THE CABLE ATTACHMENT TO THE STRUCTURE.
- c. ANGLE OF CABLE MUST NOT **EXCEED 70° FOR CAPACITIES TO** BE VALID.

Roy Lobo %"Ø A36 ROD @ LONGITUDINAL

TYPICAL PLAN VIEW

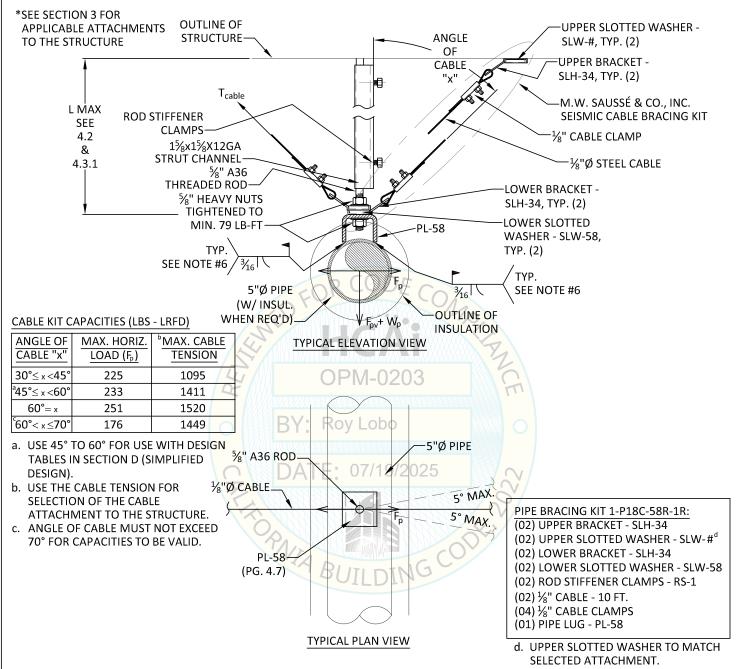
NOTES:

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

PIPE BRACING KIT 2-P316C-58R-1R:

- (04) UPPER BRACKET SLH-34
- (04) UPPER SLOTTED WASHER SLW-#d
- (04) LOWER BRACKET SLH-34
- (04) LOWER SLOTTED WASHER SLW-58
- (02) ROD STIFFENER CLAMPS RS-1
- $(04)\frac{3}{16}$ " CABLE 10 FT.
- (08) 3/16" CABLE CLAMPS
- (02) PIPE LUG PL-58
- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

2.1.22

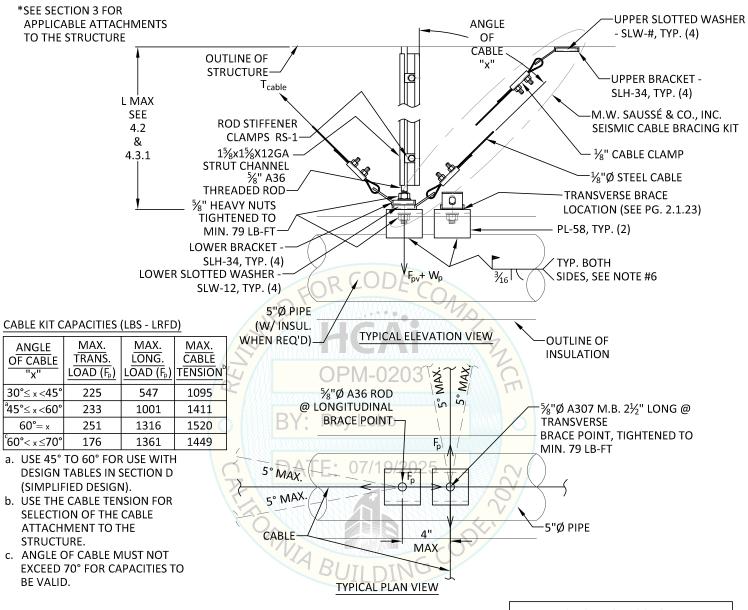
Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE 5"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{1}{8}$ "Ø CABLE)

NOTES:

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer. N. Tremblay
California PE No. S6481

Page No.:

2.1.23

Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE 5"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{1}{2}$)"Ø CABLE)

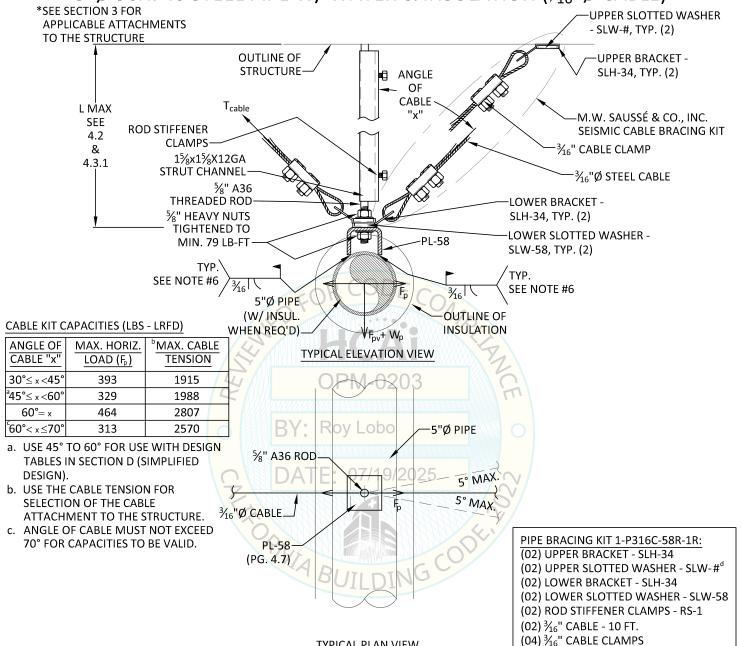
NOTES:

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. <u>CAUTION CABLE MUST NOT SUSTAIN ANY</u> DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

PIPE BRACING KIT 2-P18C-58R-1R:

- (04) UPPER BRACKET SLH-34
- (04) UPPER SLOTTED WASHER SLW-#d
- (04) LOWER BRACKET SLH-34
- (04) LOWER SLOTTED WASHER SLW-58
- (02) ROD STIFFENER CLAMPS RS-1
- (04) 1/8" CABLE 10 FT.
- (08) 1/8" CABLE CLAMPS
- (02) PIPE LUG PL-58
- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.1.24

Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE 5"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{3}{16}$ "Ø CABLE)

TYPICAL PLAN VIEW

NOTES:

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

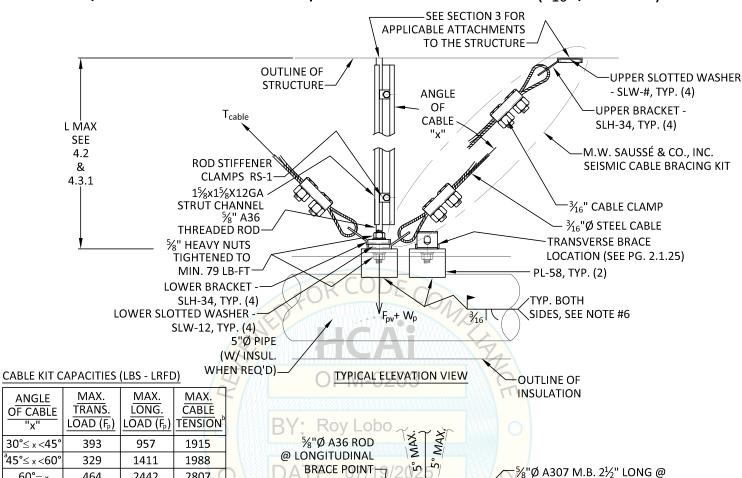
M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481

(01) PIPE LUG - PL-58

Page No.:


2.1.25

Date:

d. UPPER SLOTTED WASHER TO MATCH

SELECTED ATTACHMENT.

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE 5"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{3}{16}$ "Ø CABLE)

OF CABLE "x" 30°≤ x <45° ^a45°≤ x <60° $60^{\circ} = x$ 464 2442 2807 ີ60°< x≤70° 313 2570 2413

a. USE 45° TO 60° FOR USE WITH DESIGN TABLES IN SECTION D (SIMPLIFIED DESIGN).

- b. USE THE CABLE TENSION FOR SELECTION OF THE CABLE ATTACHMENT TO THE STRUCTURE.
- c. ANGLE OF CABLE MUST NOT **EXCEED 70° FOR CAPACITIES TO** BE VALID.

NOTES: 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.

2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION - CABLE MUST NOT SUSTAIN ANY DEAD LOAD.

5° MAX.

5° MAX

- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

PIPE BRACING KIT 2-P316C-58R-1R:

(04) UPPER BRACKET - SLH-34

BRACE POINT, TIGHTENED TO

- (04) UPPER SLOTTED WASHER SLW-#d
- (04) LOWER BRACKET SLH-34
- (04) LOWER SLOTTED WASHER SLW-58
- (02) ROD STIFFENER CLAMPS RS-1
- $(04)\frac{3}{16}$ " CABLE 10 FT.

TRANSVERSE

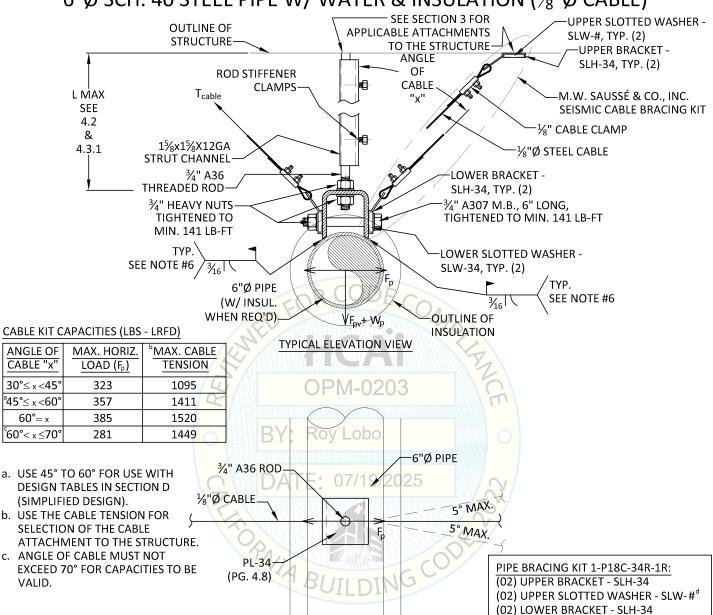
MIN. 79 LB-FT

- (08) 3/16" CABLE CLAMPS
- (02) PIPE LUG PL-58
- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: Mr. Tremblay California PE No. S6481 Page No.:


2.1.26

Date:

February 5, 2025

TYPICAL PLAN VIEW

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE 6"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{1}{8}$ "Ø CABLE)

NOTES:

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. <u>CAUTION CABLE MUST NOT SUSTAIN ANY</u> DEAD LOAD.
- 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.

ribration & seismic control systems

6. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc.
28744 Witherspoon Parkway | Valencia, CA 91355
Ph: (661) 257-3311 | Fax: (661) 257-6050
Structural Engineer: 7. Tremblay
California PE No. S6481

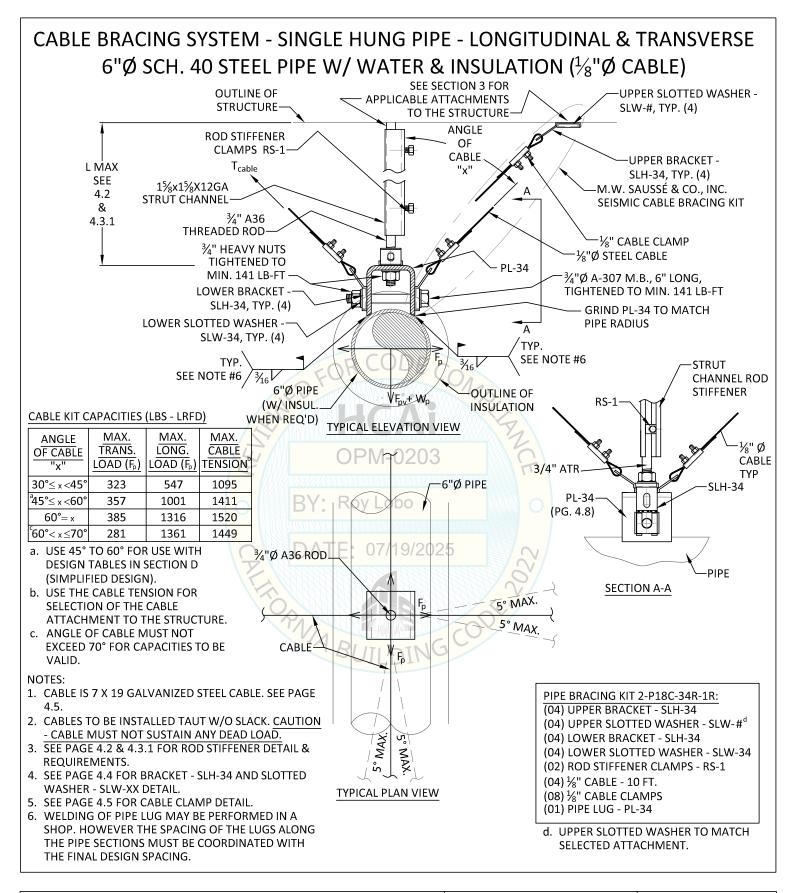
TYPICAL PLAN VIEW

2.1.27

February 5, 2025

Page No.:

Date:

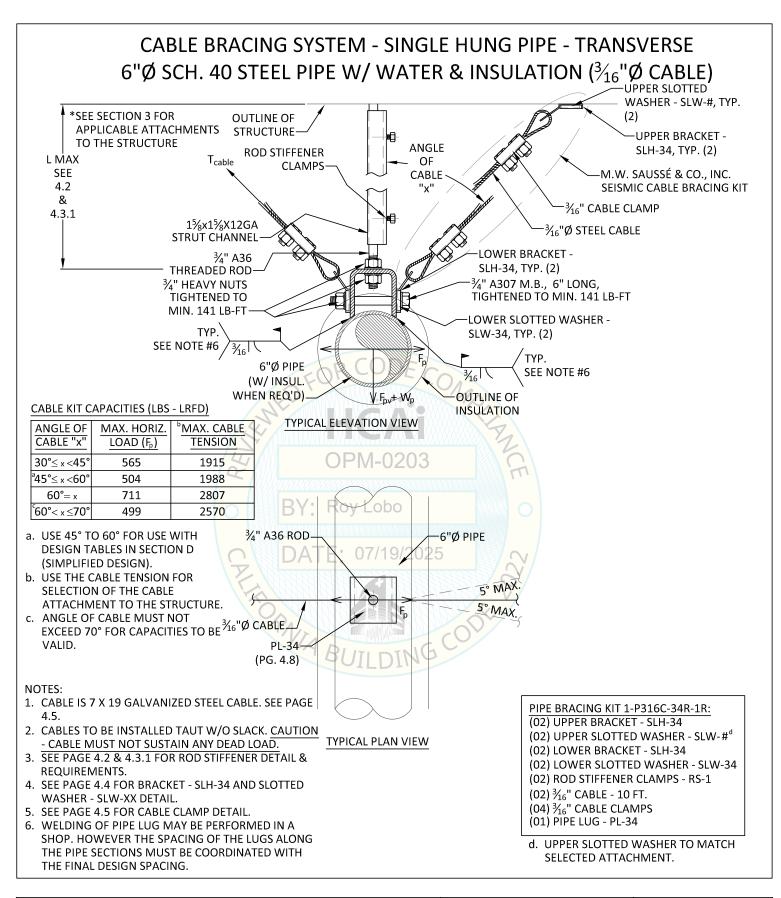

(02) LOWER SLOTTED WASHER - SLW-34 (02) ROD STIFFENER CLAMPS - RS-1

d. UPPER SLOTTED WASHER TO MATCH

SELECTED ATTACHMENT.

(02) $\frac{1}{8}$ " CABLE - 10 FT. (04) $\frac{1}{8}$ " CABLE CLAMPS

(01) PIPE LUG - PL-34



28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.1.28

Date:

07/19/2025

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.1.29

Date:

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE 6"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{3}{16}$ "Ø CABLE) UPPER SLOTTED WASHER - SLW-#, *SEE SECTION 3 FOR **OUTLINE OF** TYP. (4) APPLICABLE ATTACHMENTS STRUCTURE: UPPER BRACKET -TO THE STRUCTURE **ANGLE** SLH-34, TYP. (4) OF **ROD STIFFENER** L MAX **CABLE** SEE CLAMPS RS-1 "x" M.W. SAUSSÉ & CO., INC. 4.2 1%x1%X12GA SEISMIC CABLE BRACING KIT ጼ STRUT CHANNEL > 4.3.1 ¾" A36 3/16" CABLE CLAMP THREADED ROD **¾" HEAVY NUTS** ٥ **TIGHTENED TO** MIN. 141 LB-FT 3/16"Ø STEEL CABLE PI -34 LOWER BRACKET -¾"Ø A-307 M.B., 6" LONG. SLH-34, TYP. (4) Α-TIGHTENED TO MIN. 141 LB-FT LOWER SLOTTED WASHER -TYP. STRUT SLW-34, TYP. (4) **SEE NOTE #6 CHANNEL ROD** STIFFENER TYP. RS-1 **SEE NOTE #6** 6"Ø PIPE GRIND PL-34 TO CABLE KIT CAPACITIES (LBS - LRFD) ¾6" Ø MATCH PIPE (W/INSUL. MAX. MAX. MAX. RADIUS **CABLE ANGLE** WHEN REQ'D) TRANS. LONG **CABLE** TYP OF CABLE 3/4" ATR TYPICAL ELEVATION VIEW LOAD (F_p) LOAD (F_D) TENSION' SLH-34 PL-34 30°≤ x <45° 565 957 1915 (PG. 4.8) ³45°≤ x <60° 1411 504 1988 H 6"Ø PIPE $60^{\circ} = x$ 711 2442 2807 ີ 60°< x ≤70° 499 2413 2570 a. USE 45° TO 60° FOR USE WITH PIPE 3/4"Ø A36 ROD DESIGN TABLES IN SECTION D **OUTLINE OF SECTION A-A** @ LONGITUDINAL INSULATION (SIMPLIFIED DESIGN). **BRACE POINT** b. USE THE CABLE TENSION FOR 1 Fp SELECTION OF THE CABLE 5° MAX. ATTACHMENT TO THE STRUCTURE. c. ANGLE OF CABLE MUST NOT 5° MAX **EXCEED 70° FOR CAPACITIES TO BE** VALID. **CABLE** NOTES: PIPE BRACING KIT 2-P316C-34R-1R: 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE (04) UPPER BRACKET - SLH-34 PAGE 4.5. (04) UPPER SLOTTED WASHER - SLW-#d 2. CABLES TO BE INSTALLED TAUT W/O SLACK. (04) LOWER BRACKET - SLH-34 CAUTION - CABLE MUST NOT SUSTAIN ANY DEAD MAX Ś (04) LOWER SLOTTED WASHER - SLW-34 LOAD. MAX. (02) ROD STIFFENER CLAMPS - RS-1 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & $(04)\frac{3}{16}$ " CABLE - 10 FT. REQUIREMENTS. (08) 3/16" CABLE CLAMPS 4. SEE PAGE 4.4 FOR BRACKET - SLH-34 AND SLOTTED

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

(01) PIPE LUG - PL-34

Page No.:

2.1.30

Date:

d. UPPER SLOTTED WASHER TO MATCH

SELECTED ATTACHMENT.

February 5, 2025

TYPICAL PLAN VIEW

WASHER - SLW-XX DETAIL.

5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.

6. WELDING OF PIPE LUG MAY BE PERFORMED IN A

COORDINATED WITH THE FINAL DESIGN SPACING.

SHOP. HOWEVER THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE

CABLE BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE 8"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION ($\frac{3}{16}$ "Ø CABLE) UPPER SLOTTED WASHER -SLW-#, TYP. (2) UPPEŘ BRACKÉT -**OUTLINE OF** STRUCTURE-SLH-34, TYP. (2) T_{cable} ROD STIFFENER -M.W. SAUSSÉ & CO., INC. L MAX **ANGLE** SEISMIC CABLE BRACING KIT CLAMPS-SEE OF 3/16" CABLE CLAMP 4.2 CABLE ጼ $\frac{3}{6}$ "Ø STEEL CABLE 4.3.1 1%x1%X12GA LOWER BRACKET -STRUT CHANNEL SLH-34, TYP. (2) ½" A36 $rac{3}{4}$ " A307 M.B., THREADED ROD 8" LONG, TIGHTENED TO 1/8" HEAVY NUTS 141 LB-FT *SEE SECTION 3 FOR **TIGHTENED TO** LOWER SLOTTED WASHER -APPLICABLE ATTACHMENTS MIN. 208 LB-FT SLW-34, TYP. (2) Fp TO THE STRUCTURE TYP. SEE NOTE #6 **SEE NOTE #6** 8"Ø PIPE (W/INSUL. WHEN REQ'D)_ **OUTLINE OF** $F_{nv} + W_{p}$ INSULATION CABLE KIT CAPACITIES (LBS - LRFD) TYPICAL ELEVATION VIEW ANGLE OF MAX. HORIZ. bMAX. CABLE CABLE "x" **TENSION** LOAD (F_D) OPM-0203 30°≤ x <45° 607 1915 ^a45°≤ x <60° 550 1988 $60^{\circ} = x$ Roy Lobo 777 2807 ີ 60°< x≤70° 2570 551 a. USE 45° TO 60° FOR USE WITH DESIGN TABLES IN SECTION D 3" A36 ROD 8"Ø PIPE (SIMPLIFIED DESIGN). b. USE THE CABLE TENSION FOR 3/16"Ø CABLE SELECTION OF THE CABLE ATTACHMENT TO THE STRUCTURE. 5° MAX c. ANGLE OF CABLE MUST NOT **EXCEED 70° FOR CAPACITIES TO BE** 5° MAX VALID. NOTES: 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PL-78 2. CABLES TO BE INSTALLED TAUT W/O SLACK. (PG. 4.9) PIPE BRACING KIT 1-P316C-78R-1R: **CAUTION - CABLE MUST NOT SUSTAIN ANY** (02) UPPER BRACKET - SLH-34 DEAD LOAD. (02) UPPER SLOTTED WASHER - SLW-#d 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER (02) LOWER BRACKET - SLH-34 **DETAIL & REQUIREMENTS.** TYPICAL PLAN VIEW (02) LOWER SLOTTED WASHER - SLW-34 4. SEE PAGE 4.4 FOR BRACKET - SLH-34 AND (02) ROD STIFFENER CLAMPS - RS-1 SLOTTED WASHER - SLW-XX DETAIL. $(02)\frac{3}{16}$ " CABLE - 10 FT. 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL. (04) 3/16" CABLE CLAMPS

ALONG THE PIPE SECTIONS MUST BE

SPACING.

COORDINATED WITH THE FINAL DESIGN

6. WELDING OF PIPE LUG MAY BE PERFORMED IN

A SHOP. HOWEVER THE SPACING OF THE LUGS

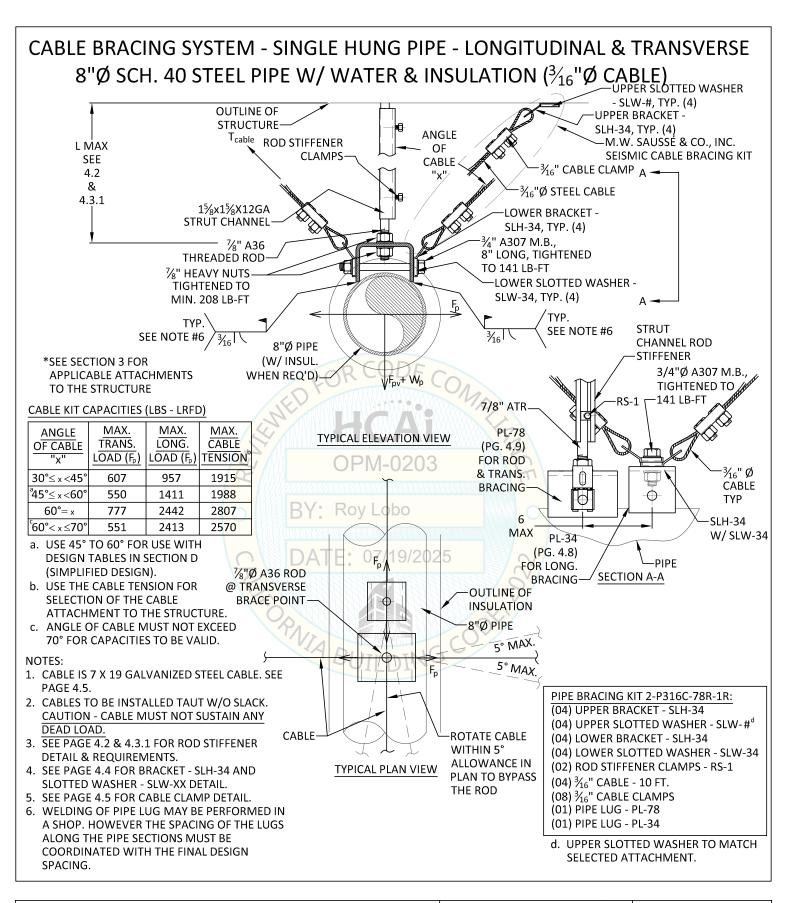
M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: Nr. Tremblay

(01) PIPE LUG - PL-78

California PE No. S6481

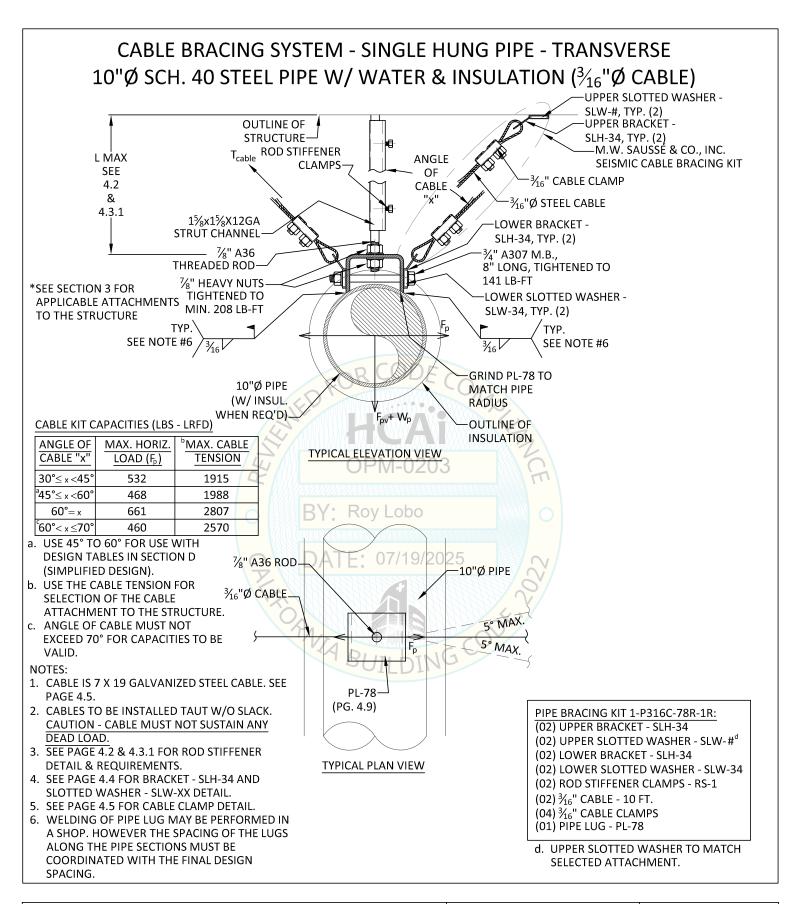

Page No.:

d. UPPER SLOTTED WASHER TO MATCH

SELECTED ATTACHMENT.

2.1.31

Date:



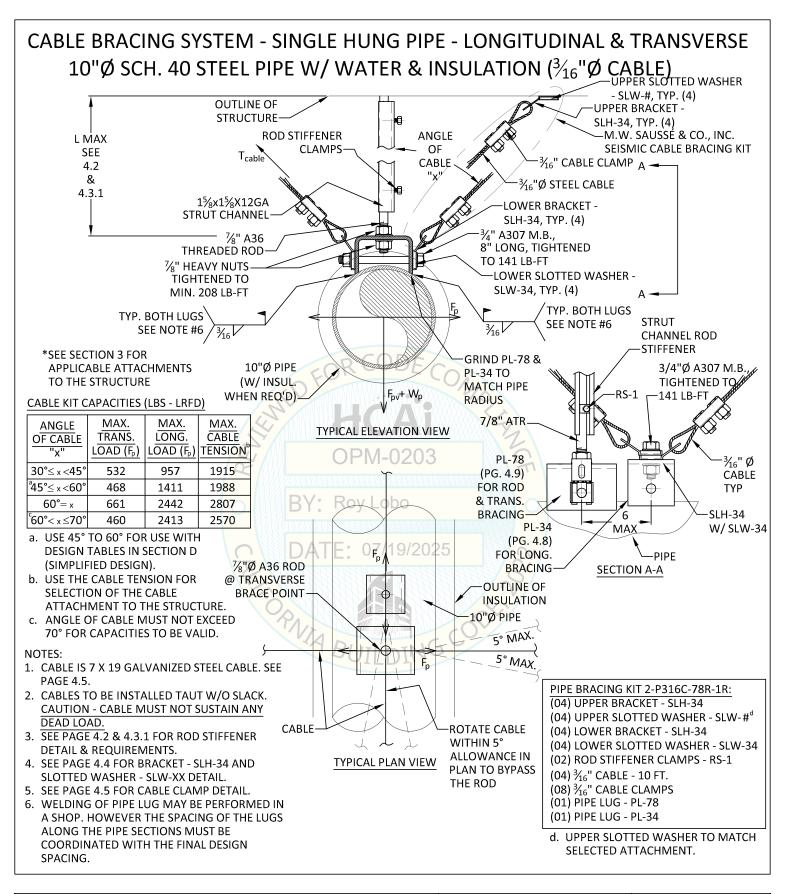
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.1.32

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

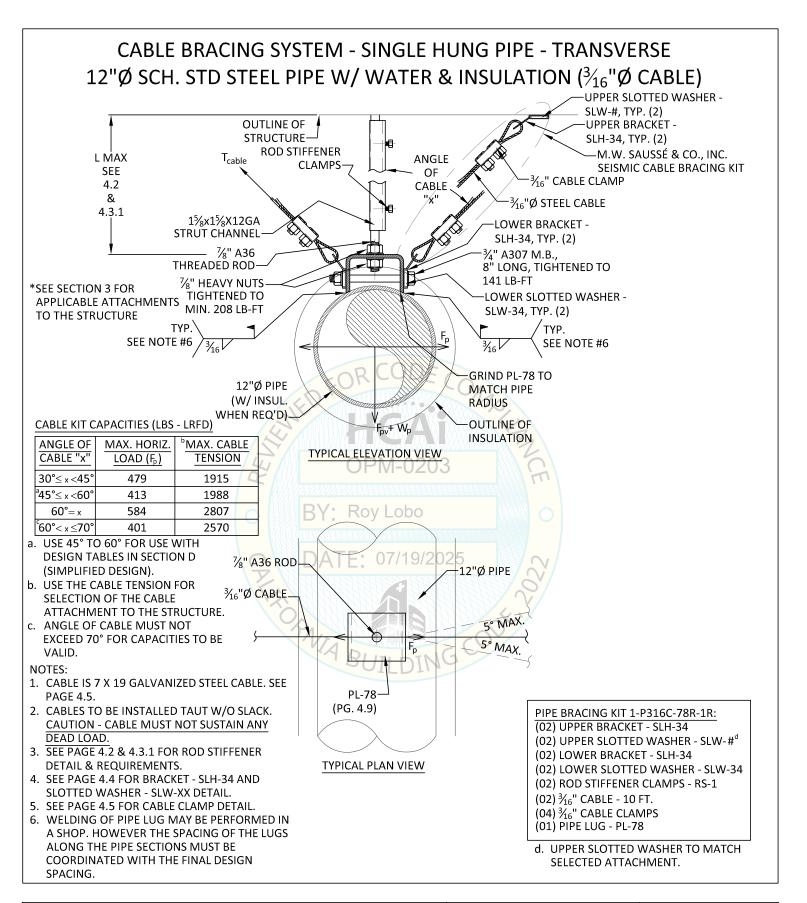

Page No.:

2.1.33

Date:

February 5, 2025

94 of 337



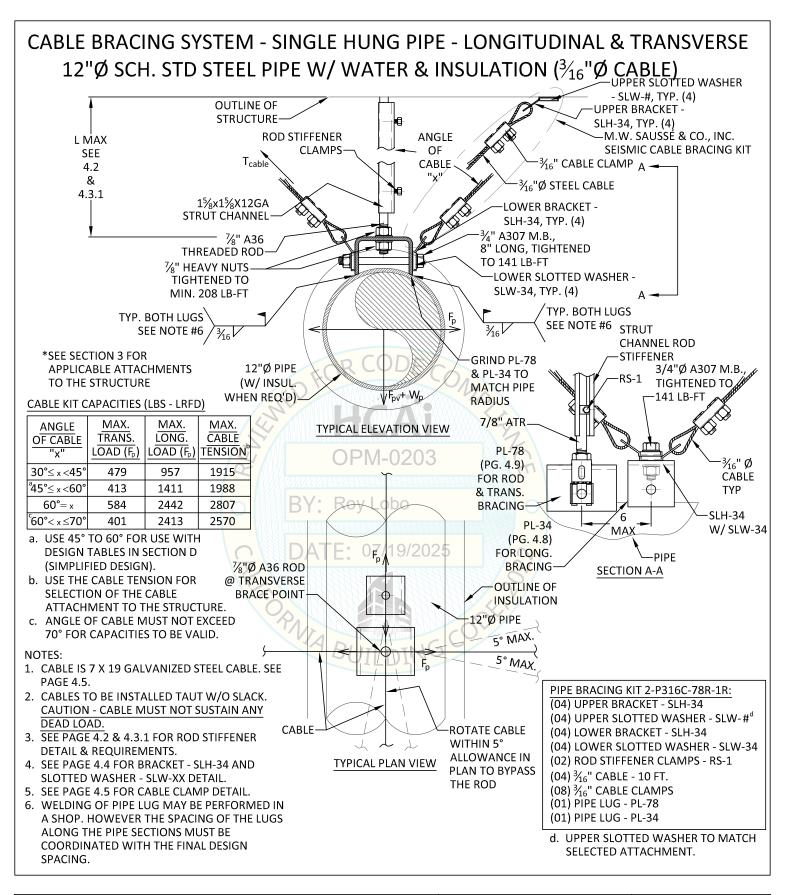
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.1.34

Date:

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355


14 Witherspoon Parkway | Valencia, CA 91355 | _____ Ph: (661) 257-3311 | Fax: (661) 257-6050 | Stru

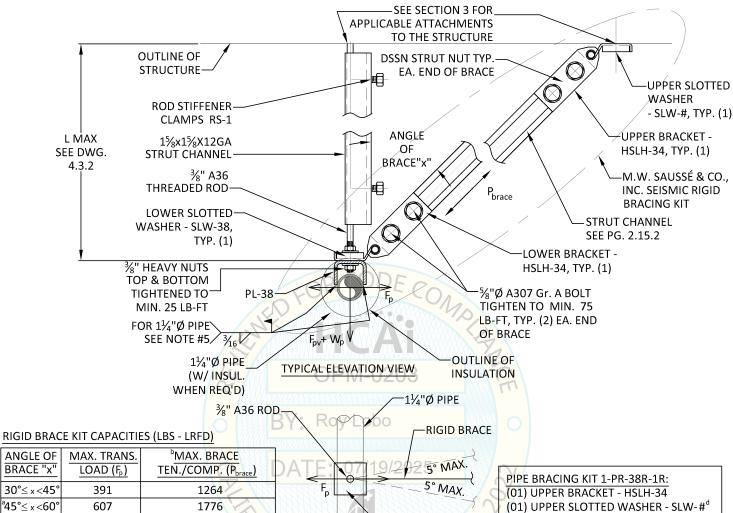
Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

2.1.35

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay California PE No. S6481

Page No.:

2.1.36

Date:

RIGID BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE $1\frac{1}{4}$ "Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION

PL-38

TYPICAL PLAN VIEW

(PG. 4.6)

³45°≤ x <60° $60^{\circ} = x$ 556 1830 ີ60°< x≤70° 289 1589

a. USE 45° TO 60° FOR USE WITH DESIGN TABLES IN SECTION D (SIMPLIFIED DESIGN).

b. USE THE BRACE TENSION/COMPRESSION FOR SELECTION OF THE BRACE ATTACHMENT TO THE STRUCTURE.

c. ANGLE "x" OF BRACE MUST NOT EXCEED 70° FOR CAPACITIES TO BE VALID.

- (01) LOWER BRACKET HSLH-34
- (01) LOWER SLOTTED WASHER SLW-38
- (#e) ROD STIFFENER CLAMPS RS-1
- (02) DSSN STRUT NUT
- (01) PIPE LUG PL-38
- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.
- e. COORDINATE WITH ENGINEER OF RECORD FOR NO. OF RS-1 NEEDED BASED ON L MAX.

NOTES:

- 1. SEE PAGE 2.15.2 FOR STRUT CHANNEL BRACE SIZES.
- 2. SEE PAGE 4.3.2 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 3. SEE PAGE 4.11 FOR BRACKET HSLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 4. SEE PAGE 4.13 FOR DSSN STRUT NUT DETAIL.
- 5. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

2.2.1

Date:

RIGID BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE $1\frac{1}{4}$ "Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION SEE SECTION 3 FOR APPLICABLE ATTACHMENTS TO THE STRUCTURE O ROD STIFFENER **OUTLINE OF** CLAMPS RS-1 -STRUCTURE UPPER SLOTTED Ø 3/8" HEAVY NUTS WASHER 1%x1%X12GA **TOP & BOTTOM** STRUT CHANNEL - SLW-#, TYP. (1) TIGHTENED TO -LOWER SLOTTED MIN. 25 LB-FT I MAX **UPPER BRACKET -**ANGLE WASHER - SLW-38, SEE DWG. HSLH-34, TYP. (1) OF TYP. (2) 4.3.2 BRACE "x" ¾" A307 Gr. A M.W. SAUSSÉ & CO., Pbrace **BOLT TIGHTENED** INC. SEISMIC RIGID TO MIN. 25 LB-FT **BRACING KIT**

Ø

LONGITUDINAL
STRUT CHANNEL
SEE PG. 2.15.2

LOWER BRACKET HSLH-34, TYP. (1)

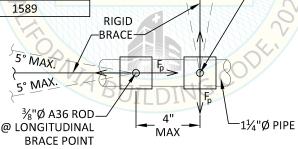
RIGID BRACE KIT CAPACITIES (LBS - LRFD)

⅓"Ø A307 Gr. A BOLT WITH— DSSN STRUT NUT. TIGHTEN TO MIN. 75 LB-FT

WHEN REQ'D)

TYPICAL ELEVATION VIEW

Roy Lobo


 $V F_{pv} + W_p$

OUTLINE OF INSULATION

ANGLE OF BRACE "x"	MAX. TRANS. LOAD (F _p)	MAX. LONG. LOAD (F _p)	bMAX. BRACE TEN./COMP. (P _{brace})
30°≤ x <45°	391	632	1264
^a 45°≤ x <60°	607	1256	1776
60°= x	556	1585	1830 DA
^c 60°< x ≤70°	379	1493	1589
1105 450	TO 600 FO	· · · · · · · · · · · · · · · · · · ·	

 USE 45° TO 60° FOR USE WITH DESIGN TABLES IN SECTION D (SIMPLIFIED DESIGN).

- b. USE THE RIGID BRACE
 TENSION/COMPRESSION FOR
 SELECTION OF THE RIGID BRACE
 ATTACHMENT TO THE
 STRUCTURE.
- c. ANGLE "x" OF RIGID BRACE MUST NOT EXCEED 70° FOR CAPACITIES TO BE VALID.

TYPICAL PLAN VIEW

BOLT 1½" LONG @ TRANSVERSE BRACE POINT, TIGHTENED TO 25 LB-FT

3/8"Ø A307 Gr. A

-PL-38,

LOCATION (SEE PG. 2.2.1)

SEE NOTE #5

FOR 1¼"Ø PIPE BOTH SIDES

TRANSVERSE BRACE

TYP. (2)

PIPE BRACING KIT 2-PR-38R-1R: (02) UPPER BRACKET - HSLH-34

(02) UPPER SLOTTED WASHER - SLW-#^d (02) LOWER BRACKET - HSLH-34

(02) LOWER SLOTTED WASHER - SLW-38 (#°) ROD STIFFENER CLAMPS - RS-1

(#4) ROD STIFFENER CLAMPS (04) SSN STRUT NUT

(02) PIPE LUG - PL-38

- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.
- e. COORDINATE WITH THE ENGINEER OF RECORD FOR NO. OF RS-1 NEEDED BASED ON L MAX.

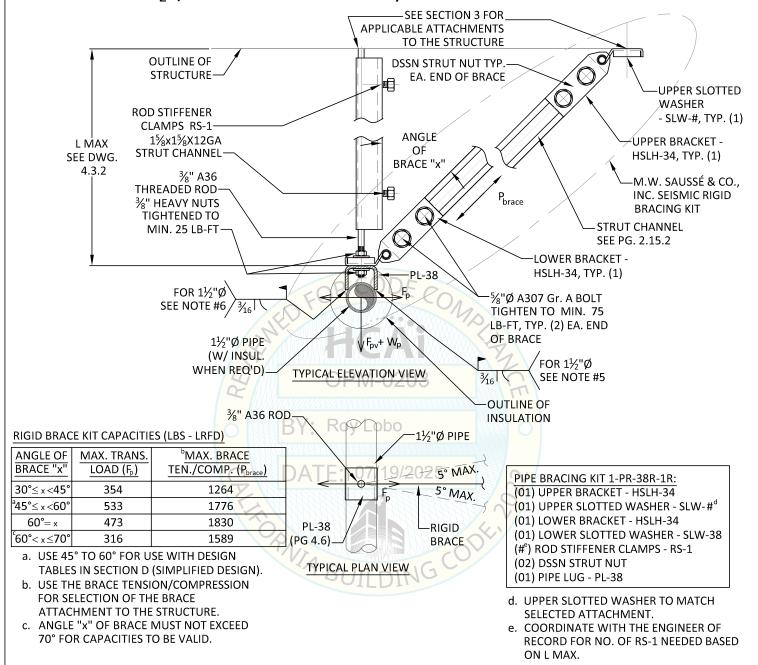
NOTES:

- 1. SEE PAGE 2.15.2 FOR STRUT CHANNEL BRACE SIZES.
- 2. SEE PAGE 4.3.2 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 3. SEE PAGE 4.11 FOR BRACKET HSLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 4. SEE PAGE 4.13 FOR SSN STRUT NUT DETAIL.
- WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

11/4" Ø PIPE

(W/INSUL.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.2.2

Date:

RIGID BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE $1\frac{1}{2}$ "Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION

NOTES:

- 1. SEE PAGE 2.15.2 FOR STRUT CHANNEL BRACE SIZES.
- 2. SEE PAGE 4.3.2 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 3. SEE PAGE 4.11 FOR BRACKET HSLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 4. SEE PAGE 4.13 FOR DSSN STRUT NUT DETAIL.
- WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

2.2.3

Date:

RIGID BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE 11/2" Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION SEE SECTION 3 FOR APPLICABLE ATTACHMENTS TO THE STRUCTURE O ROD STIFFENER **OUTLINE OF** CLAMPS RS-1 -STRUCTURE UPPER SLOTTED %" HEAVY NUTS 1%x1%X12GA WASHER **TOP & BOTTOM** STRUT CHANNEL - SLW-#, TYP. (1) TIGHTENED TO MIN. 25 LB-FT **ANGLE** LOWER SLOTTED L MAX UPPER BRACKET OF WASHER - SLW-38, SEE DWG. HSLH-34, TYP. (1) BRACE "x" TYP. (2) 4.3.2 M.W. SAUSSÉ & CO., Pbrace 3/4" A307 Gr. A INC. SEISMIC RIGID **BOLT TIGHTENED BRACING KIT** TO MIN. 25 LB-FT LONGITUDINAL PL-38, STRUT CHANNEL TYP. (2) SEE PG. 2.15.2 TRANSVERSE BRACE LOWER BRACKET -LOCATION (SEE PG. 2.2.3) HSLH-34, TYP. (1) FOR 1½"Ø PIPE BOTH SIDES SEE NOTE #5 %"Ø A307 Gr. A BOLT WITH 3/16 11/2" Ø PIPE **DSSN STRUT NUT. TIGHTEN** (W/INSUL. $F_{pv} + W_p$ TO MIN. 75 LB-FT WHEN REQ'D) **OUTLINE OF** TYPICAL ELEVATION VIEW RIGID BRACE KIT CAPACITIES (LBS - LRFD) INSULATION MAX. MAX. **ANGLE** MAX. BRACE TRANS. LONG. OF BRACE TEN./COMP. (Porace) LOAD (F_D) LOAD (F_D) "x" Roy Lobo 30°≤ x <45° 354 632 1264 ³45°≤ x <60° 1256 1776 533 MAX. MAX. $60^{\circ} = x$ 473 1585 1830 3/8"Ø A307 Gr. A BOLT 11/5" ີ 60°< x ≤70° 316 1493 1589 LONG @ TRANSVERSE ŝ a. USE 45° TO 60° FOR USE WITH **BRACE POINT, TIGHTENED** 3/8 W A36 ROD DESIGN TABLES IN SECTION D TO 25 LB-FT @ LONGITUDINAL (SIMPLIFIED DESIGN). RIGID **BRACE POINT** b. USE THE RIGID BRACE BRACE Fp TENSION/COMPRESSION FOR 5° MAX. SELECTION OF THE RIGID BRACE PIPE BRACING KIT 2-PR-38R-1R: ATTACHMENT TO THE MAX. (02) UPPER BRACKET - HSLH-34 STRUCTURE. c. ANGLE "x" OF RIGID BRACE (02) UPPER SLOTTED WASHER - SLW-#d RIGID MUST NOT EXCEED 70° FOR 13/"Ø PIPE (02) LOWER BRACKET - HSLH-34 4" **BRACE** CAPACITIES TO BE VALID. (02) LOWER SLOTTED WASHER - SLW-38 MAX

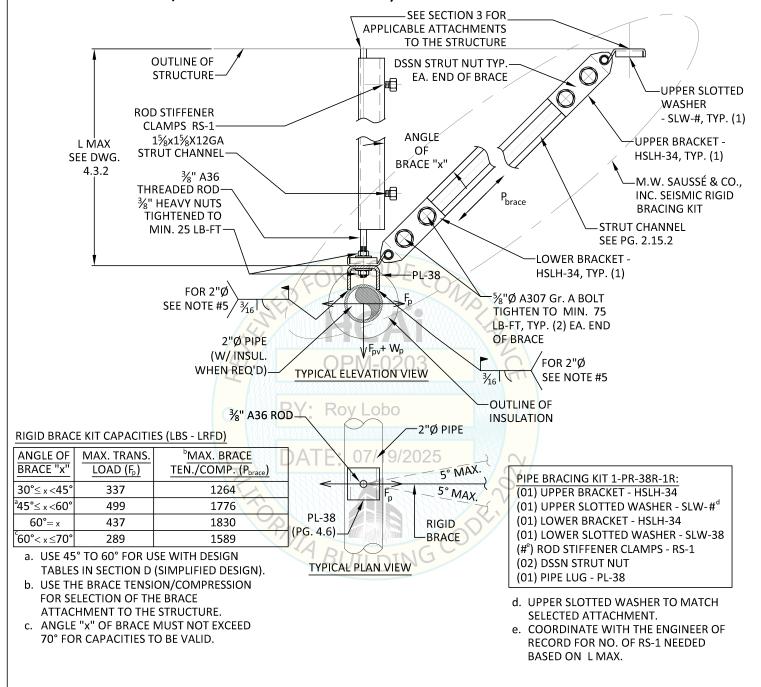
NOTES:

- 1. SEE PAGE 2.15.2 FOR STRUT CHANNEL BRACE SIZES.
- 2. SEE PAGE 4.3.2 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 3. SEE PAGE 4.11 FOR BRACKET HSLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 4. SEE PAGE 4.13 FOR SSN STRUT NUT DETAIL.
- 5. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.
- (#e) ROD STIFFENER CLAMPS RS-1
- (04) SSN STRUT NUT
- (02) PIPE LUG PL-38
- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.
- e. COORDINATE WITH THE ENGINEER OF RECORD FOR NO. OF RS-1 NEEDED BASED ON L MAX.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481 Page No.:


2.2.4

Date:

February 5, 2025

TYPICAL PLAN VIEW

RIGID BRACING SYSTEM - SINGLE HUNG PIPE - TRANSVERSE 2"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION

NOTES:

- 1. SEE PAGE 2.15.2 FOR STRUT CHANNEL BRACE SIZES.
- 2. SEE PAGE 4.3.2 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 3. SEE PAGE 4.11 FOR BRACKET HSLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 4. SEE PAGE 4.13 FOR DSSN STRUT NUT DETAIL.
- 5. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer, N. Tremblay
California PE No. S6481

Page No.:

2.2.5

Date:

RIGID BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE 2"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION APPLICABLE ATTACHMENTS TO THE STRUCTURE O ROD STIFFENER OUTLINE OF CLAMPS RS-1 -STRUCTURE UPPER SLOTTED 3/4" HEAVY NUTS 1%x1%X12GA

HSLH-34, TYP. (1) M.W. SAUSSÉ & CO. INC. SEISMIC RIGID **BRACING KIT**

WASHER

- SLW-#, TYP. (1)

UPPER BRACKET -

LONGITUDINAL STRUT CHANNEL SEE PG. 2.15.2 STRUT CHANNEL

ANGLE

OF

BRACE "x"

2"Ø PIPE

%"Ø A307 Gr. A BOLT WITH **DSSN STRUT NUT. TIGHTEN** TO MIN. 75 LB-FT

RIGID BRACE KIT CAPACITIES (LBS - LRFD)

LOWER BRACKET -

HSLH-34, TYP. (1)

(W/INSUL. WHEN REQ'D) TYPICAL ELEVATION VIEW

 $V F_{pv} + W_p$

OUTLINE OF INSULATION

TO 25 LB-FT

LOWER SLOTTED

3/4" A307 Gr. A

BOLT TIGHTENED

TO MIN. 25 LB-FT

TYP. (2)

TRANSVERSE BRACE

3/8"Ø A307 Gr. A BOLT 1½" LONG @ TRANSVERSE BRACE POINT, TIGHTENED

LOCATION (SEE PG. 2.2.5)

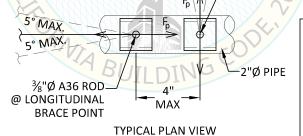
SEE NOTE #5

FOR 2"Ø PIPE BOTH SIDES

PL-38.

TYP. (2)

WASHER - SLW-38,


TOP & BOTTOM

TIGHTENED TO MIN. 25 LB-FT

<u> </u>				
ANGLE OF BRACE "x"	MAX. TRANS. LOAD (F _p)	MAX. LONG. LOAD (F _p)	bMAX. BRACE TEN./COMP. (Brace)	
30°≤ x <45°	337	632	1264	
^a 45°≤ x <60°	499	1252	1776	
60°= x	437	1585	1830 DA	
^c 60°< x ≤70°	289	1493	1589	

a. USE 45° TO 60° FOR USE WITH DESIGN TABLES IN SECTION D (SIMPLIFIED DESIGN).

- b. USE THE RIGID BRACE TENSION/COMPRESSION FOR SELECTION OF THE RIGID BRACE ATTACHMENT TO THE STRUCTURE.
- c. ANGLE "x" OF RIGID BRACE MUST NOT EXCEED 70° FOR CAPACITIES TO BE VALID.

PIPE BRACING KIT 2-PR-38R-1R:

- (02) UPPER BRACKET HSLH-34
- (02) UPPER SLOTTED WASHER SLW-#d

L MAX

SEE DWG.

4.3.2

- (02) LOWER BRACKET HSLH-34
- (02) LOWER SLOTTED WASHER SLW-38 (#e) ROD STIFFENER CLAMPS - RS-1

d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.

e. COORDINATE WITH THE ENGINEER OF

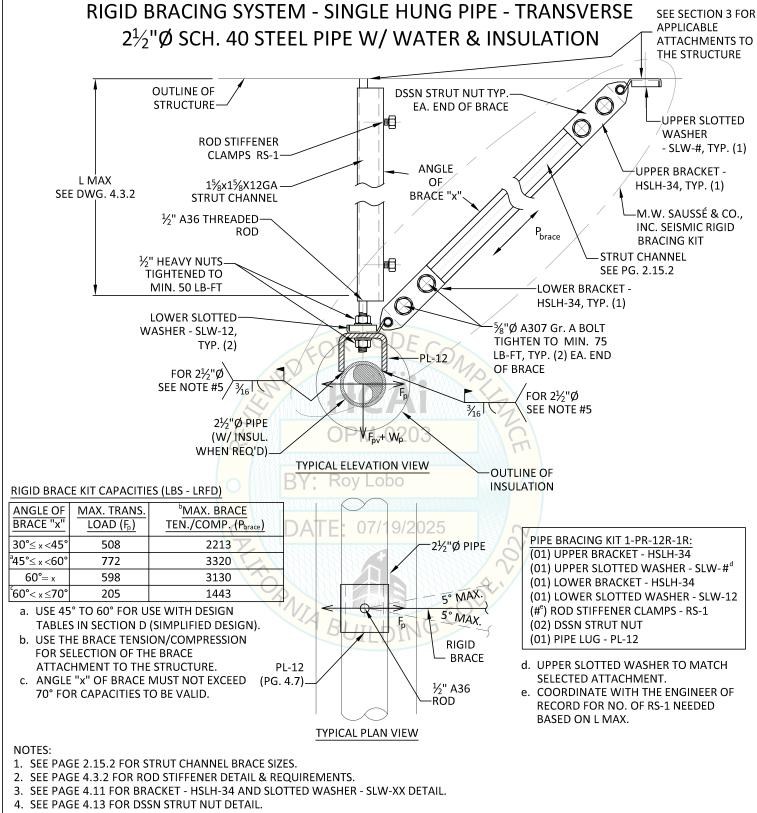
RECORD FOR NO. OF RS-1 NEEDED

- (04) SSN STRUT NUT
- (02) PIPE LUG PL-38

BASED ON L MAX.

NOTES:

- 1. SEE PAGE 2.15.2 FOR STRUT CHANNEL BRACE SIZES.
- 2. SEE PAGE 4.3.2 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 3. SEE PAGE 4.11 FOR BRACKET HSLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 4. SEE PAGE 4.13 FOR SSN STRUT NUT DETAIL.
- 5. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.


M.W. Saussé & Co., Inc.

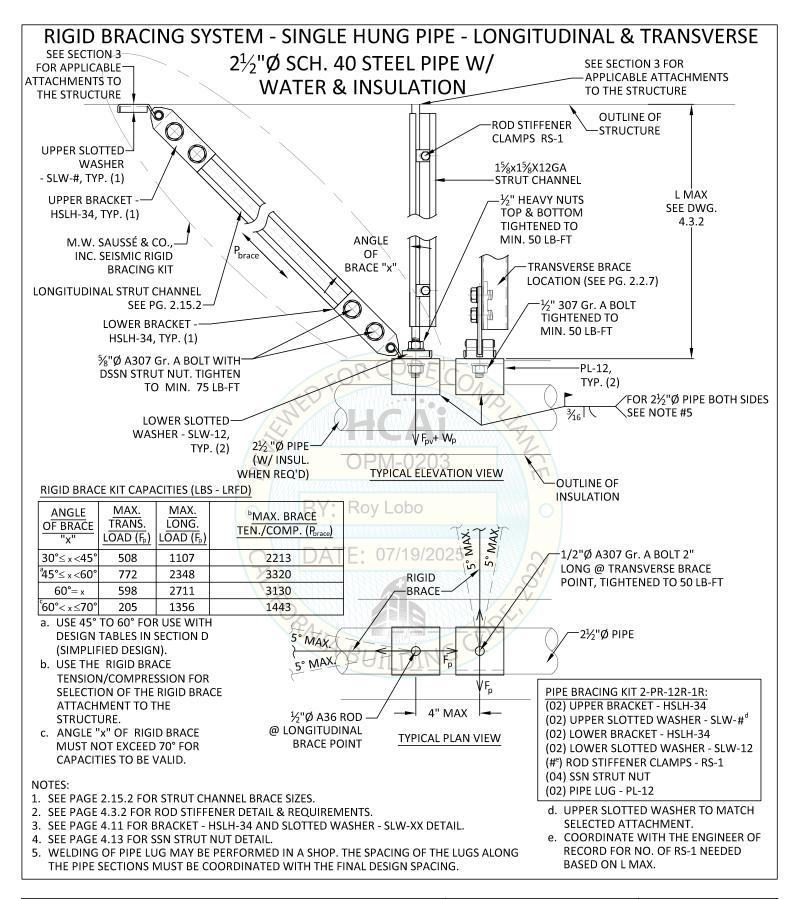
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

2.2.6

Date:

5. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.


M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay
California PE No. S6481

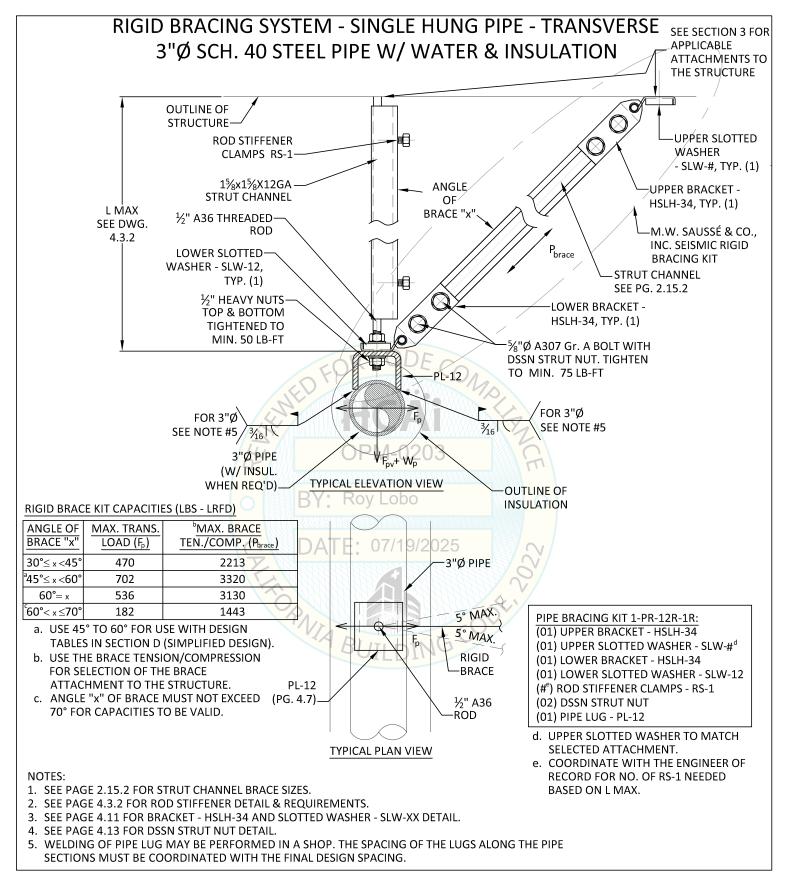
Page No.:

2.2.7

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblay

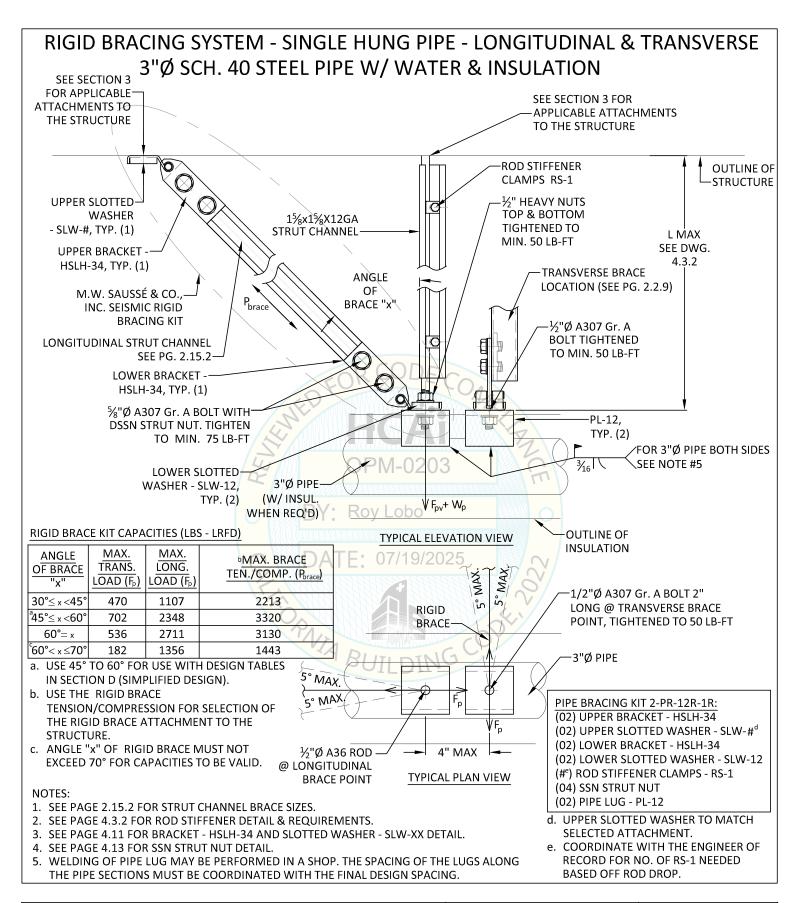

Page No.:

2.2.8

Date:

February 5, 2025

California PE No. S6481

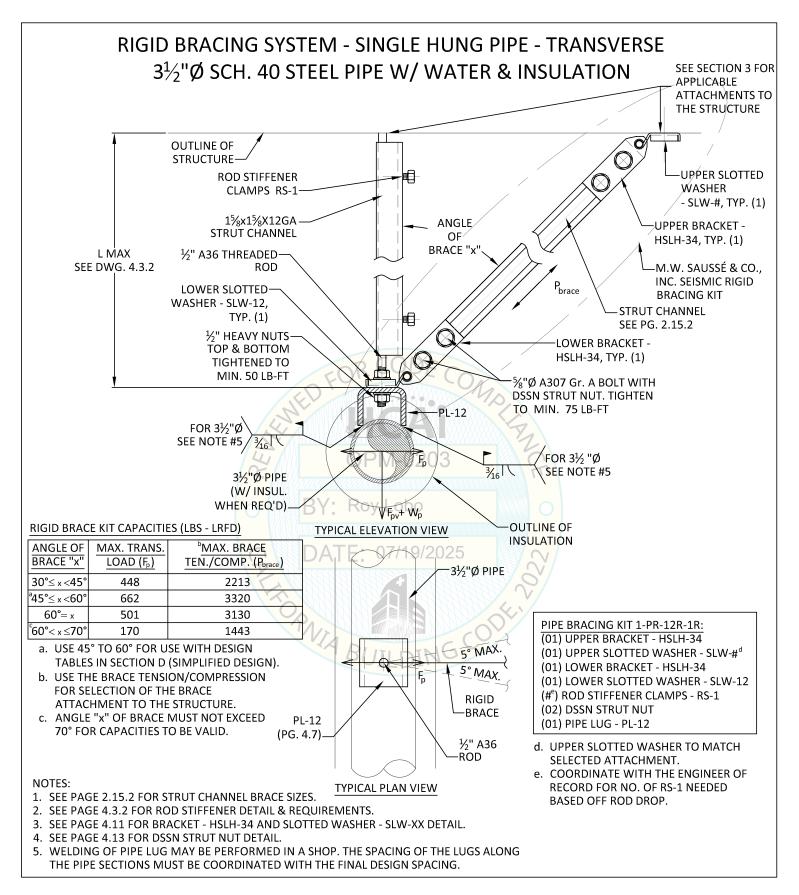


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: Nr. Tremblay
California PE No. S6481

Page No.:

2.2.9

Date:



28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: Nr. Tremblay
California PE No. S6481

Page No.:

2.2.10

Date:

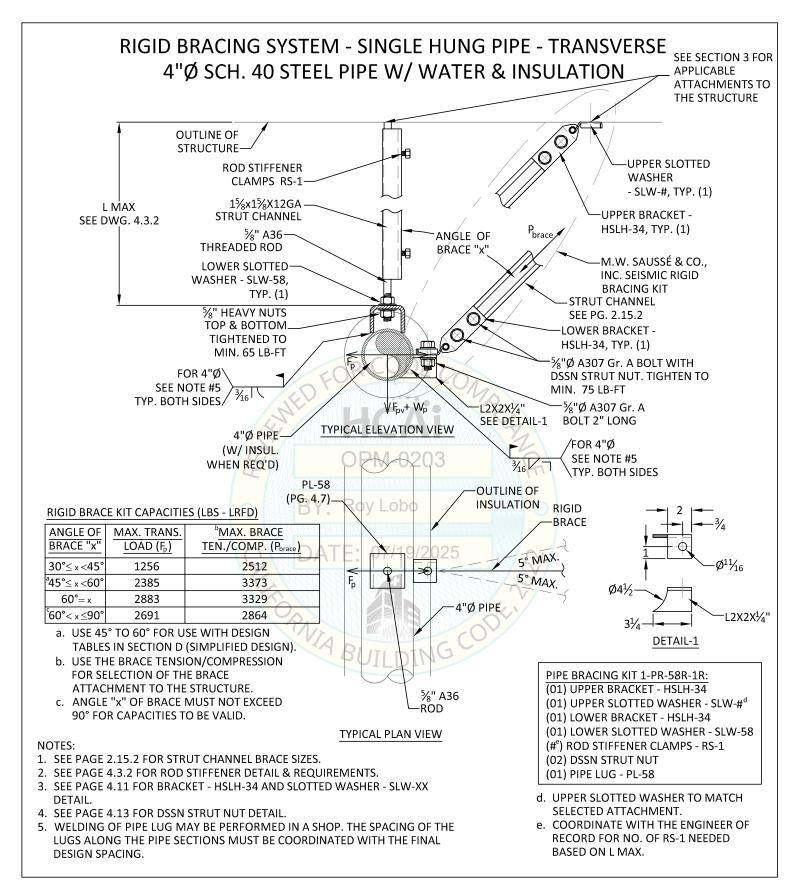
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: Nr. Tremblay
California PE No. S6481

Page No.:

2.2.11

Date:

RIGID BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE 3½"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION SEE SECTION 3 SEE SECTION 3 FOR FOR APPLICABLE APPLICABLE ATTACHMENTS ATTACHMENTS TO TO THE STRUCTURE THE STRUCTURE **OUTLINE OF ROD STIFFENER** STRUCTURE CLAMPS RS-1 UPPER SLOTTED **WASHER** 1%x1%X12GA - SLW-#, TYP. (1) STRUT CHANNEL 1/3" HEAVY NUTS L MAX **TOP & BOTTOM UPPER BRACKET** SEE DWG. HSLH-34, TYP. (1) **TIGHTENED TO** ANGLE 4.3.2 MIN. 50 LB-FT OF M.W. SAUSSÉ & CO. BRACE "x" brace INC. SEISMIC RIGID **BRACING KIT** TRANSVERSE BRACE LOCATION (SEE PG. 2.2.11) LONGITUDINAL STRUT CHANNEL 0 1 SEE PG. 2.15.2 ⅓"Ø A307 Gr. A LOWER BRACKET -**BOLT TIGHTENED** HSLH-34, TYP. (1) TO MIN. 50 LB-FT 0 %"Ø A307 Gr. A BOLT WITH ·PL-12, **DSSN STRUT NUT. TIGHTEN** TO MIN. 75 LB-FT TYP. (2) FOR 31/3"Ø PIPE BOTH SIDES SEE NOTE #5 31/3"Ø PIPE LOWER SLOTTED-(W/INSUL. WASHER - SLW-12, $V F_{pv} + W_p$ WHEN REQ'D) TYP. (2) Roy Lobo RIGID BRACE KIT CAPACITIES (LBS - LRFD) MAX. MAX. ANGLE TYPICAL ELEVATION VIEW bMAX. BRACE TRANS. LONG. OF BRACE **OUTLINE OF** TEN./COMP. (Porace) LOAD (F_D) LOAD (F_b) INSULATION 30°≤ x <45° 448 1107 2213 ³45°≤ x <60° -1/2"Ø A307 Gr. A BOLT 2" 662 2348 3320 LONG @ TRANSVERSE BRACE $60^{\circ} = x$ 501 3130 2711 RIGID POINT, TIGHTENED TO 50 LB-FT ີ 60°< x ≤70° 170 1356 1443 -BRACE a. USE 45° TO 60° FOR USE WITH DESIGN 3½"Ø PIPE TABLES IN SECTION D (SIMPLIFIED DESIGN). 5° MAX. b. USE THE RIGID BRACE PIPE BRACING KIT 2-PR-12R-1R: TENSION/COMPRESSION FOR MAX (02) UPPER BRACKET - HSLH-34 SELECTION OF THE RIGID BRACE (02) UPPER SLOTTED WASHER - SLW-#d ATTACHMENT TO THE STRUCTURE. (02) LOWER BRACKET - HSLH-34 c. ANGLE "x" OF RIGID BRACE MUST (02) LOWER SLOTTED WASHER - SLW-12 NOT EXCEED 70° FOR CAPACITIES TO ⅓"Ø A36 ROD (#e) ROD STIFFENER CLAMPS - RS-1 BE VALID. @ LONGITUDINAL 4" MAX (04) SSN STRUT NUT **BRACE POINT** NOTES: (02) PIPE LUG - PL-12 1. SEE PAGE 2.15.2 FOR STRUT CHANNEL BRACE SIZES. TYPICAL PLAN VIEW d. UPPER SLOTTED WASHER TO MATCH 2. SEE PAGE 4.3.2 FOR ROD STIFFENER DETAIL & REQUIREMENTS. SELECTED ATTACHMENT. 3. SEE PAGE 4.11 FOR BRACKET - HSLH-34 AND SLOTTED WASHER - SLW-XX DETAIL. COORDINATE WITH THE ENGINEER OF 4. SEE PAGE 4.13 FOR SSN STRUT NUT DETAIL. RECORD FOR NO. OF RS-1 NEEDED 5. WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. THE SPACING OF THE LUGS ALONG BASED OFF ROD DROP. THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: Nr. Tremblay
California PE No. S6481

Page No.:

2.2.12

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.2.13

Date:

RIGID BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE 4"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION **SEE SECTION 3** SEE SECTION 3 FOR FOR APPLICABLE APPLICABLE ATTACHMENTS ATTACHMENTS TO TO THE STRUCTURE THE STRUCTURE ROD STIFFENER **OUTLINE OF** CLAMPS RS-1 STRUCTURE UPPER SLOTTED 1%x1%X12GA WASHER %" HEAVY NUTS STRUT CHANNEL - SLW-#, TYP. (1) TOP & BOTTOM Porace ANGLE **TIGHTENED TO OF** MIN. 65 LB-FT **UPPER BRACKET** L MAX BRACE "x" HSLH-34, TYP. (1) SEE DWG. TRANSVERSE BRACE 4.3.2 M.W. SAUSSÉ & CO. LOCATION (SEE PG. 2.2.13) INC. SEISMIC RIGID %"Ø A307 Gr. A **BRACING KIT BOLT TIGHTENED** LONGITUDINAL STRUT CHANNEL TO MIN. 65 LB-FT SEE PG. 2.15.2 PL-58, LOWER BRACKET -TYP. (2) HSLH-34, TYP. (1) FOR 4"Ø PIPE BOTH SIDES 5/8 Ø A307 Gr. A BOLT WITH 3/16 SEE NOTE #5 **DSSN STRUT NUT. TIGHTEN** TO MIN. 75 LB-FT 3/16 N ANGLE TO $V F_{pv} + W_p$ PIPE LOWER SLOTTED WASHER - SLW-58, 4"Ø PIPE TYPICAL ELEVATION VIEW TYP. (2) **OUTLINE OF** (W/INSUL. **INSULATION** WHEN REQ'D) %"Ø A36 ROD RIGID BRACE KIT CAPACITIES (LBS - LRFD) @ LONGITUDINAL Lobo MF. **BRACE POINT** MAX. MAX. **ANGLE** bMAX. BRACE 5° MAX. TRANS. LONG. OF BRACE TEN./COMP. (Pprace) LOAD (F_D) LOAD (Fa) 5° MAX. 30°≤ x <45° 1256 1256 2512 ع1⁄16 ^a45°≤ x <60° 2385 2385 3373 -4"Ø PIPE $60^{\circ} = x$ 2883 2354 3329 L2X2X1/4" Ø41/5 RIGID SEE DETAIL-1 ີ 60°< x ≤90° 2480 2691 2864 BRACE %"Ø A307 Gr. A BOLT 2" a. USE 45° TO 60° FOR USE WITH DESIGN L2X2X¹/₄" $3\frac{1}{4}$ LONG @ TRANSVERSE TABLES IN SECTION D (SIMPLIFIED DESIGN). BRACE POINT, TIGHTENED DETAIL-1 b. USE THE RIGID BRACE S TO 65 LB-FT TENSION/COMPRESSION FOR SELECTION OF MAX. THE RIGID BRACE ATTACHMENT TO THE PIPE BRACING KIT 2-PR-58R-1R: STRUCTURE. (02) UPPER BRACKET - HSLH-34 c. ANGLE "x" OF RIGID BRACE MUST NOT (02) UPPER SLOTTED WASHER - SLW-#d TYPICAL PLAN VIEW EXCEED 90° FOR CAPACITIES TO BE VALID. (02) LOWER BRACKET - HSLH-34 (02) LOWER SLOTTED WASHER - SLW-58 (#e) ROD STIFFENER CLAMPS - RS-1 NOTES: (04) SSN STRUT NUT 1. SEE PAGE 2.15.2 FOR STRUT CHANNEL BRACE SIZES. (01) PIPE LUG - PL-58 2. SEE PAGE 4.3.2 FOR ROD STIFFENER DETAIL & REQUIREMENTS. d. UPPER SLOTTED WASHER TO MATCH 3. SEE PAGE 4.11 FOR BRACKET - HSLH-34 AND SLOTTED WASHER - SLW-XX DETAIL. SELECTED ATTACHMENT. SEE PAGE 4.13 FOR SSN STRUT NUT DETAIL.

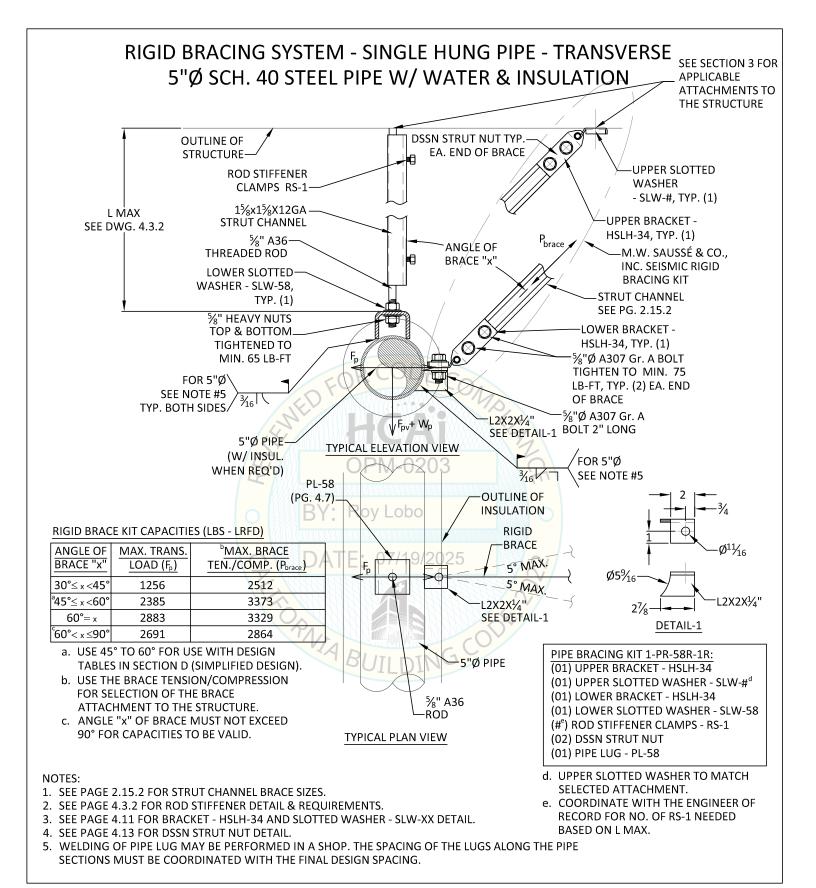
M.W. Saussé & Co., Inc.

WELDING OF PIPE LUG MAY BE PERFORMED IN A SHOP. THE SPACING OF THE LUGS

ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

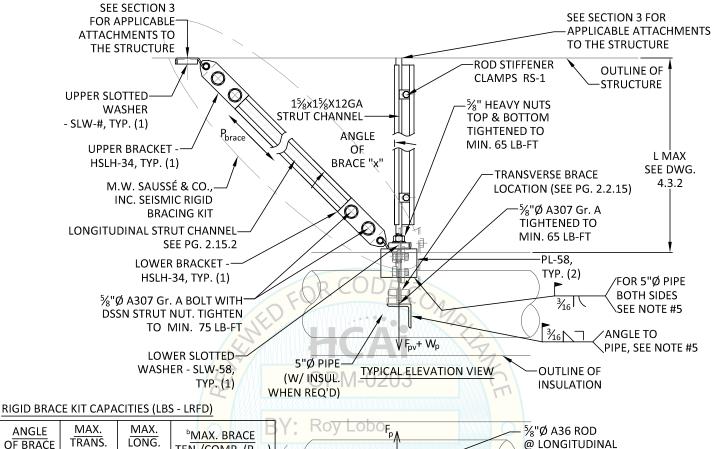

COORDINATE WITH THE ENGINEER OF

RECORD FOR NO. OF RS-1 NEEDED

BASED ON L MAX.

2.2.14

Date:


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

2.2.15

Date:

RIGID BRACING SYSTEM - SINGLE HUNG PIPE - LONGITUDINAL & TRANSVERSE 5"Ø SCH. 40 STEEL PIPE W/ WATER & INSULATION

ANGLE OF BRACE "x"	MAX. TRANS. LOAD (F _p)	MAX. LONG. LOAD (F₀)	bMAX. BRACE TEN./COMP. (P _{brace})
30°≤ x <45°	1256	1256	2512
^a 45°≤ x <60°	2385	2385	3373
60°= x	2883	2354	3329
^c 60°< x≤90°	2691	2480	2864
2 LICE 15°	TO SOO EOE	LICE WALLE	DESIGN

 USE 45° TO 60° FOR USE WITH DESIGN TABLES IN SECTION D (SIMPLIFIED DESIGN).

DESIGN).

b. USE THE RIGID BRACE TENSION/COMPRESSION FOR SELECTION OF THE RIGID BRACE ATTACHMENT TO THE STRUCTURE.

c. ANGLE "x" OF RIGID BRACE MUST NOT EXCEED 90° FOR CAPACITIES TO BE VALID.

PIPE BRACING KIT 2-PR-58R-1R: (02) UPPER BRACKET - HSLH-34

BRACE POINT

5"Ø PIPE

L2X2X1/4"

SEE DETAIL-1

%"Ø A307 Gr. A BOLT 2" LONG

@ TRANSVERSE BRACE POINT.

TIGHTENED TO 65 LB-FT

(02) UPPER SLOTTED WASHER - SLW-#^d

 $2\frac{7}{8}$

DETAIL-1

- (02) LOWER BRACKET HSLH-34
- (02) LOWER SLOTTED WASHER SLW-58
- (#e) ROD STIFFENER CLAMPS RS-1

Ø5%6

- (04) SSN STRUT NUT
- (01) PIPE LUG PL-58
- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.
- COORDINATE WITH THE ENGINEER OF RECORD FOR NO. OF RS-1 NEEDED BASED ON L MAX.

NOTES:

- 1. SEE PAGE 2.15.2 FOR STRUT CHANNEL BRACE SIZES.
- 2. SEE PAGE 4.3.2 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 3. SEE PAGE 4.11 FOR BRACKET HSLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 4. SEE PAGE 4.13 FOR SSN STRUT NUT DETAIL.
- 5. WELDING OF PIPE LUG & ANGLE MAY BE PERFORMED IN A SHOP. THE SPACING OF THE LUGS ALONG THE PIPE SECTIONS MUST BE COORDINATED WITH THE FINAL DESIGN SPACING.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

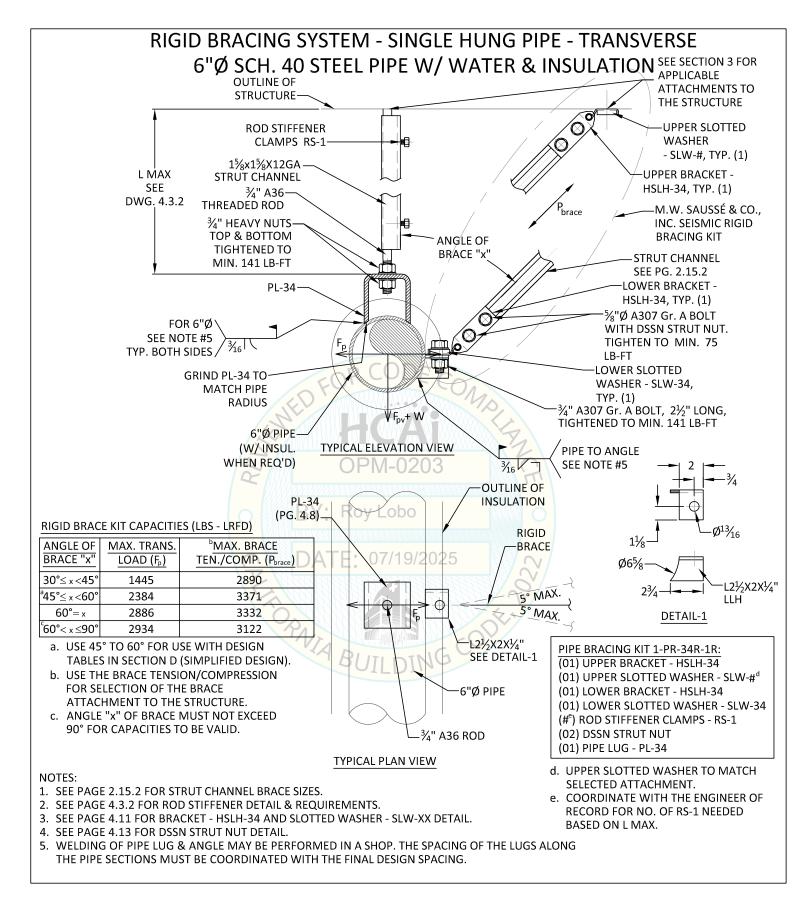
5° MAX.

RIGID

BRACE

Ω̈́

TYPICAL PLAN VIEW

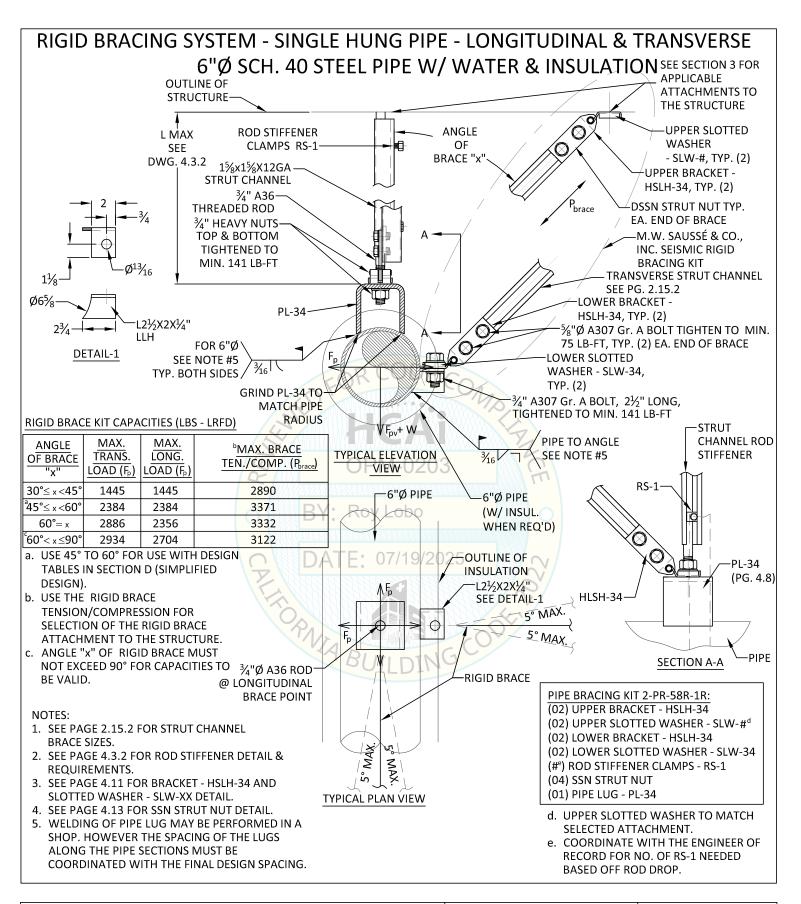

Structural Engineer: M. Tremblay
California PE No. S6481

Page No.: 2.2.16

ع⅓₁₆

L2X2X½"

Date:



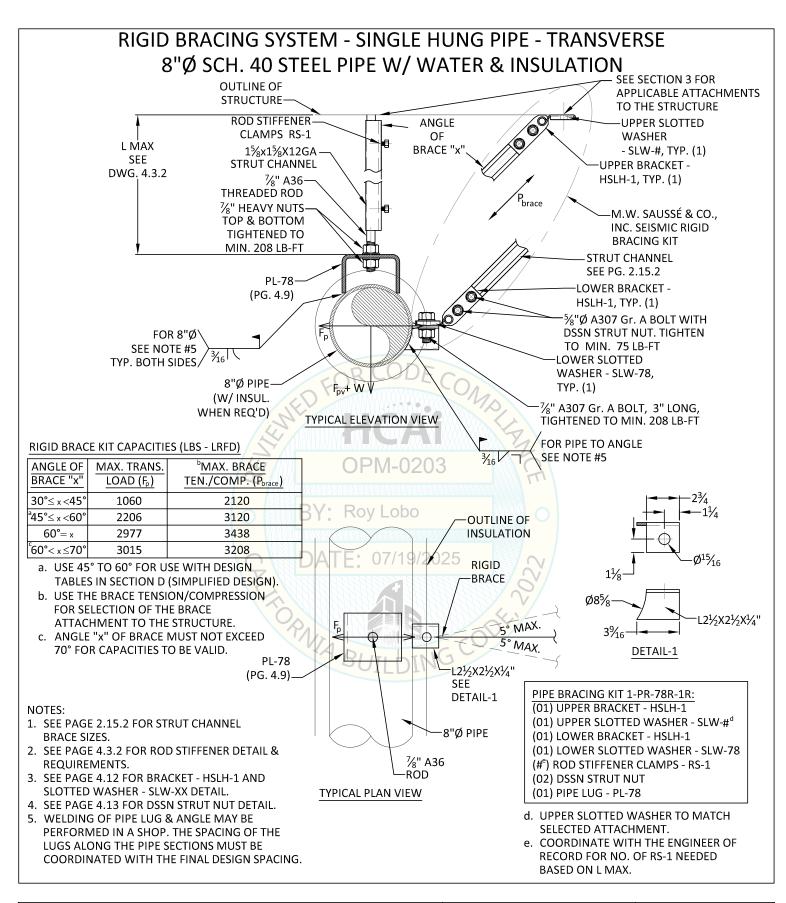
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.2.17

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

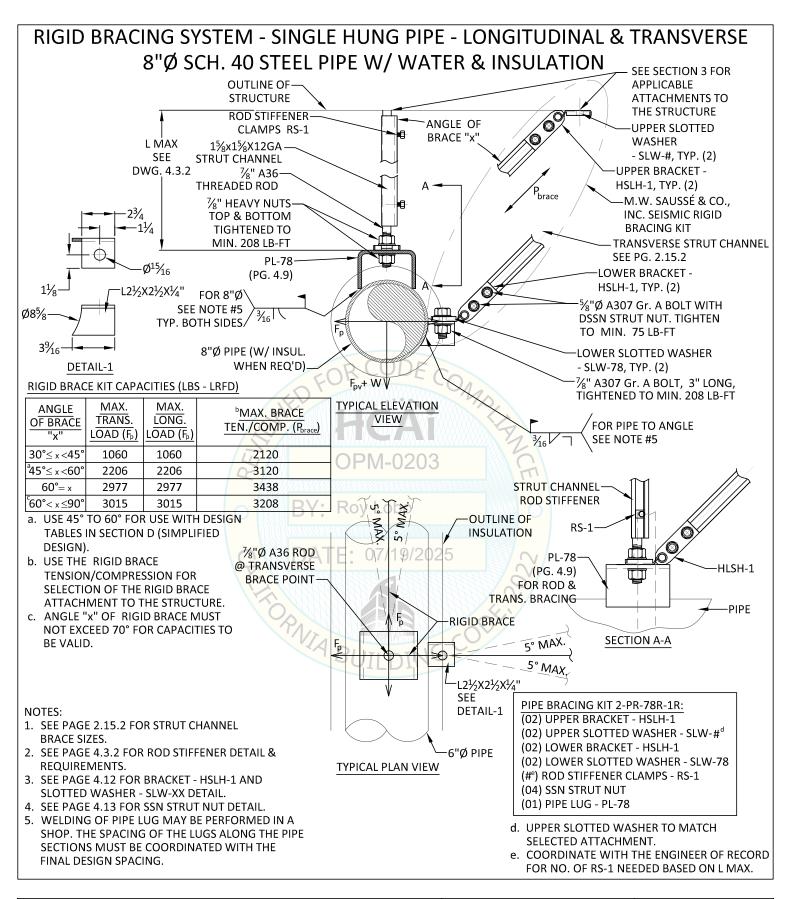

Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

2.2.18

Date:

February 5, 2025

115 of 337



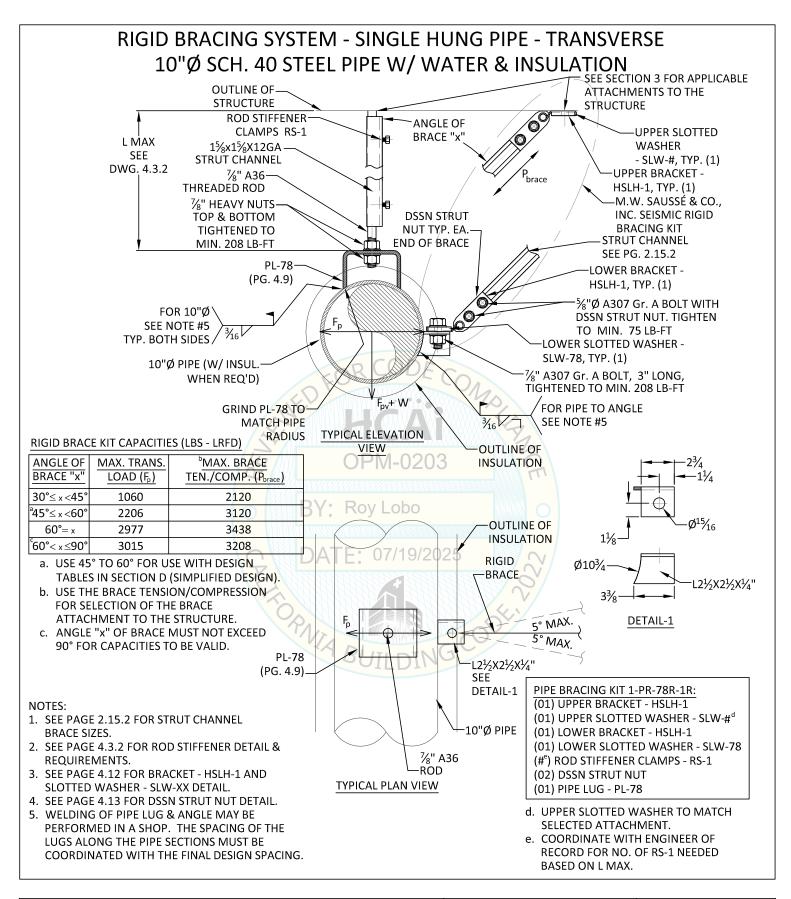
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: Nr. Tremblay
California PE No. S6481

Page No.:

2.2.19

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

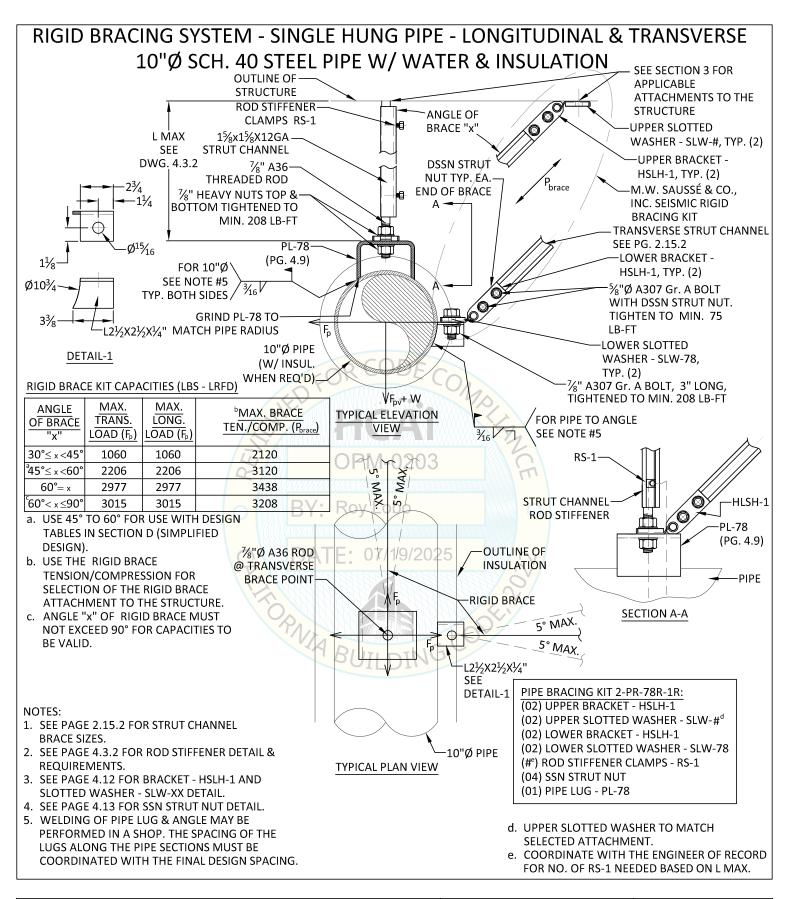

Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

2.2.20

Date:

February 5, 2025

117 of 337

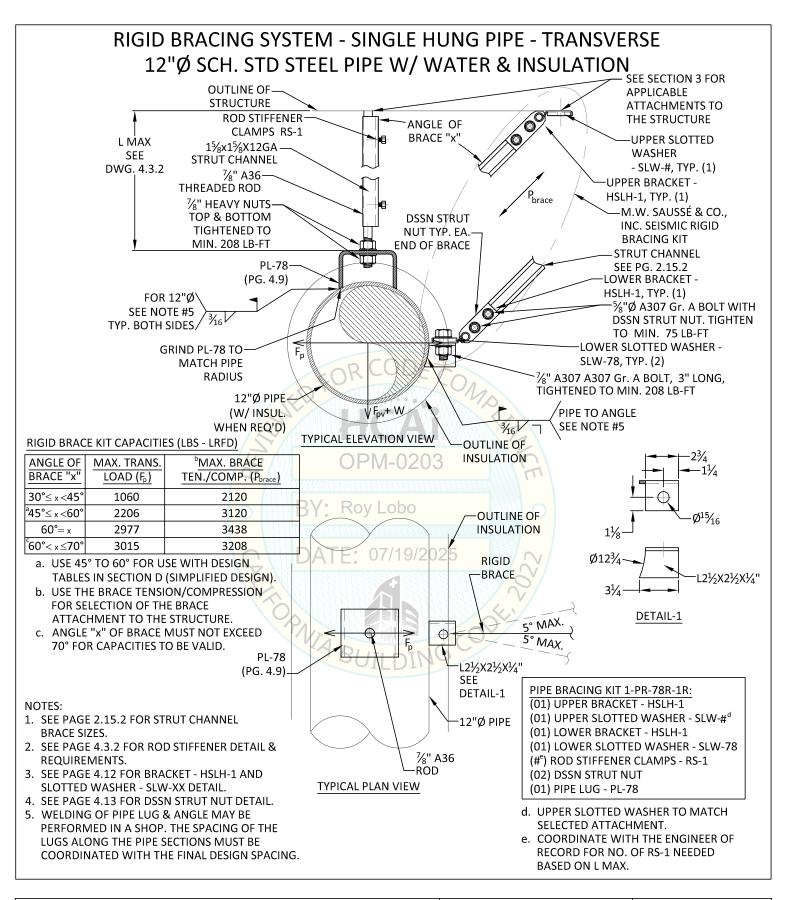


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: Mr. Tremblay
California PE No. S6481

Page No.:

2.2.21

Date:

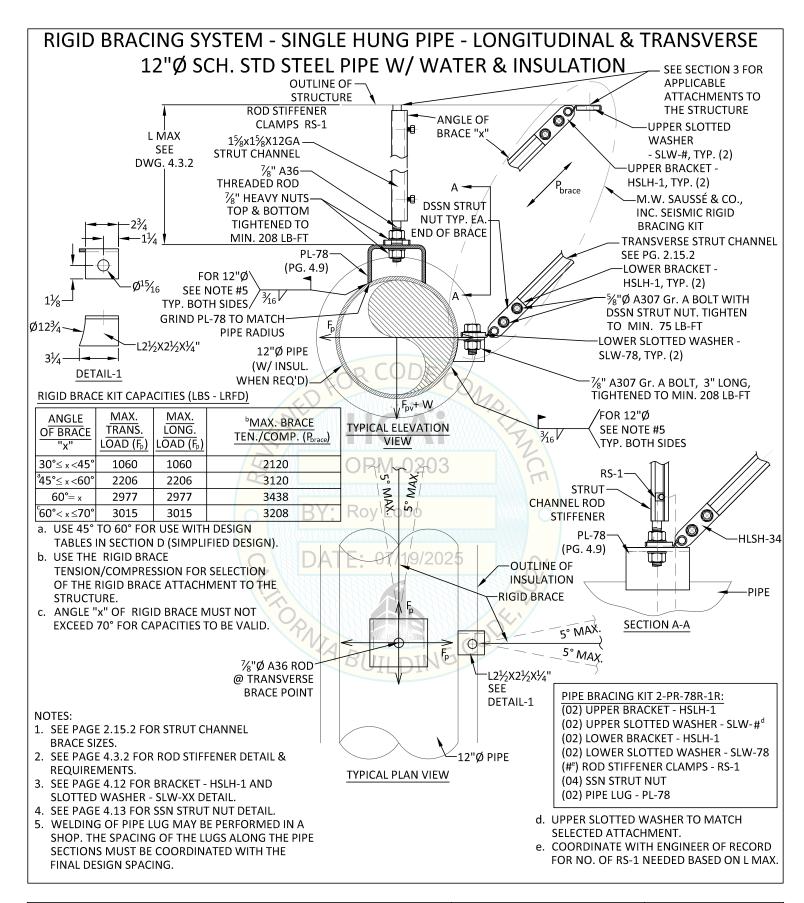


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.2.22

Date:

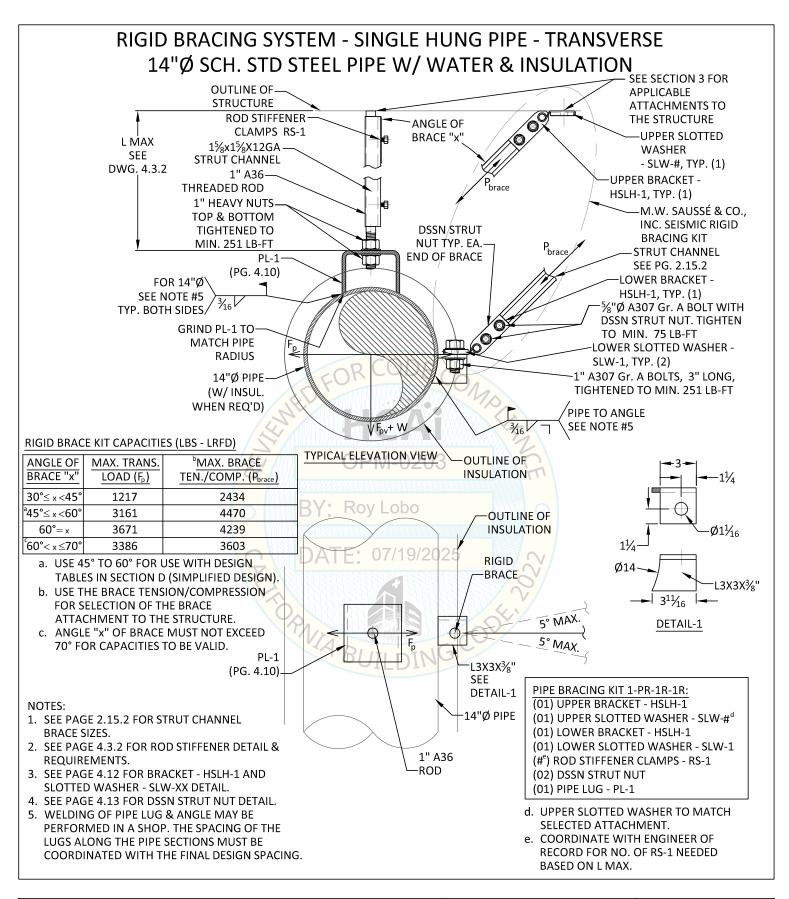


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblav California PE No. S6481 Page No.:

2.2.23

Date:

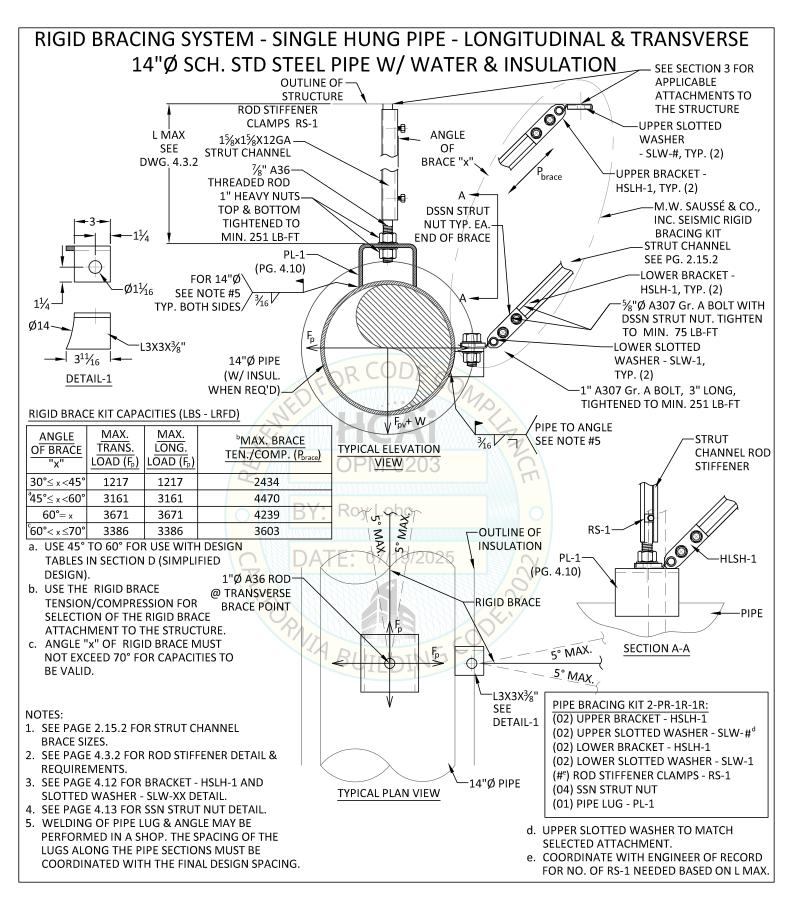


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

2.2.24

Date:

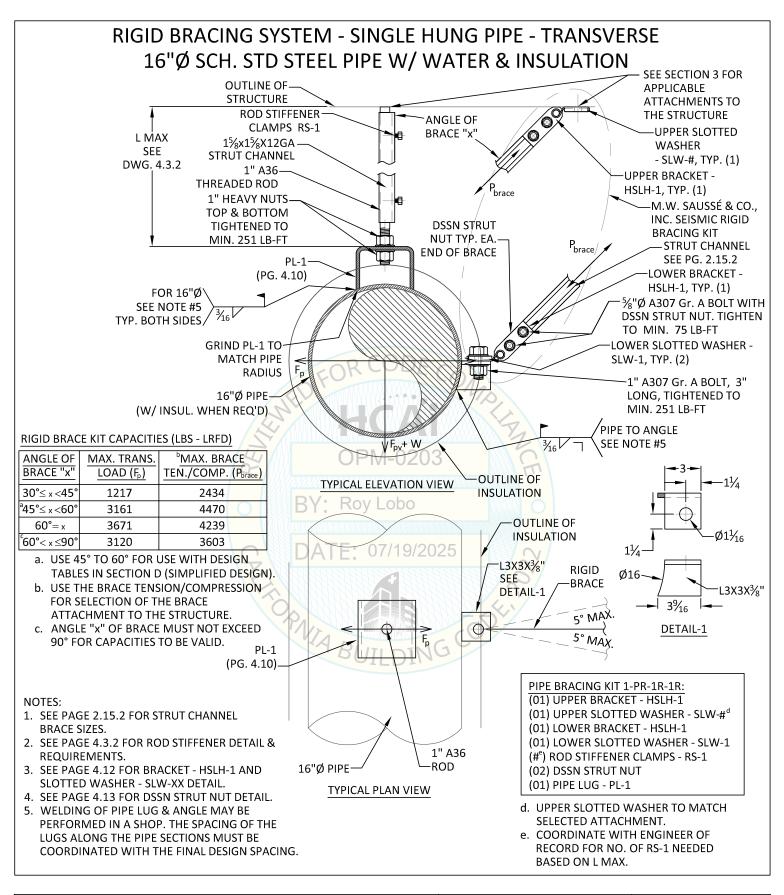


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.2.25

Date:

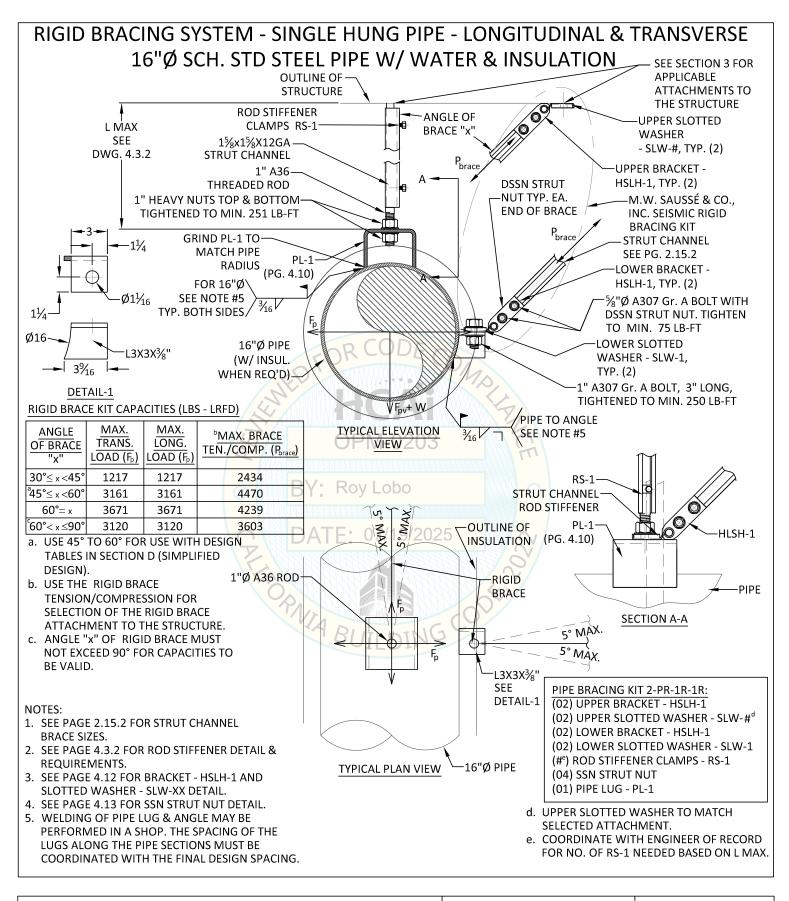


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.2.26

Date:



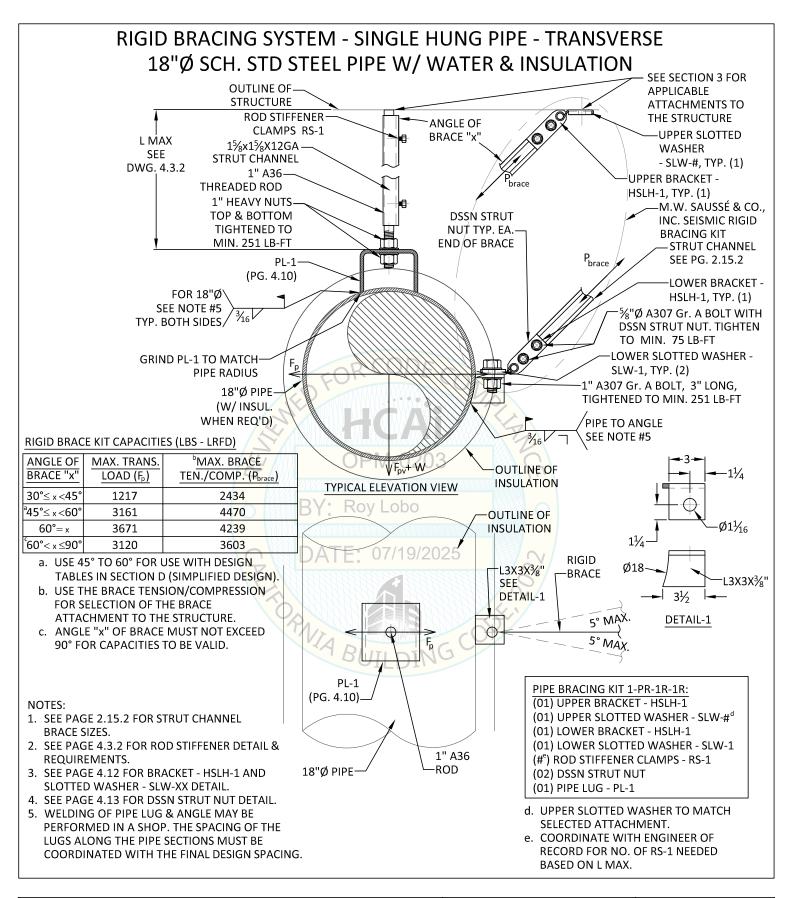
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

2.2.27

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

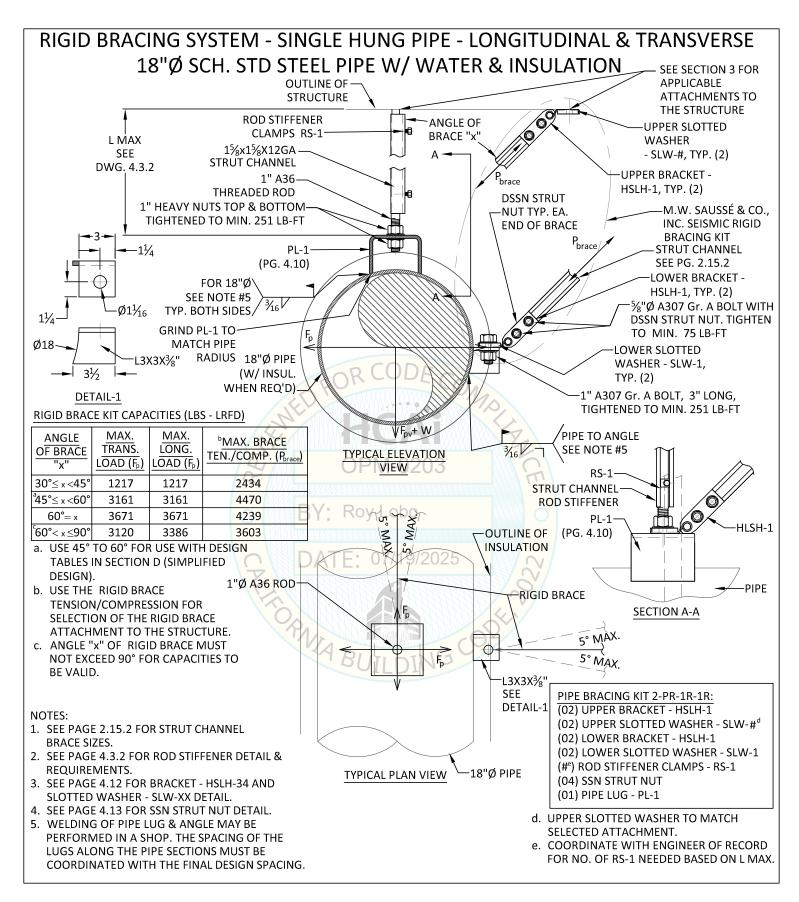

Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

2.2.28

Date:

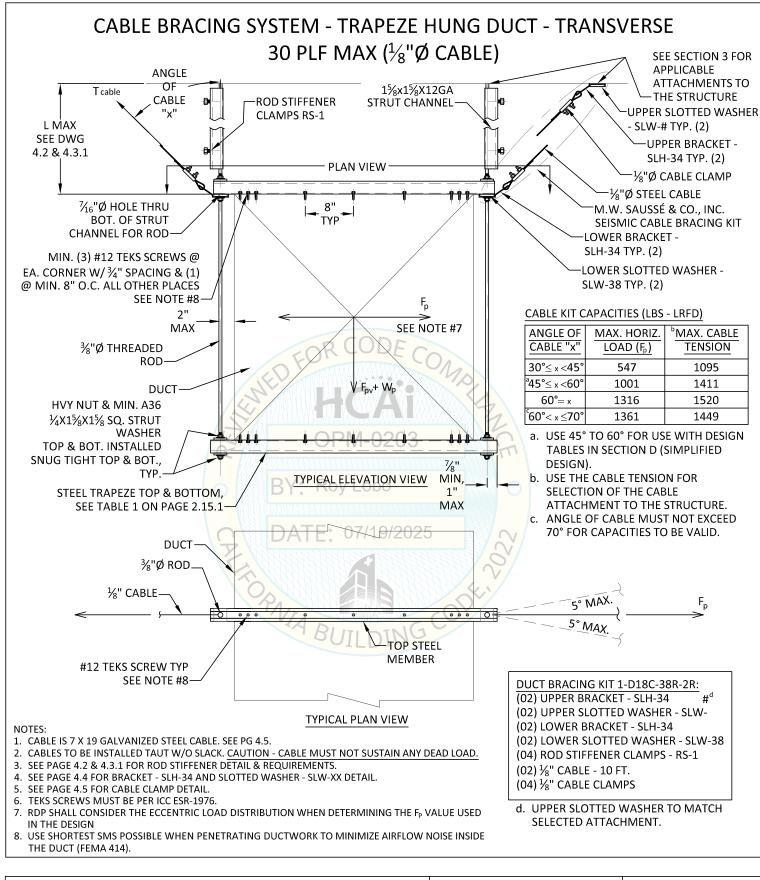

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblay California PE No. S6481

Page No.:

2.2.29

Date:

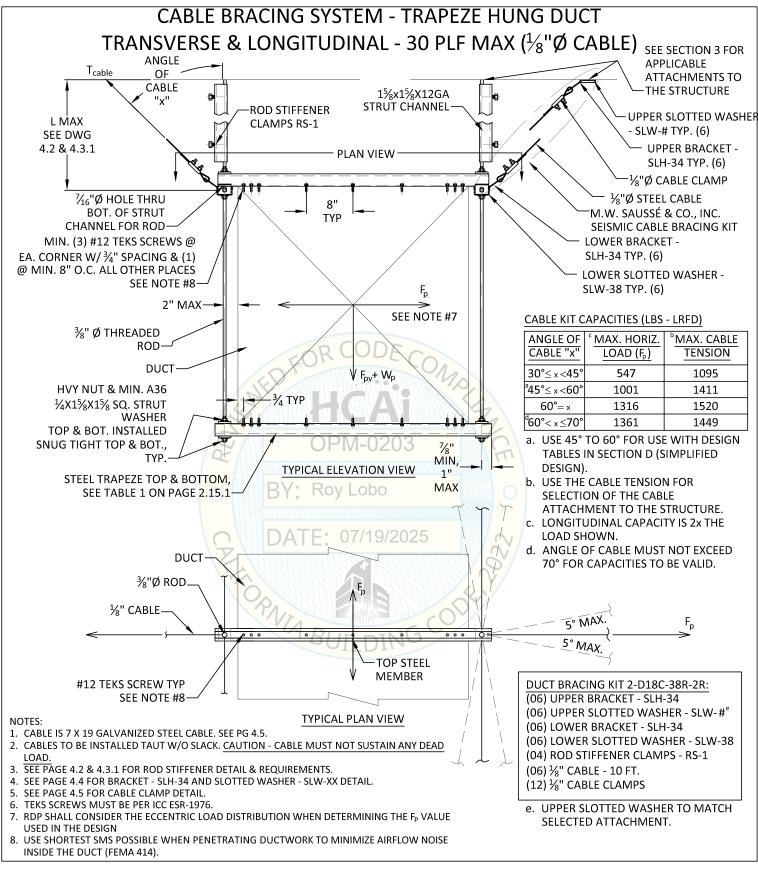


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

2.2.30

Date:

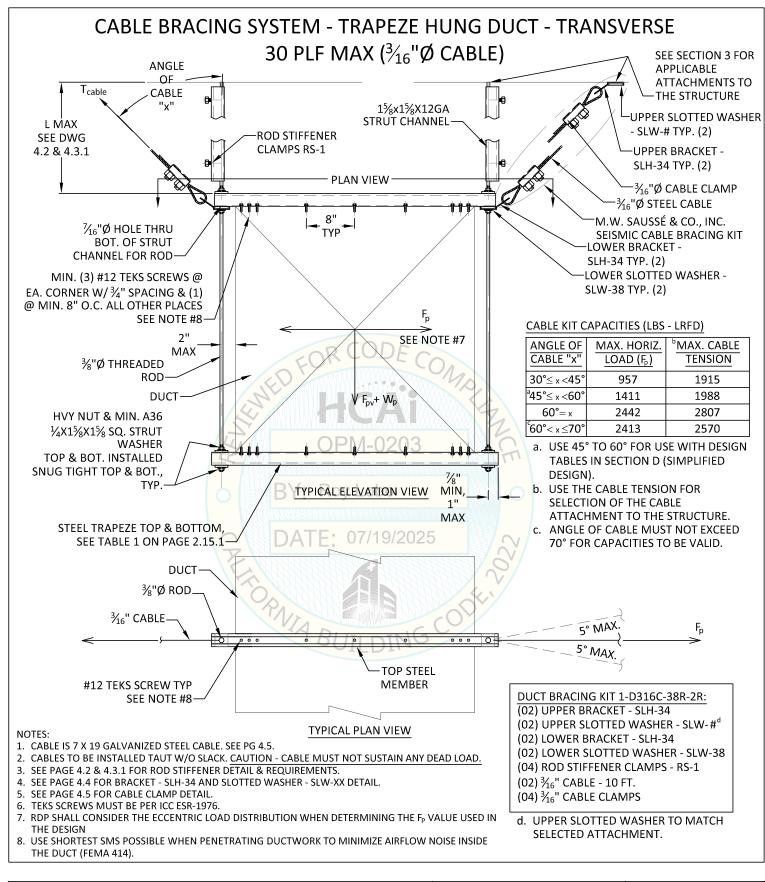


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer. N. Tremblay
California PE No. S6481

Page No.:

2.7.1

Date:



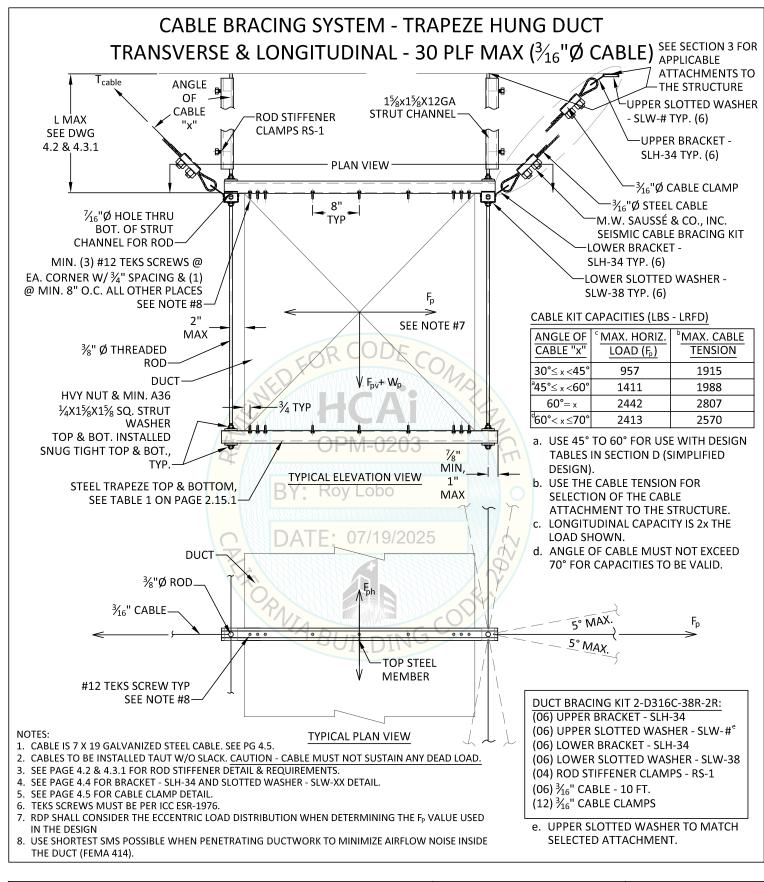
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer. N. Tremblay
California PE No. S6481

Page No.:

2.7.2

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay

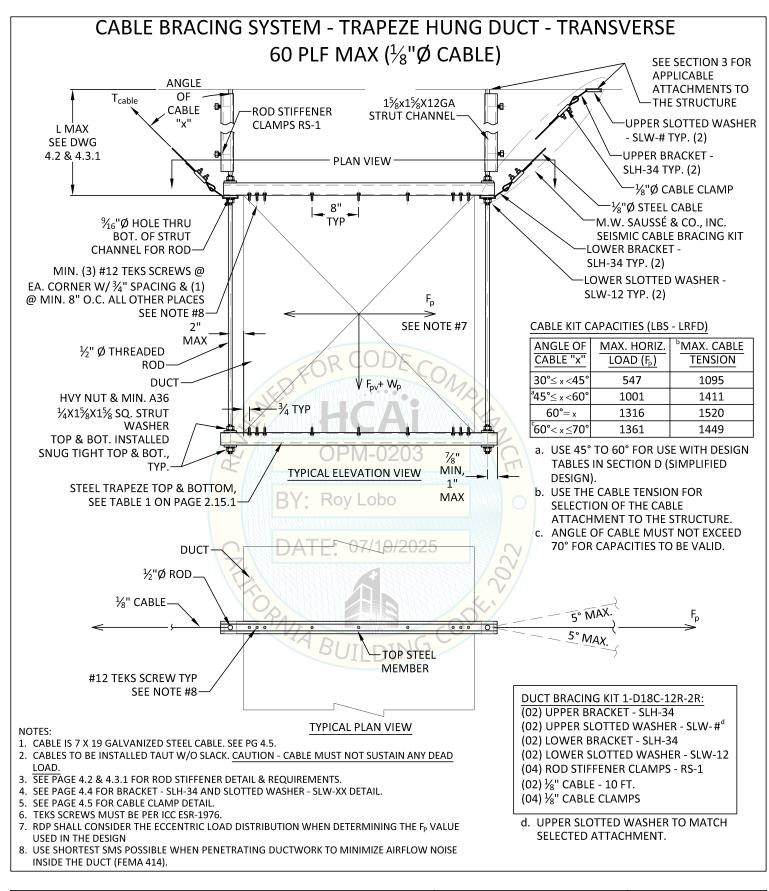
California PE No. S6481

Page No.:

2.7.3

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay

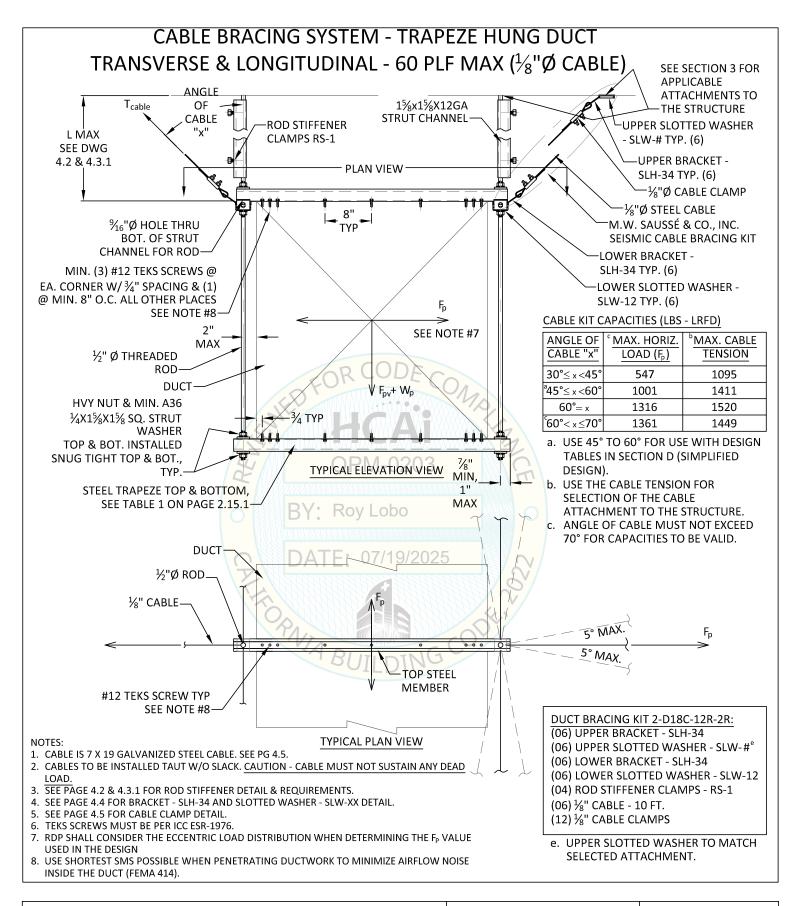
California PE No. S6481

Page No.:

2.7.4

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

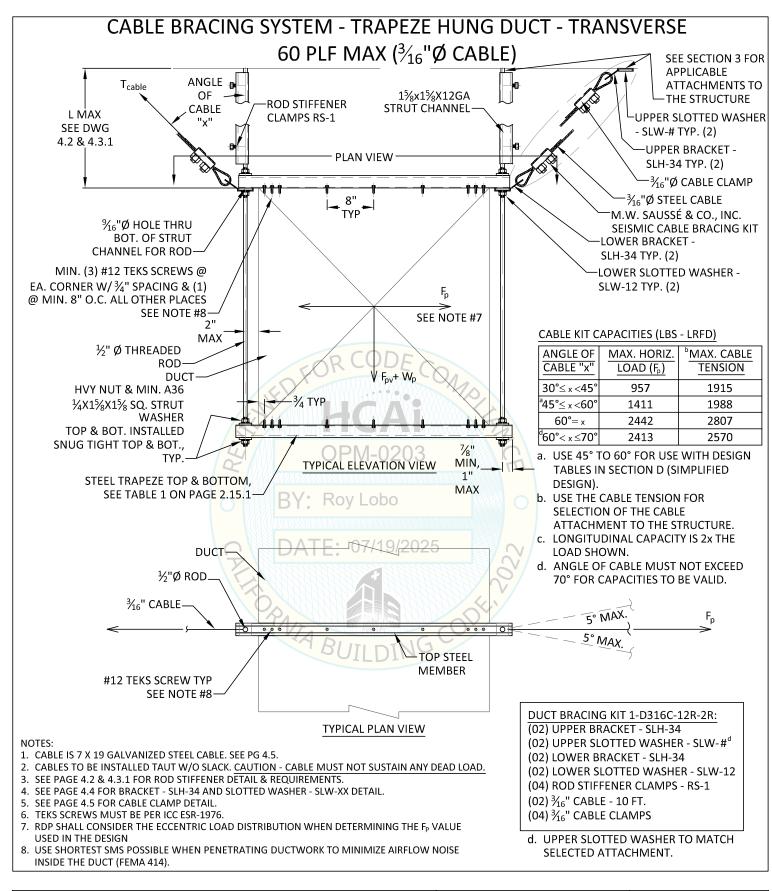

Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

2.7.5

Date:

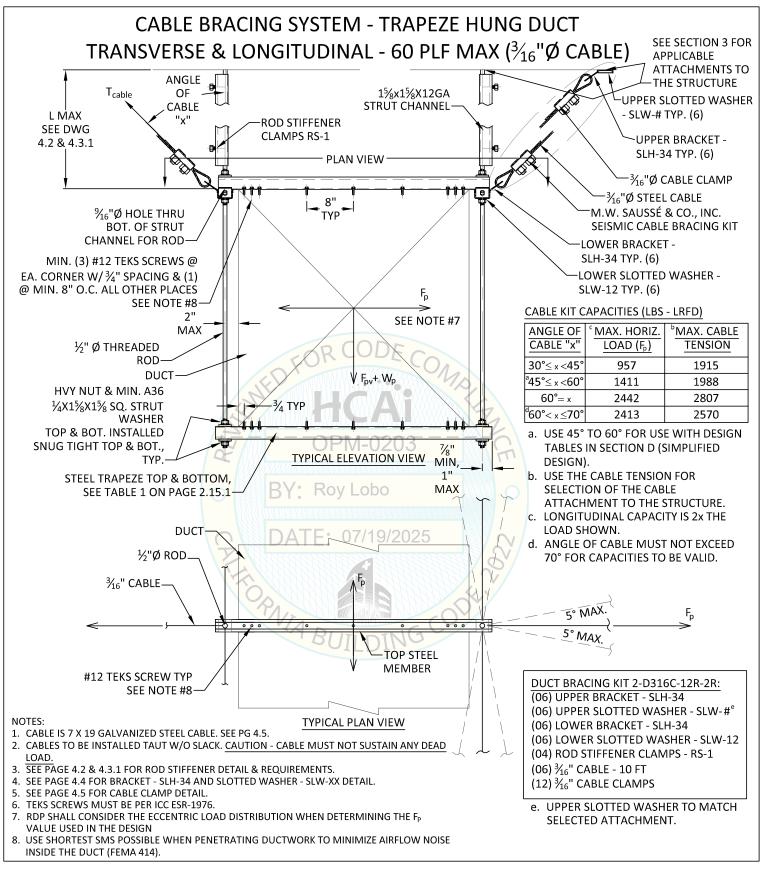

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

133 of 337

2.7.6

Date:



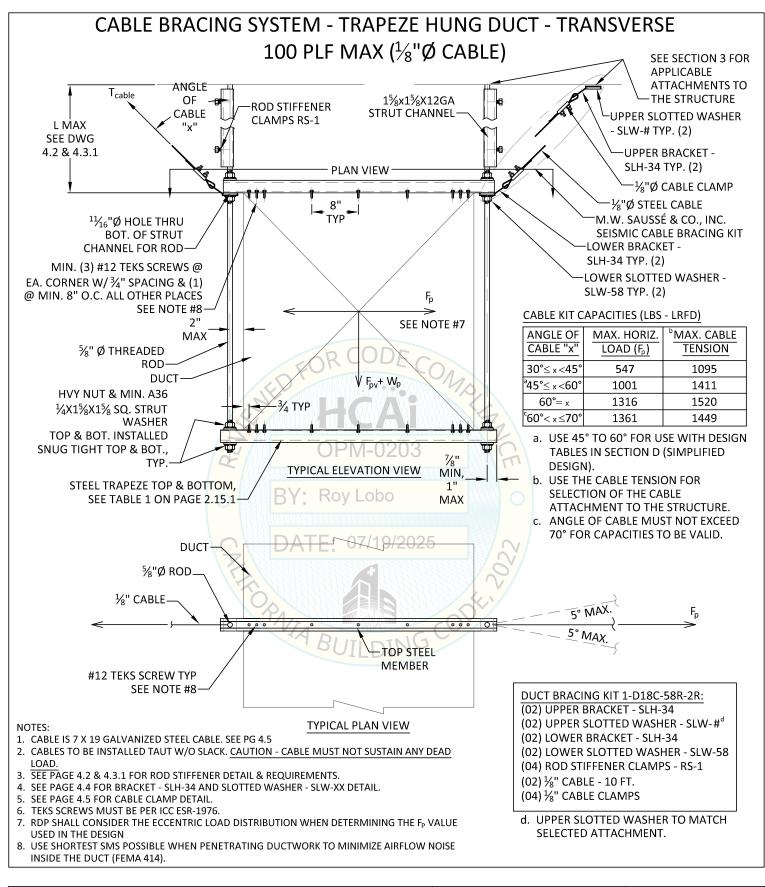
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.7.7

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay

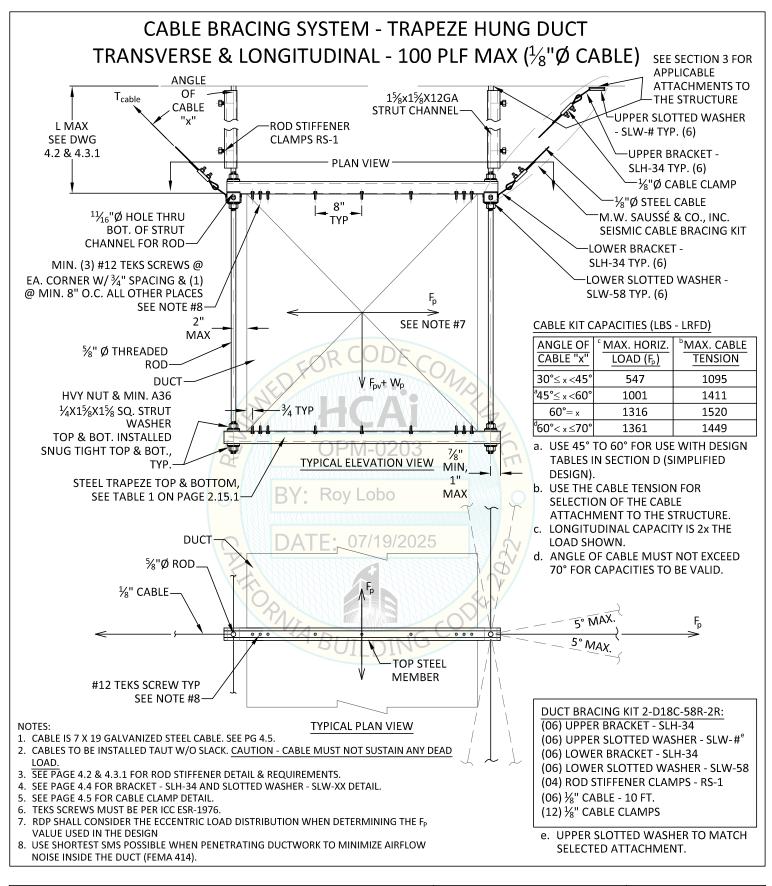
California PE No. S6481

Page No.:

2.7.8

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

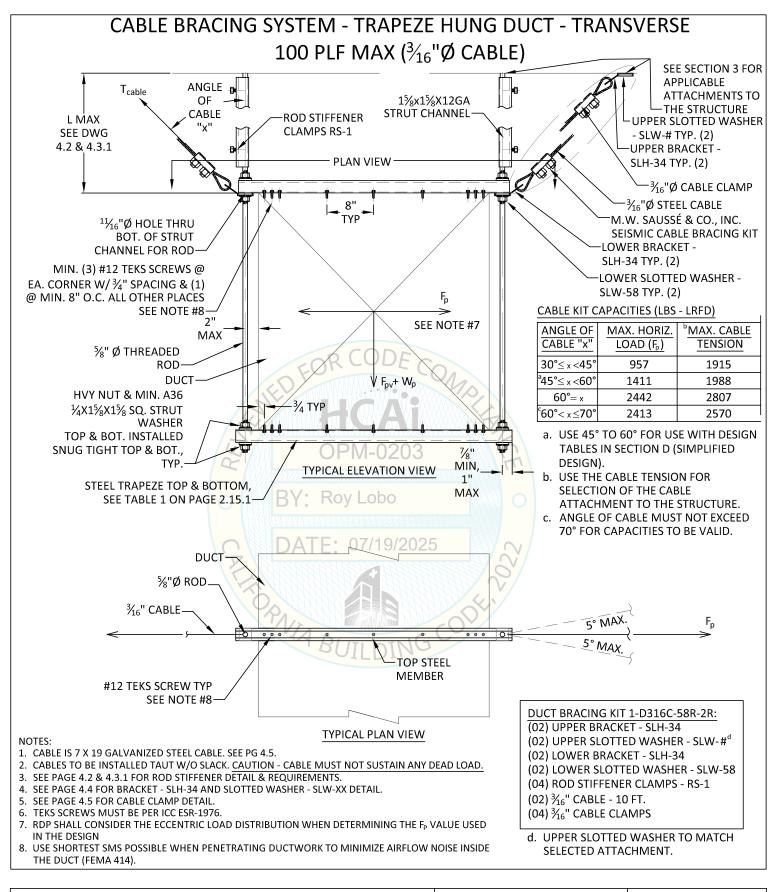

Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

2.7.9

Date:



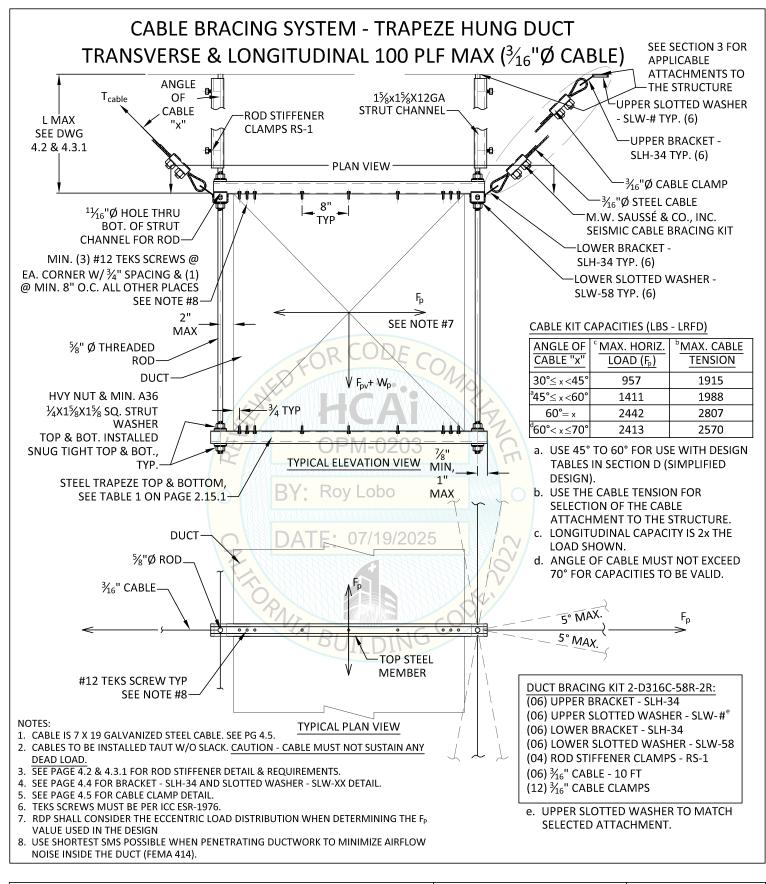
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.7.10

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

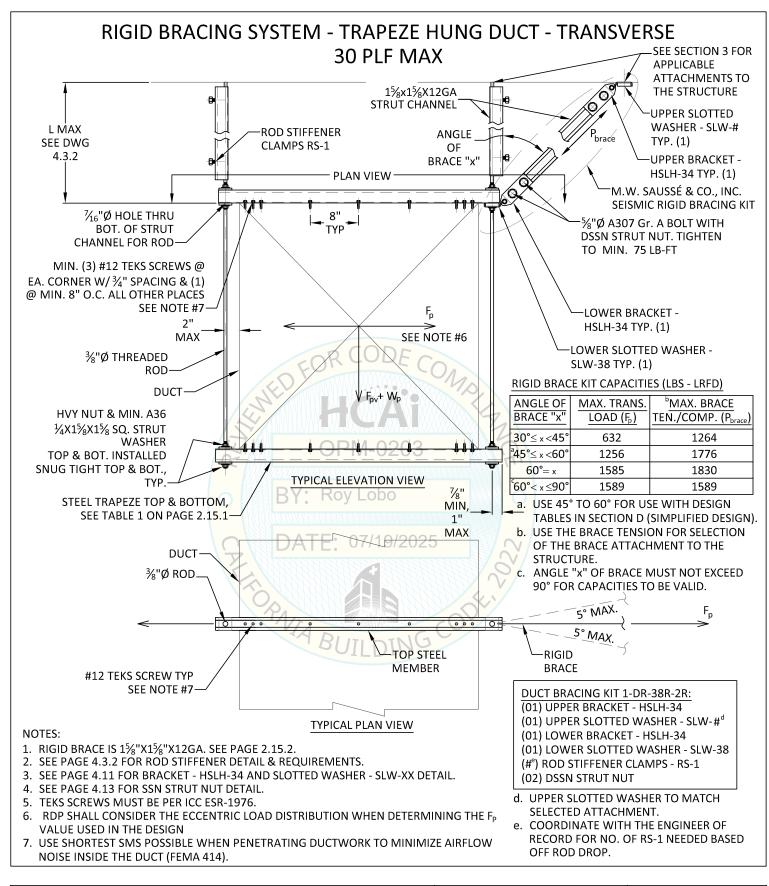

Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

2.7.11

Date:



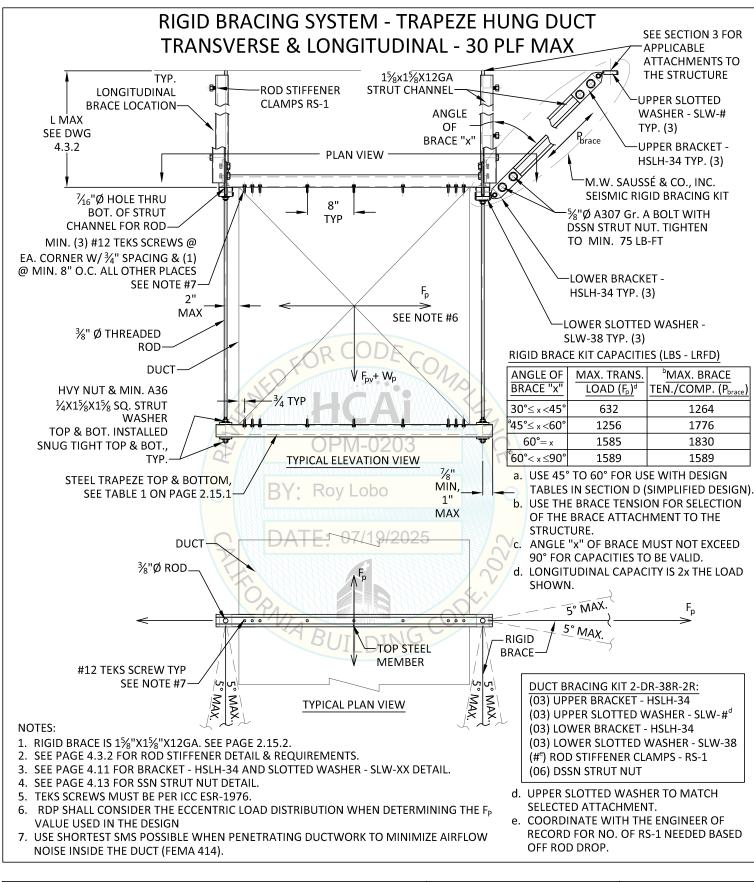
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

2.7.12

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

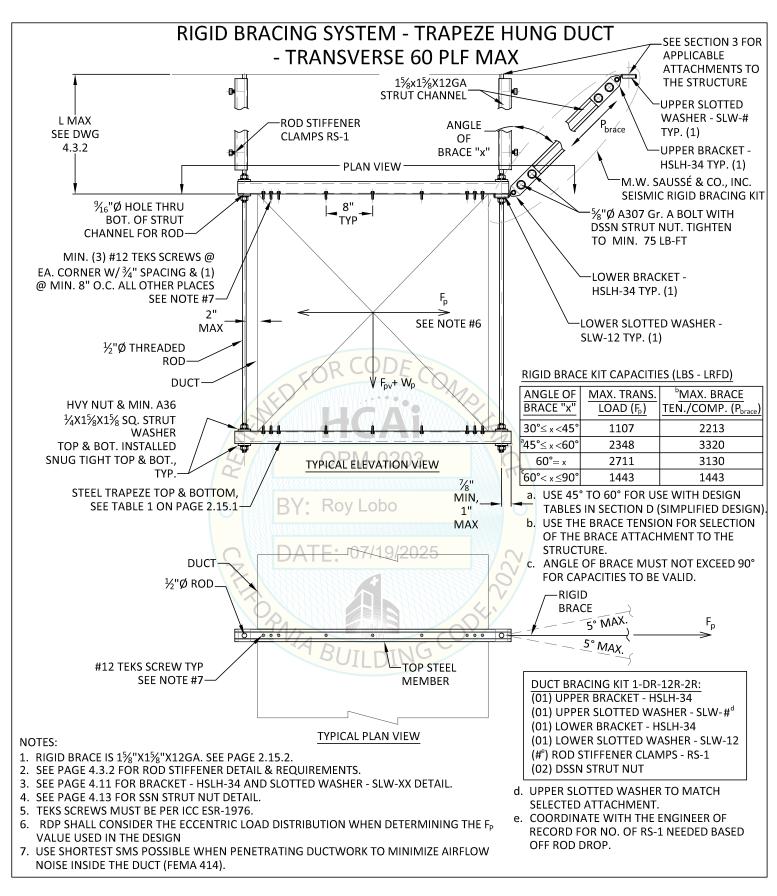

Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

2.8.1

Date:

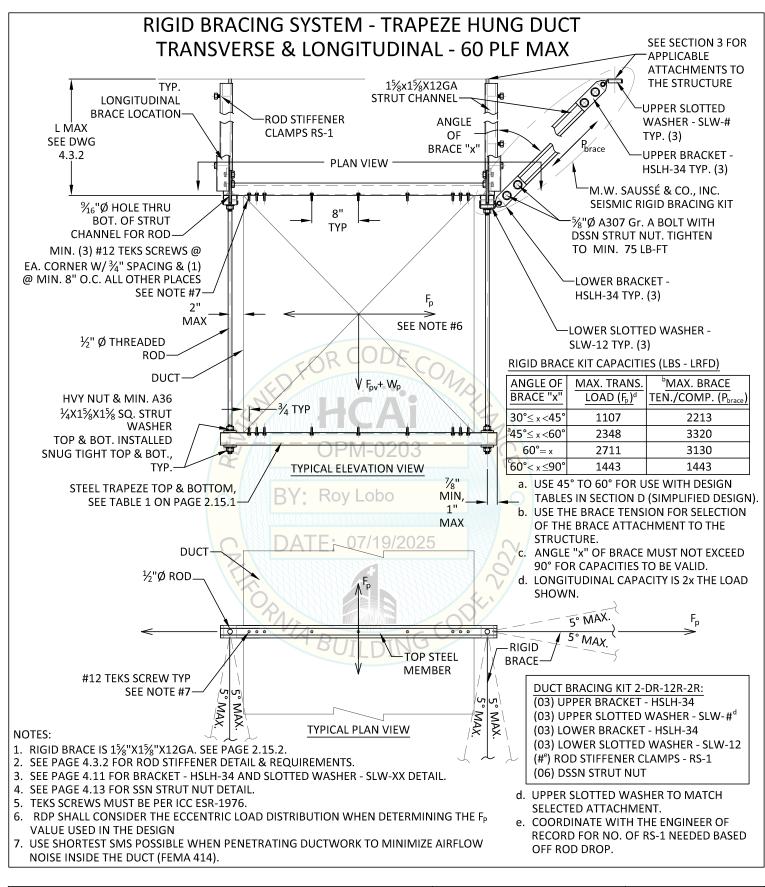


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.8.2

Date:

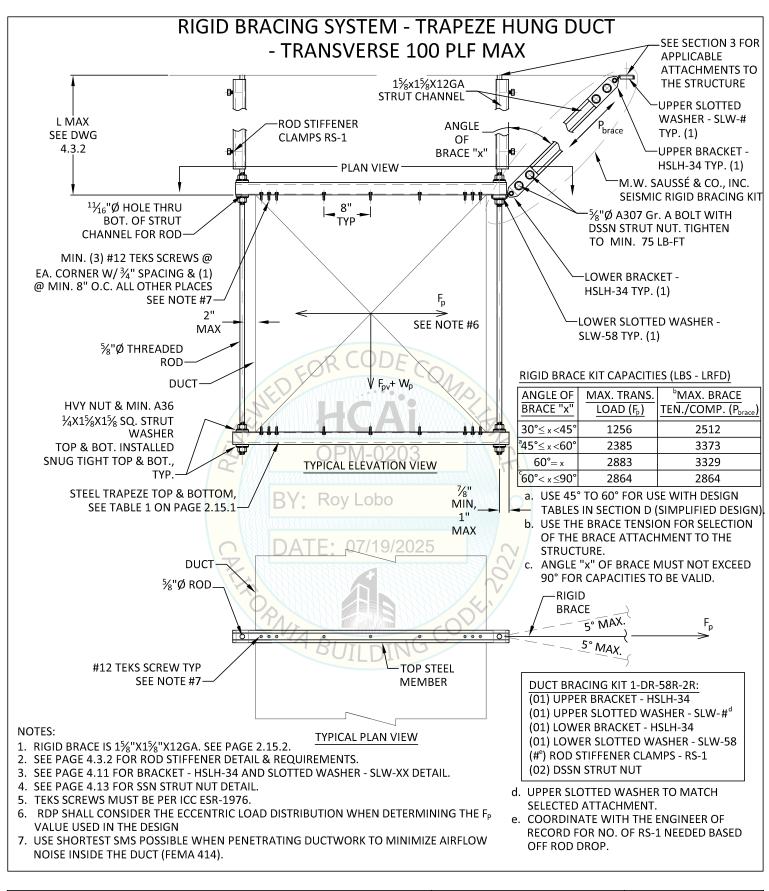


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: Mr Tremblay

tructural Engineer: Mr. Tremblay California PE No. S6481 Page No.:

2.8.3

Date:



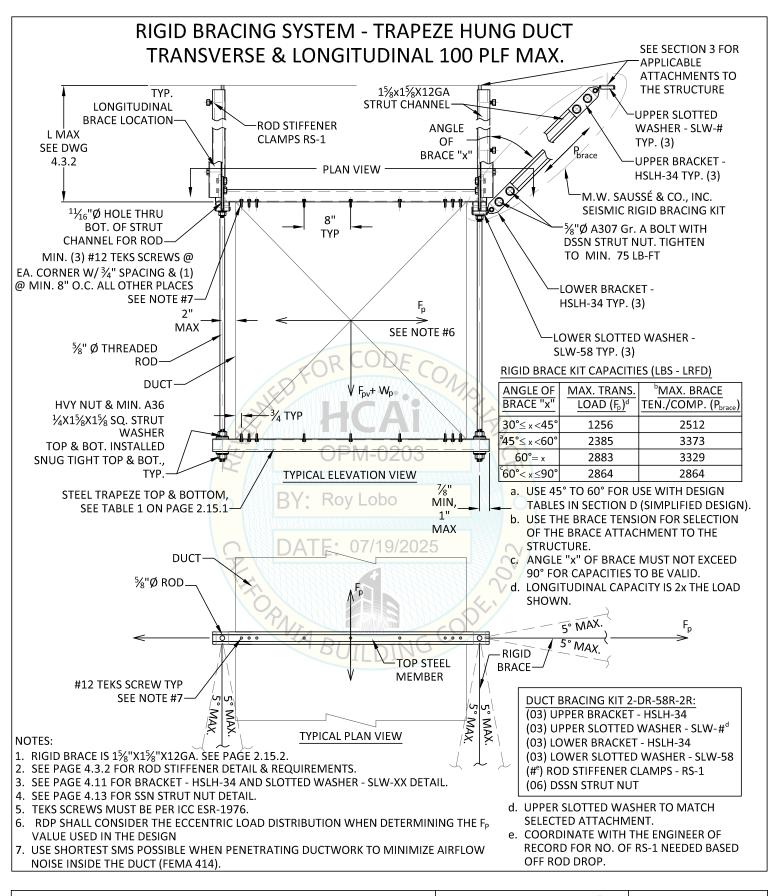
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: At. Tremblay
California PE No. S6481

Page No.:

2.8.4

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

2.8.5

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblay

California PE No. S6481

Page No.:

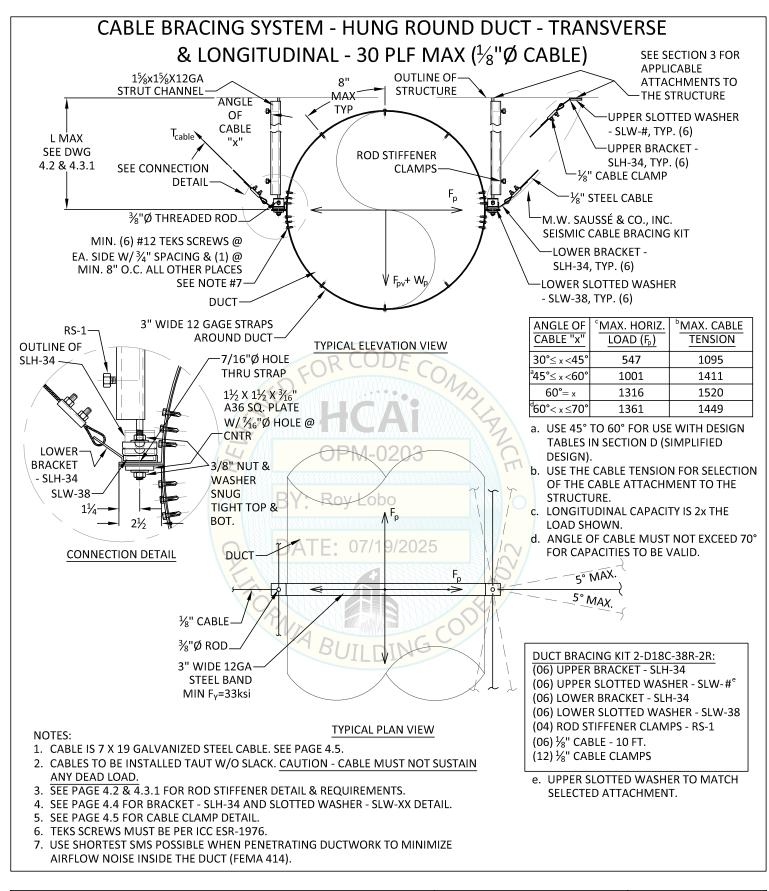
2.8.6

Date:

CABLE BRACING SYSTEM - HUNG ROUND DUCT - TRANSVERSE - 30 PLF MAX $(\frac{1}{8})$ "Ø CABLE) **OUTLINE OF** 1%x1%X12GA **SEE SECTION 3 FOR STRUCTURE** 8" STRUT CHANNEL **APPLICABLE** MAX ATTACHMENTS TO ANGLE TYP THE STRUCTURE OF UPPER SLOTTED WASHER CABLE T_{cable} L MAX - SLW-#, TYP. (2) **ROD STIFFENER** UPPER BRACKET -SEE DWG 4.2 & 4.3.1 **CLAMPS** SEE SLH-34, TYP. (2) CONNECTION 1/8" CABLE CLAMP F_p **DETAIL** ·¼" STEEL CABLE M.W. SAUSSÉ & CO., INC. 3/8"Ø THREADED ROD SEISMIC CABLE BRACING KIT MIN. (6) #12 TEKS SCREWS @ LOWER BRACKET -EA. SIDE W/ $\frac{3}{4}$ " SPACING & (1) @ SLH-34, TYP. (2) MIN. 8" O.C. ALL OTHER PLACES Fpv+ Wp LOWER SLOTTED WASHER SEE NOTE #7 - SLW-38, TYP. (2) DUCT-CABLE KIT CAPACITIES (LBS - LRFD) 3" WIDE 12 GAGE STRAPS RS-1 ANGLE OF MAX. HORIZ. DMAX. CABLE AROUND DUCT TYPICAL ELEVATION VIEW CABLE "x" TENSION LOAD (F_D) $30^{\circ} \le x < 45^{\circ}$ 547 1095 7/16"Ø HOLE °45°≤ x <60° 1001 1411 THRU STRAP 1½ X 1½ X ¾6" $60^{\circ} = x$ 1316 1520 A36 SQ. PLATE ີ 60°< x≤70ʻ 1361 1449 $W/\frac{7}{16}$ MOLE @ a. USE 45° TO 60° FOR USE WITH DESIGN **CNTR LOWER** TABLES IN SECTION D (SIMPLIFIED **BRACKET** 3/8" NUT & DESIGN). - SLH-34 b. USE THE CABLE TENSION FOR SELECTION **WASHER SNUG** SLW-38 OF THE CABLE ATTACHMENT TO THE TIGHT TOP & STRUCTURE. BOT. c. ANGLE OF CABLE MUST NOT EXCEED 70° DUCT FOR CAPACITIES TO BE VALID. CONNECTION DETAIL 3/8"Ø ROD 5° MAX 0 -5° MAX. ½" CABLE 3" WIDE 12GA STEEL BAND MIN. $F_Y = 33ksi$ DUCT BRACING KIT 1-D18C-38R-2R: (02) UPPER BRACKET - SLH-34 (02) UPPER SLOTTED WASHER - SLW-#d (02) LOWER BRACKET - SLH-34 TYPICAL PLAN VIEW (02) LOWER SLOTTED WASHER - SLW-38 NOTES: (04) ROD STIFFENER CLAMPS - RS-1

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. TEKS SCREWS MUST BE PER ICC ESR-1976.
- 7. USE SHORTEST SMS POSSIBLE WHEN PENETRATING DUCTWORK TO MINIMIZE AIRFLOW NOISE INSIDE THE DUCT (FEMA 414).

- $(02)\frac{1}{8}$ " CABLE 10 FT.
- (04) 1/8" CABLE CLAMPS
- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblay California PE No. S6481 Page No.:

2.9.1

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.9.2

Date:

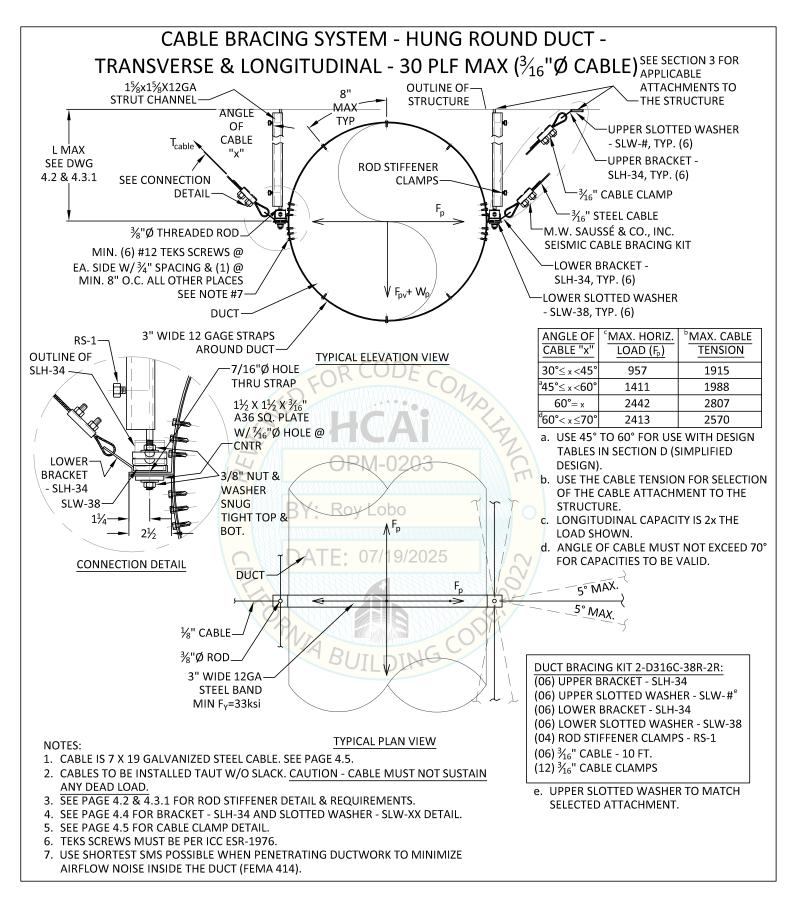
CABLE BRACING SYSTEM - HUNG ROUND DUCT - TRANSVERSE - 30 PLF MAX $(\frac{3}{16})$ (Mark Cable) **OUTLINE OF SEE SECTION 3 FOR** STRUCTURE 8" **APPLICABLE** 1%x1%X12GA STRUT CHANNEL **ATTACHMENTS TO** MAX ANGLE THE STRUCTURE TYP OF **UPPER SLOTTED WASHER CABLE** T_{cable} - SLW-#, TYP. (2) L MAX "x" UPPER BRACKET -ROD STIFFENER SEE DWG 4.2 & 4.3.1 SEE CONNECTIÓN SLH-34, TYP. (2) **CLAMPS** 3/16" CABLE CLAMP **DETAIL** F_p 3/6" STEEL CABLE M.W. SAUSSÉ & CO., INC. ¾"Ø THREADED ROD. SEISMIC CABLE BRACING KIT MIN. (6) #12 TEKS SCREWS @ -LOWER BRACKET -EA. SIDE W/3/4" SPACING & (1) @ SLH-34, TYP. (2) MIN. 8" O.C. ALL OTHER PLACES F_{pv}+ W_p LOWER SLOTTED WASHER SEE NOTE #7 - SLW-38, TYP. (2) DUCT-CABLE KIT CAPACITIES (LBS - LRFD) 3" WIDE 12 GAGE STRAPS RS-1 AROUND DUCT TYPICAL ELEVATION VIEW ANGLE OF MAX. HORIZ. MAX. CABLE CABLE "x" TENSION LOAD (F_D) 7/16"Ø HOLE 30°≤ x <45 957 1915 THRU STRAP ^a45°≤ x <60° 1411 1988 1½ X 1½ X 3/16" $60^{\circ} = x$ 2442 2807 A36 SQ. PLATE 60°< x≤70° 2413 2570 W/ 1/16"Ø HOLE @ a. USE 45° TO 60° FOR USE WITH DESIGN CNTR **LOWER** TABLES IN SECTION D (SIMPLIFIED BRACKET 3/8" NUT & DESIGN). - SLH-34 WASHER SNUG b. USE THE CABLE TENSION FOR SELECTION **SLW-38 TIGHT TOP &** OF THE CABLE ATTACHMENT TO THE BOT. STRUCTURE. **-**2⅓ DUCT c. ANGLE OF CABLE MUST NOT EXCEED 70° FOR CAPACITIES TO BE VALID. 3/16" CABLE CONNECTION DETAIL 5° MAX MAX 3/8"Ø ROD. 3" WIDE 12GA STEEL BAND DUCT BRACING KIT 1-D316C-38R-2R: MIN. $F_Y = 33ksi$ (02) UPPER BRACKET - SLH-34 (02) UPPER SLOTTED WASHER - SLW-#d (02) LOWER BRACKET - SLH-34 TYPICAL PLAN VIEW NOTES: (02) LOWER SLOTTED WASHER - SLW-38 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5. (04) ROD STIFFENER CLAMPS - RS-1 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION - CABLE MUST NOT SUSTAIN $(02)\frac{3}{16}$ " CABLE - 10 FT. ANY DEAD LOAD. (04) 3/6" CABLE CLAMPS SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS. 4. SEE PAGE 4.4 FOR BRACKET - SLH-34 AND SLOTTED WASHER - SLW-XX DETAIL. d. UPPER SLOTTED WASHER TO MATCH 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL. SELECTED ATTACHMENT. 6. TEKS SCREWS MUST BE PER ICC ESR-1976. 7. USE SHORTEST SMS POSSIBLE WHEN PENETRATING DUCTWORK TO MINIMIZE

07/19/2025

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay


Page No.:

2.9.3

Date:

February 5, 2025

AIRFLOW NOISE INSIDE THE DUCT (FEMA 414).

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

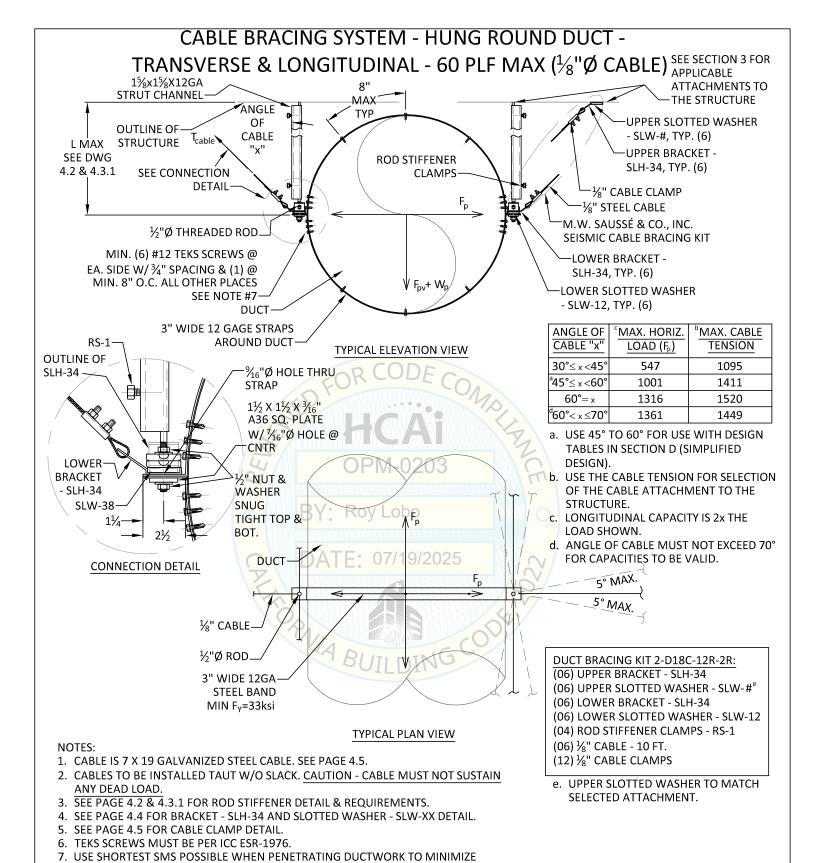
2.9.4

Date:

CABLE BRACING SYSTEM - HUNG ROUND DUCT - TRANSVERSE - 60 PLF MAX $(\frac{1}{8})$ "Ø CABLE) **OUTLINE OF** SEE SECTION 3 FOR STRUCTURE 1%x1%X12GA **APPLICABLE** STRUT CHANNEL MAX ATTACHMENTS TO **ANGLE** TYP THE STRUCTURE OF UPPER SLOTTED WASHER CABLE T_{cable} - SLW-#, TYP. (2) L MAX **ROD STIFFENER** -UPPER BRACKET -SEE DWG 4.2 & 4.3.1 SEE CONNECTION SLH-34, TYP. (2) **CLAMPS DETAIL** ½" CABLE CLAMP F_p 1/8" STEEL CABLE M.W. SAUSSÉ & CO., INC. 1/3"Ø THREADED ROD. SEISMIC CABLE BRACING KIT MIN. (6) #12 TEKS SCREWS @ LOWER BRACKET -EA. SIDE W/3/4" SPACING & (1) @ SLH-34, TYP. (2) MIN. 8" O.C. ALL OTHER PLACES Fpv+ Wp LOWER SLOTTED WASHER SEE NOTE #7 - SLW-12, TYP. (2) DUCT RS-1 3" WIDE 12 GAGE STRAPS CABLE KIT CAPACITIES (LBS - LRFD) AROUND DUCT TYPICAL ELEVATION VIEW ANGLE OF MAX. HORIZ. MAX. CABLE 9/16"Ø HOLE CABLE "x" **TENSION** LOAD (Fp) THRU STRAP $30^{\circ} \le x < 45^{\circ}$ 547 1095 1% X 1% X 3/6" ^a45°≤ x <60° 1001 1411 A36 SQ. PLATE $60^{\circ} = x$ 1316 W/ 16"Ø HOLE @ 1520 CNTR ່ 60°< x≤70° LOWER 1361 1449 BRACKET 1/2" NUT & a. USE 45° TO 60° FOR USE WITH DESIGN SLH-34 **WASHER SNUG** TABLES IN SECTION D (SIMPLIFIED **SLW-12** TIGHT TOP & DESIGN). вот. b. USE THE CABLE TENSION FOR SELECTION OF THE CABLE ATTACHMENT TO THE DUCT-STRUCTURE. ANGLE OF CABLE MUST NOT EXCEED 70° **CONNECTION DETAIL** FOR CAPACITIES TO BE VALID. 1/8" CABLE 5° MAX. 0 5° MAX. ½"Ø ROD. 3" WIDE 12GA STEEL BAND MIN. $F_v = 33ksi$ DUCT BRACING KIT 1-D18C-12R-2R: (02) UPPER BRACKET - SLH-34 (02) UPPER SLOTTED WASHER - SLW-#d (02) LOWER BRACKET - SLH-34 TYPICAL PLAN VIEW (02) LOWER SLOTTED WASHER - SLW-12 NOTES: (04) ROD STIFFENER CLAMPS - RS-1 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5. $(02)\frac{1}{8}$ " CABLE - 10 FT. 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION - CABLE MUST NOT SUSTAIN (04) 1/8" CABLE CLAMPS ANY DEAD LOAD. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.

- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. TEKS SCREWS MUST BE PER ICC ESR-1976.
- 7. USE SHORTEST SMS POSSIBLE WHEN PENETRATING DUCTWORK TO MINIMIZE AIRFLOW NOISE INSIDE THE DUCT (FEMA 414).
- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.9.5

Date:

AIRFLOW NOISE INSIDE THE DUCT (FEMA 414).

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

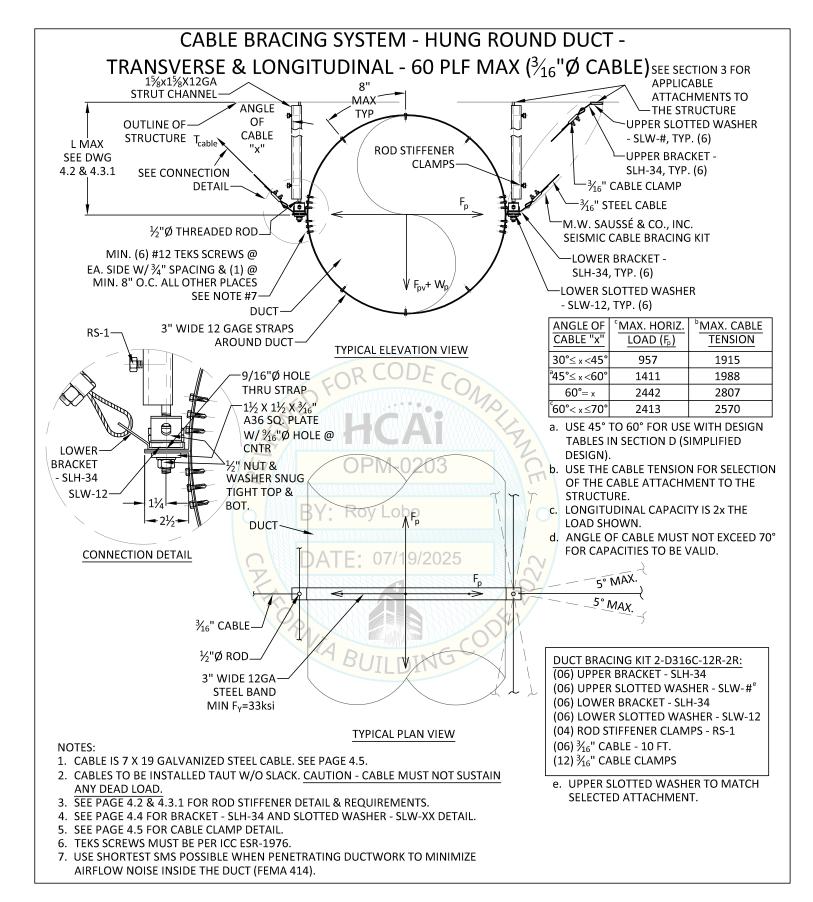
Page No.:

2.9.6

Date:

CABLE BRACING SYSTEM - HUNG ROUND DUCT - TRANSVERSE - 60 PLF MAX (3/16" CABLE) OUTLINE OF SEE SECTION 3 FOR **STRUCTURE** 15/x15/X12GA APPLICABLE STRUT CHANNEL ATTACHMENTS TO MAX THE STRUCTURE **ANGLE** TYP OF UPPER SLOTTED WASHER **CABLE** - SLW-#, TYP. (2) T_{cable}\ L MAX "" UPPER BRACKET -**ROD STIFFENER** SEE DWG 4.2 & 4.3.1 SEE CONNECTIÓN SLH-34, TYP. (2) **CLAMPS DETAIL** 3/16" CABLE CLAMP Fp ³/₆" STEEL CABLE M.W. SAUSSÉ & CO., INC. ½"Ø THREADED ROD SEISMIC CABLE BRACING KIT MIN. (6) #12 TEKS SCREWS @ LOWER BRACKET -EA. SIDE W/3/4" SPACING & (1) @ SLH-34, TYP. (2) MIN. 8" O.C. ALL OTHER PLACES Fpv+ Wp LOWER SLOTTED WASHER SEE NOTE #7 - SLW-12, TYP. (2) DUCT-CABLE KIT CAPACITIES (LBS - LRFD) 3" WIDE 12 GAGE STRAPS TYPICAL ELEVATION VIEW RS-1 AROUND DUCT ANGLE OF MAX. HORIZ. MAX. CABLE CABLE "x" TENSION LOAD (F_b) 9/16"Ø HOLE 30°≤ x <45° 957 1915 THRU STRAP ³45°≤ x <60° 1988 1411 1½ X 1½ X 3/16" $60^{\circ} = x$ 2442 2807 A36 SQ. PLATE ໍ60°< x < 70° 2413 2570 $W/\frac{\%}{6}$ "Ø HOLE @ a. USE 45° TO 60° FOR USE WITH DESIGN CNTR **LOWER** TABLES IN SECTION D (SIMPLIFIED /2" NUT & **BRACKET** DESIGN). - SLH-34 **WASHER SNUG** b. USE THE CABLE TENSION FOR SELECTION TIGHT TOP & **SLW-12** OF THE CABLE ATTACHMENT TO THE вот. STRUCTURE. c. ANGLE OF CABLE MUST NOT EXCEED 70° FOR CAPACITIES TO BE VALID. DUCT **CONNECTION DETAIL** 5° MAX. 0 5° MAX. 3/16" CABLE ½"Ø ROD 3" WIDE 12GA DUCT BRACING KIT 1-D316C-12R-2R: STEEL BAND (02) UPPER BRACKET - SLH-34 MIN. $F_y = 33ksi$ (02) UPPER SLOTTED WASHER - SLW-#d (02) LOWER BRACKET - SLH-34 TYPICAL PLAN VIEW (02) LOWER SLOTTED WASHER - SLW-12 NOTES: (04) ROD STIFFENER CLAMPS - RS-1 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5. $(02)\frac{3}{6}$ " CABLE - 10 FT. 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION - CABLE MUST NOT SUSTAIN

- ANY DEAD LOAD.
- SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.
- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. TEKS SCREWS MUST BE PER ICC ESR-1976.
- 7. USE SHORTEST SMS POSSIBLE WHEN PENETRATING DUCTWORK TO MINIMIZE AIRFLOW NOISE INSIDE THE DUCT (FEMA 414).
- $(04)\frac{3}{16}$ " CABLE CLAMPS
- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

2.9.7

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

2.9.8

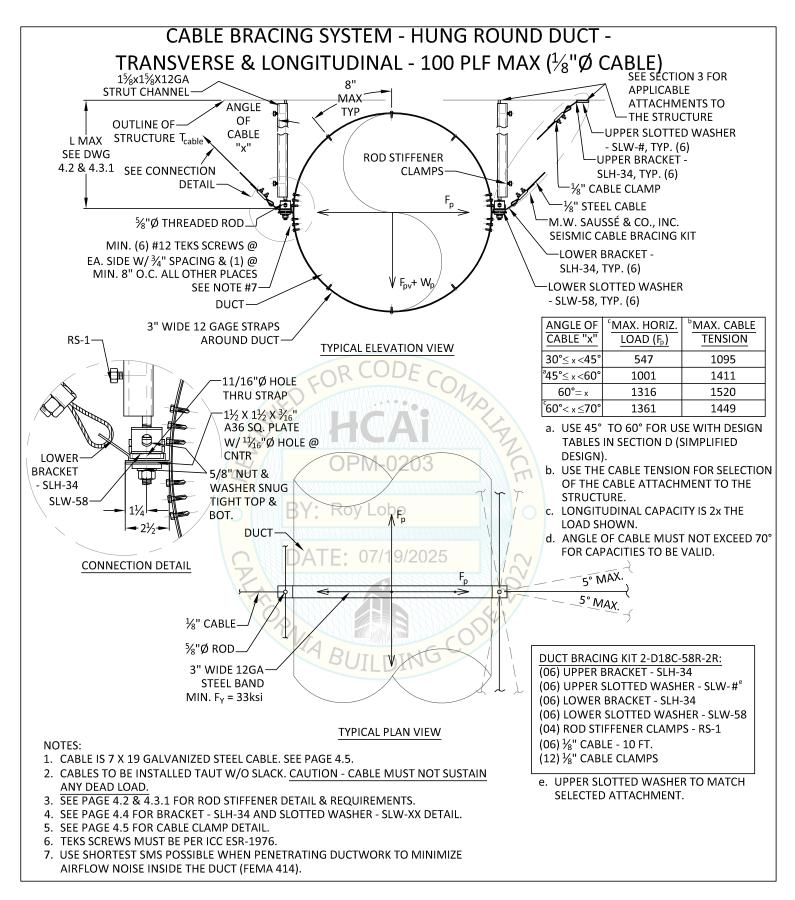
Date:

CABLE BRACING SYSTEM - HUNG ROUND DUCT - TRANSVERSE - 100 PLF MAX **OUTLINE OF** $(\frac{1}{8}"Ø CABLE)$ **SEE SECTION 3 FOR** STRUCTURE 15/x15/X12GA **APPLICABLE** STRUT CHANNEL ATTACHMENTS TO MAX ANGLE THE STRUCTURE TYP OF **UPPER SLOTTED WASHER** CABLE - SLW-#, TYP. (2) T_{cable} L MAX UPPER BRACKET -**ROD STIFFENER** SEE DWG 4.2 & 4.3.1 SEE CONNECTIÓN SLH-34, TYP. (2) **CLAMPS** 1/8" CABLE CLAMP **DETAIL** F_{p} 1/8" STEEL CABLE M.W. SAUSSÉ & CO., INC. %"Ø THREADED ROD SEISMIC CABLE BRACING KIT MIN. (6) #12 TEKS SCREWS @ LOWER BRACKET -EA. SIDE W/ $\frac{3}{4}$ " SPACING & (1) @ SLH-34, TYP. (2) MIN. 8" O.C. ALL OTHER PLACES Fpv+ Wp **-LOWER SLOTTED WASHER** SEE NOTE #7-- SLW-58, TYP. (2) **DUCT** CABLE KIT CAPACITIES (LBS - LRFD) 3" WIDE 12 GAGE STRAPS RS-1 MAX. CABLE ANGLE OF MAX. HORIZ. AROUND DUCT TYPICAL ELEVATION VIEW CABLE "x" TENSION LOAD (F_D) 11/16"Ø HOLE 30°≤ x <45° 547 1095 THRU STRAP ^a45°≤ x <60° 1001 1411 1½ X 1½ X ¾6 60°= x 1520 1316 A36 SQ. PLATE ່ 60°< x≤70° 1361 1449 W/11/16"Ø HOLE @ a. USE 45° TO 60° FOR USE WITH DESIGN CNTR LOWER TABLES IN SECTION D (SIMPLIFIED BRACKET 5/8" NUT & DESIGN). - SLH-34 WASHER SNUG b. USE THE CABLE TENSION FOR SELECTION SLW-58 TIGHT TOP & OF THE CABLE ATTACHMENT TO THE BOT. STRUCTURE. DUCT c. ANGLE OF CABLE MUST NOT EXCEED 70° FOR CAPACITIES TO BE VALID. **CONNECTION DETAIL** 1/8" CABLE 5° MAX 0 5° MAX. %"Ø ROD 3" WIDE 12GA DUCT BRACING KIT 1-D18C-58R-2R: STEEL BAND (02) UPPER BRACKET - SLH-34 MIN. $F_y = 33ksi$ (02) UPPER SLOTTED WASHER - SLW-#d (02) LOWER BRACKET - SLH-34 TYPICAL PLAN VIEW (02) LOWER SLOTTED WASHER - SLW-58 NOTES: (04) ROD STIFFENER CLAMPS - RS-1 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5. $(02)\frac{1}{8}$ " CABLE - 10 FT. 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION - CABLE MUST NOT SUSTAIN (04) 1/8" CABLE CLAMPS ANY DEAD LOAD. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS. d. UPPER SLOTTED WASHER TO MATCH 4. SEE PAGE 4.4 FOR BRACKET - SLH-34 AND SLOTTED WASHER - SLW-XX DETAIL. SELECTED ATTACHMENT. 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL. 6. TEKS SCREWS MUST BE PER ICC ESR-1976. 7. USE SHORTEST SMS POSSIBLE WHEN PENETRATING DUCTWORK TO MINIMIZE

AIRFLOW NOISE INSIDE THE DUCT (FEMA 414).

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

2.9.9

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

2.9.10

Date:

CABLE BRACING SYSTEM - HUNG ROUND DUCT - TRANSVERSE - 100 PLF MAX $(\frac{3}{16}"Ø CABLE)$ **OUTLINE OF** STRUCTURE **SEE SECTION 3 FOR** 1%x1%X12GA APPLICABLE STRUT CHANNEL MAX ATTACHMENTS TO **ANGLE** TYP THE STRUCTURE T_{cable} OF **UPPER SLOTTED WASHER -**CABLE L MAX SLW-#, TYP. (2) SEE DWG **ROD STIFFENER** UPPER BRACKET -4.2 & 4.3.1 **CLAMPS** SEE CONNECTIÓN SLH-34, TYP. (2) **DETAIL** 3/16" CABLE CLAMP F_{p} 3/16" STEEL CABLE 5/8"Ø THREADED ROD. M.W. SAUSSÉ & CO., INC. SEISMIC CABLE BRACING KIT MIN. (6) #12 TEKS SCREWS @ EA. SIDE W/ 3/4" SPACING & (1) @ LOWER BRACKET -MIN. 8" O.C. ALL OTHER PLACES SLH-34, TYP. (2) **SEE NOTE #7** Fpv+ Wp LOWER SLOTTED WASHER - SLW-58, TYP. (2) **DUCT** 3" WIDE 12 GAGE STRAPS CABLE KIT CAPACITIES (LBS - LRFD) TYPICAL ELEVATION VIEW AROUND DUCT RS-1 ANGLE OF MAX. HORIZ. MAX. CABLE CABLE "x" LOAD (F_D) TENSION 957 30°≤ x <45° 1915 11/16"Ø HOLE 45°≤ x <60° 1411 1988 THRU STRAP 60°= x 2442 2807 1½ X 1½ X ¾6" ¹60°< x≤70° 2413 A36 SQ. PLATE 2570 W/ 11/16" Ø HOLE @ a. USE 45° TO 60° FOR USE WITH DESIGN CNTR LOWER TABLES IN SECTION D (SIMPLIFIED BRACKET 5/8" NUT & DESIGN). - SLH-34 b. USE THE CABLE TENSION FOR SELECTION WASHER SNUG OF THE CABLE ATTACHMENT TO THE SLW-58-TIGHT TOP & STRUCTURE. BOT. **-** 2½ ANGLE OF CABLE MUST NOT EXCEED 70° FOR CAPACITIES TO BE VALID. **CONNECTION DETAIL** DUCT 5° MAX 0 5° MAX. 3/16" CABLE %"Ø ROD

(02) UPPER BRACKET - SLH-34

- (02) UPPER SLOTTED WASHER SLW-#d

DUCT BRACING KIT 1-D316C-58R-2R:

- (02) LOWER BRACKET SLH-34
- (02) LOWER SLOTTED WASHER SLW-58
- (04) ROD STIFFENER CLAMPS RS-1
- $(02)\frac{3}{6}$ " CABLE 10 FT.
- $(04)\frac{3}{16}$ " CABLE CLAMPS
- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.

NOTES:

- 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PAGE 4.5.
- 2. CABLES TO BE INSTALLED TAUT W/O SLACK. CAUTION CABLE MUST NOT SUSTAIN ANY DEAD LOAD.
- SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS.

3" WIDE 12GA

MIN. $F_y = 33ksi$

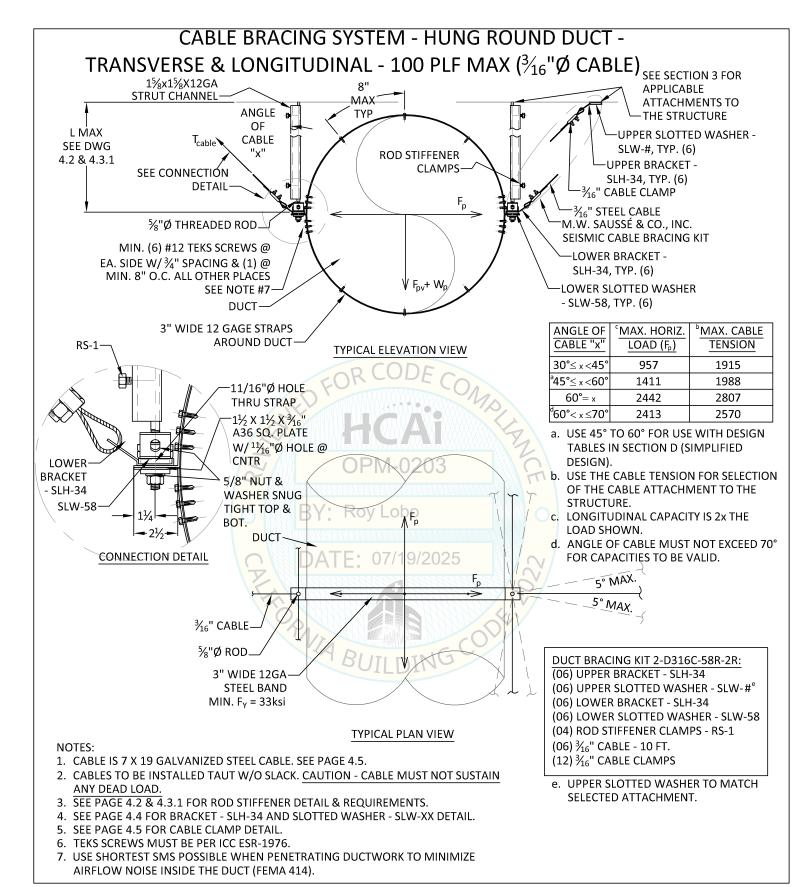
STEEL BAND

- 4. SEE PAGE 4.4 FOR BRACKET SLH-34 AND SLOTTED WASHER SLW-XX DETAIL.
- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. TEKS SCREWS MUST BE PER ICC ESR-1976.
- 7. USE SHORTEST SMS POSSIBLE WHEN PENETRATING DUCTWORK TO MINIMIZE AIRFLOW NOISE INSIDE THE DUCT (FEMA 414).

vibration & seismic control systems

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

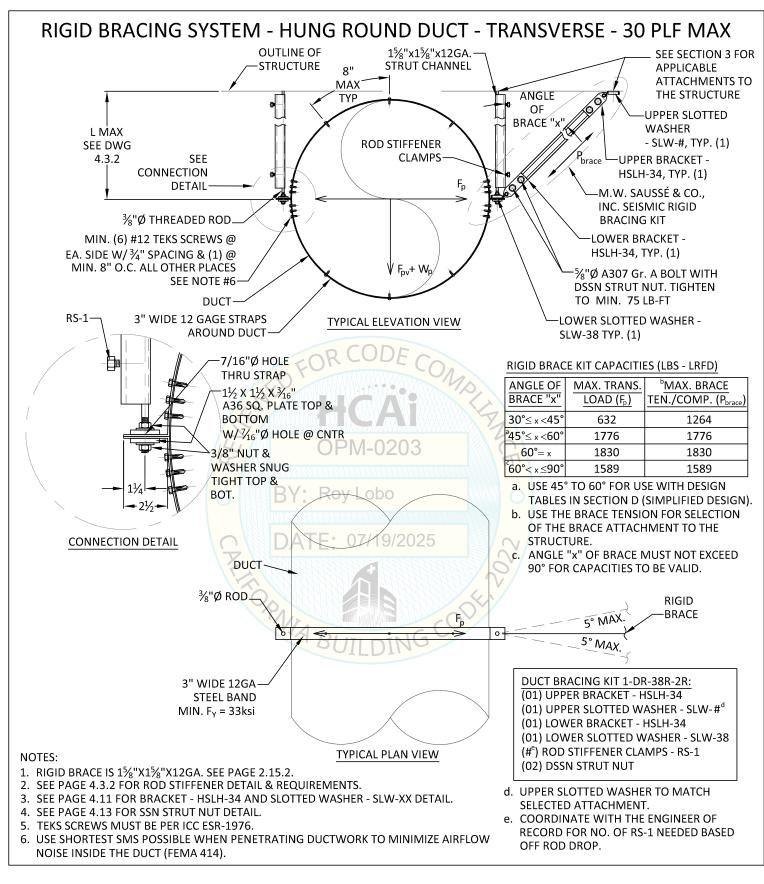
2.9.11

Date:

February 5, 2025

TYPICAL PLAN VIEW

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay

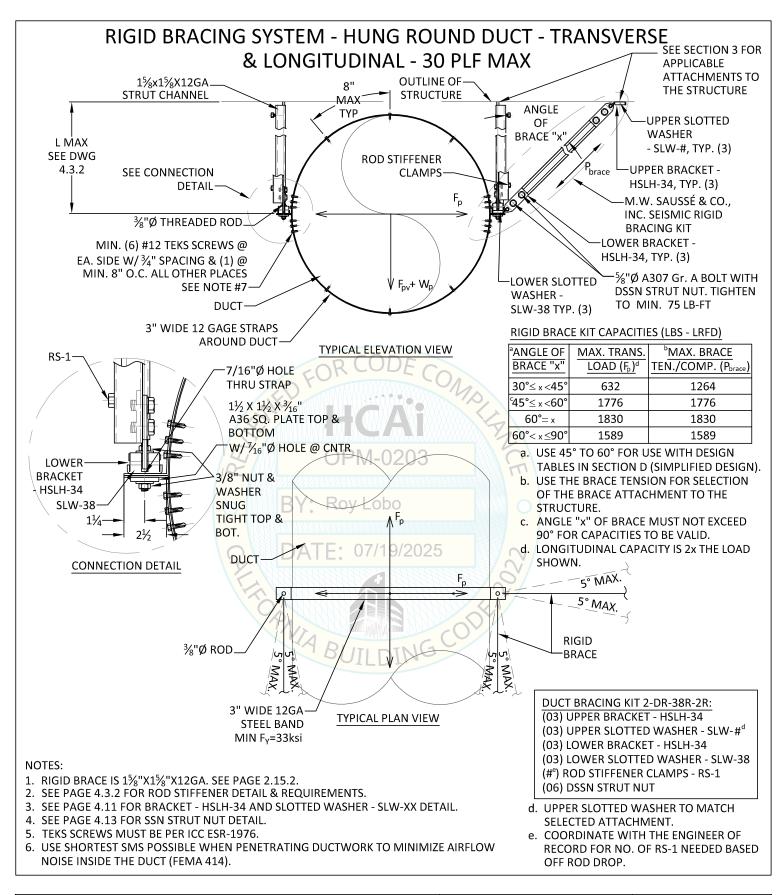
California PE No. S6481

Page No.:

2.9.12

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

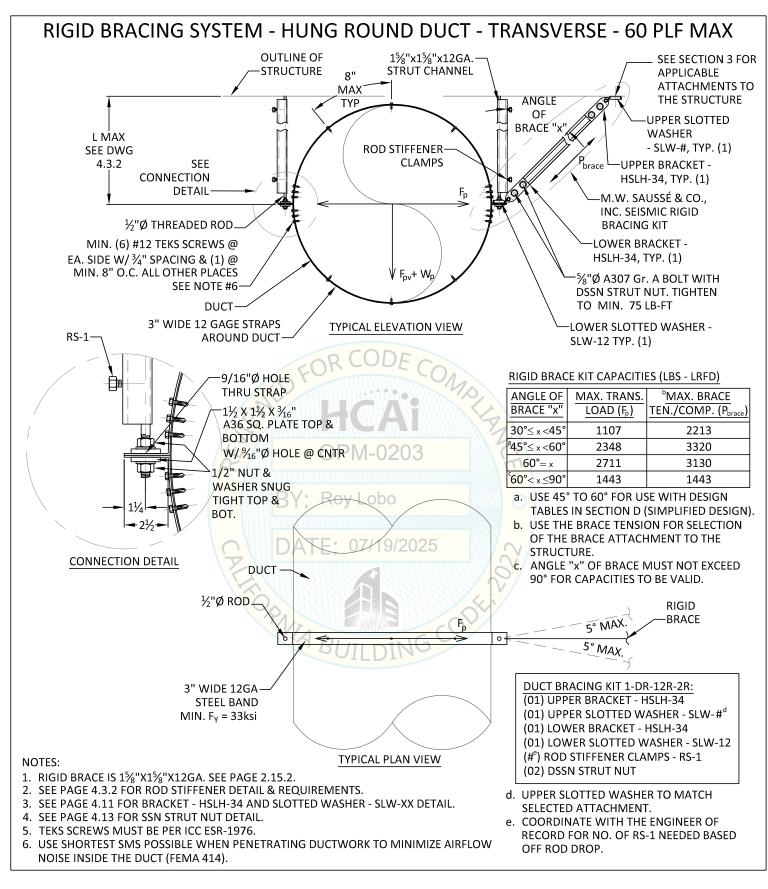

Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

2.10.1

Date:



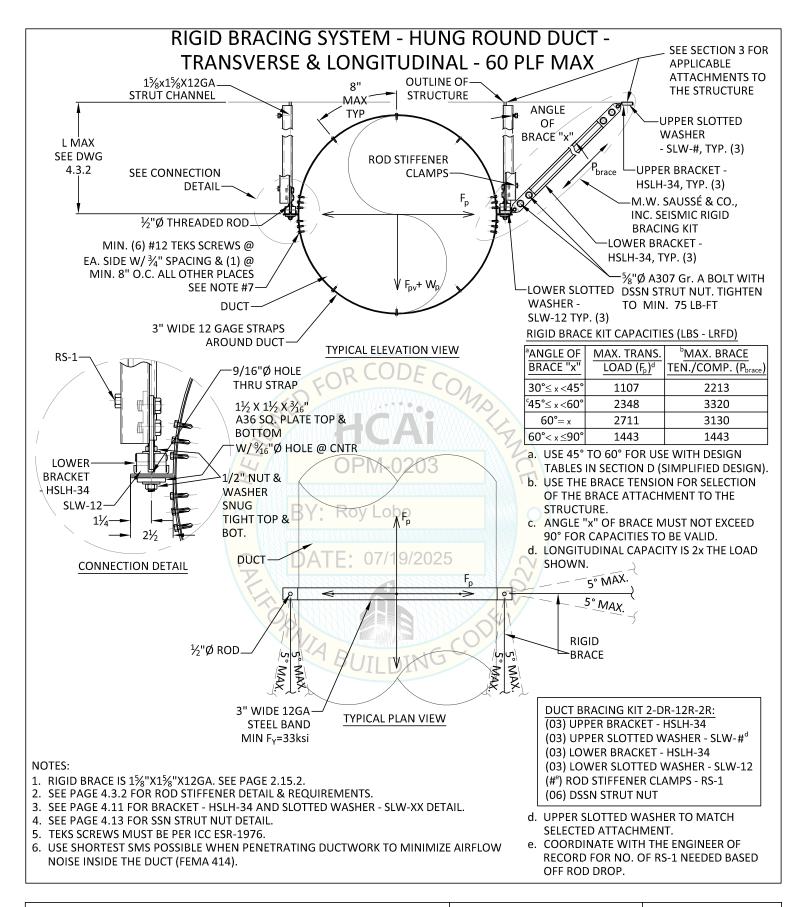
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.10.2

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay

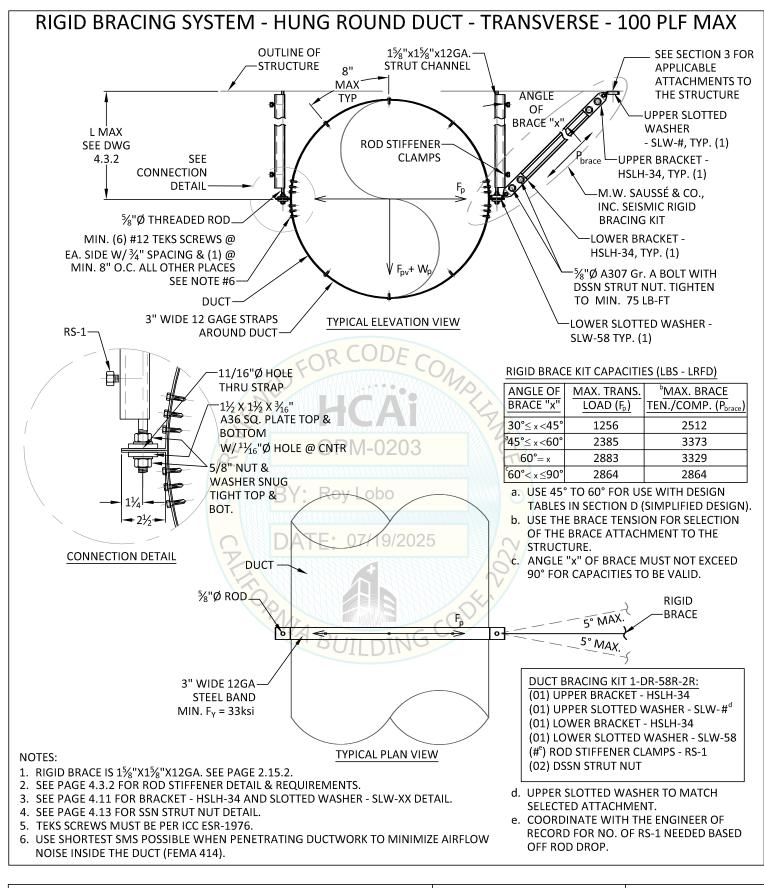
California PE No. S6481

Page No.:

2.10.3

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay

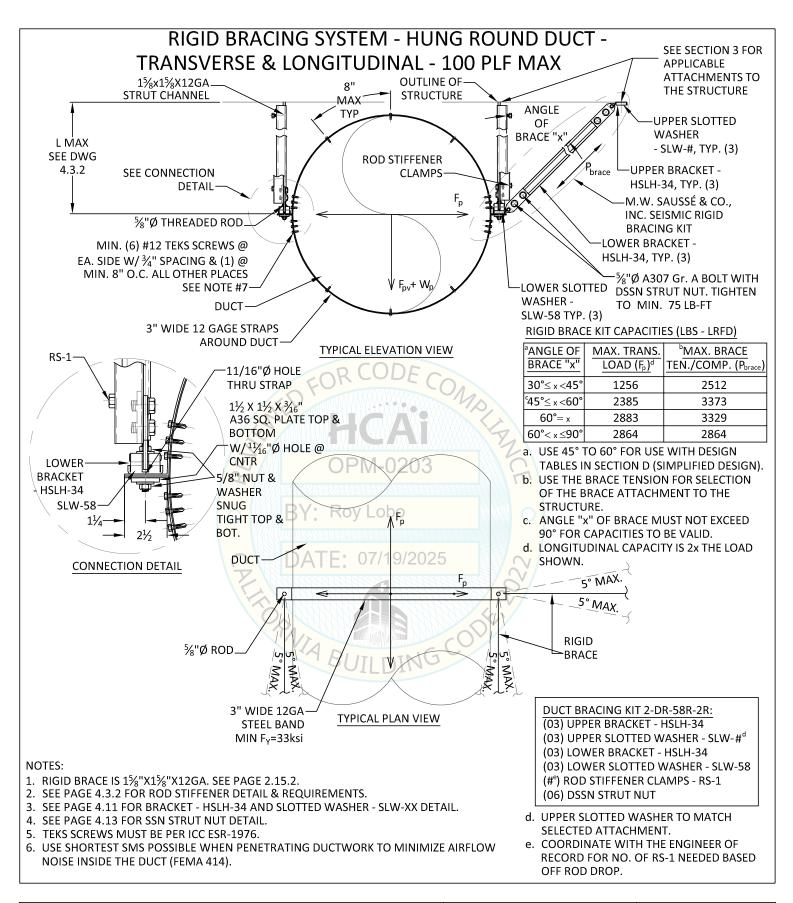
California PE No. S6481

Page No.:

2.10.4

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay

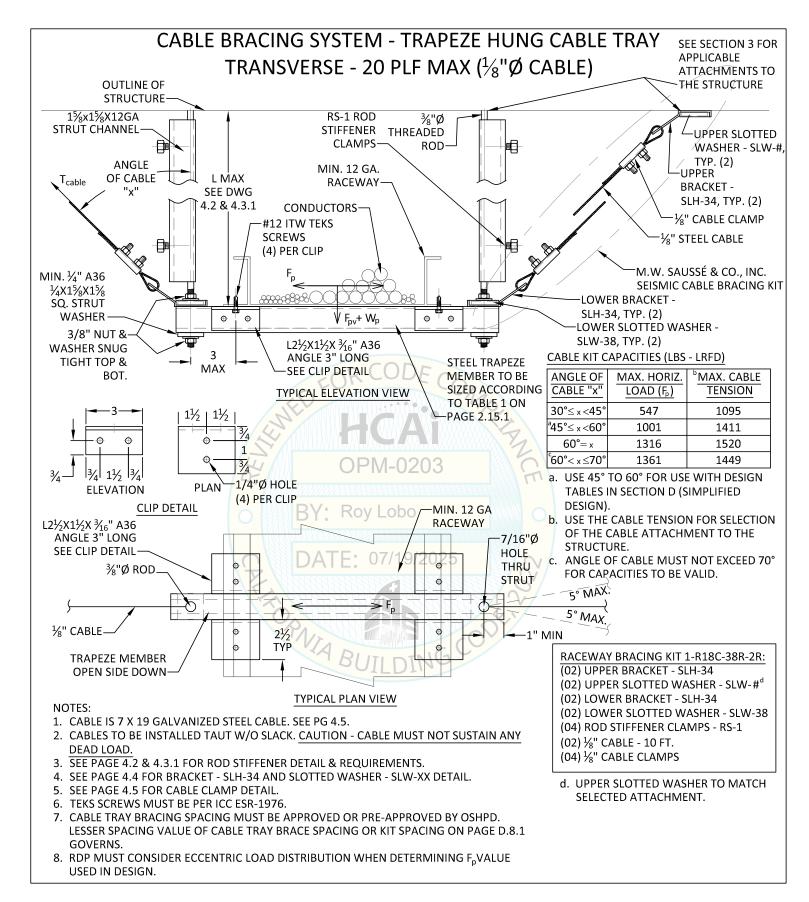

Page No.:

2.10.5

Date:

February 5, 2025

OPM-0203: Reviewed for Code Compliance by Roy Lobo


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

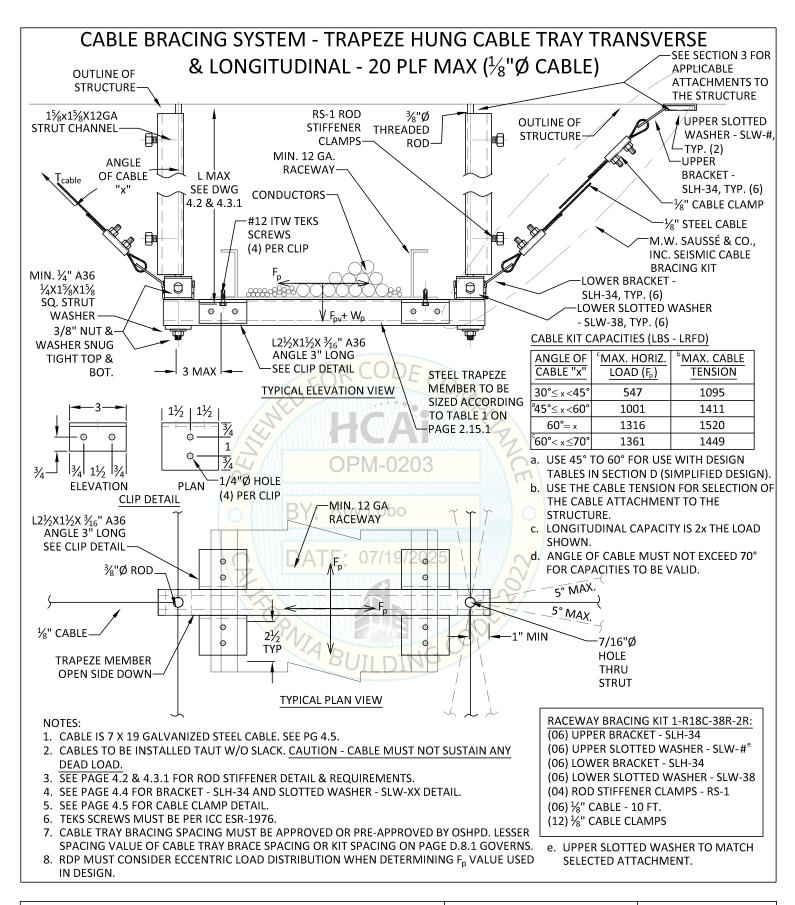
Structural Engineer: N. Tremblay

Page No.:

2.10.6

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay

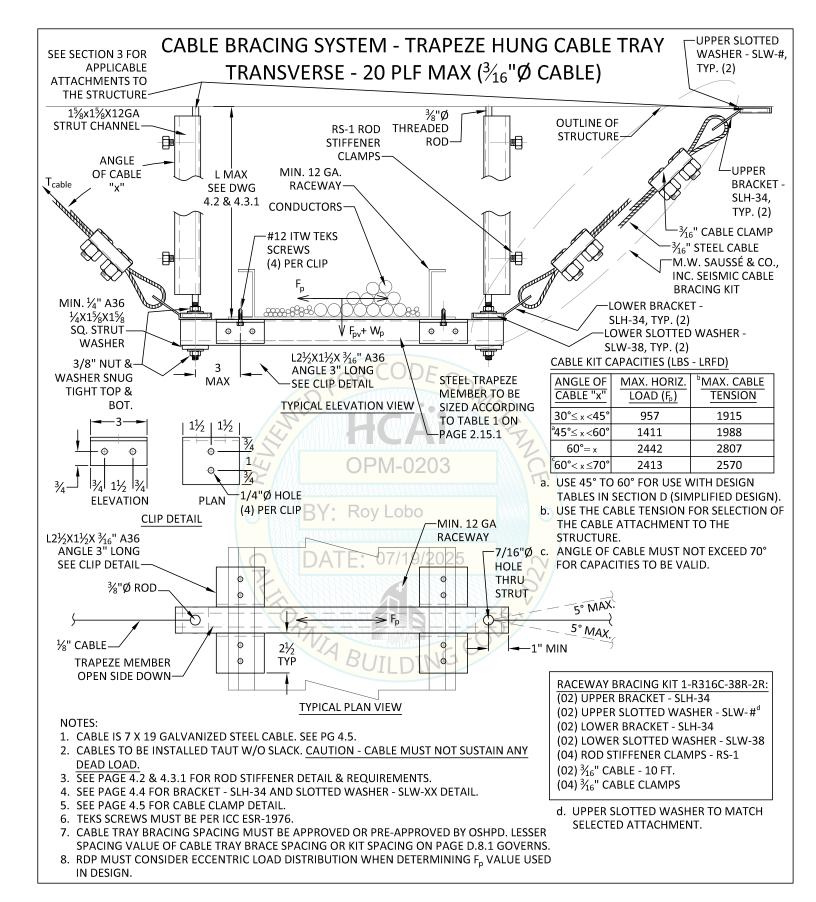
California PE No. S6481

Page No.:

2.11.1

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay

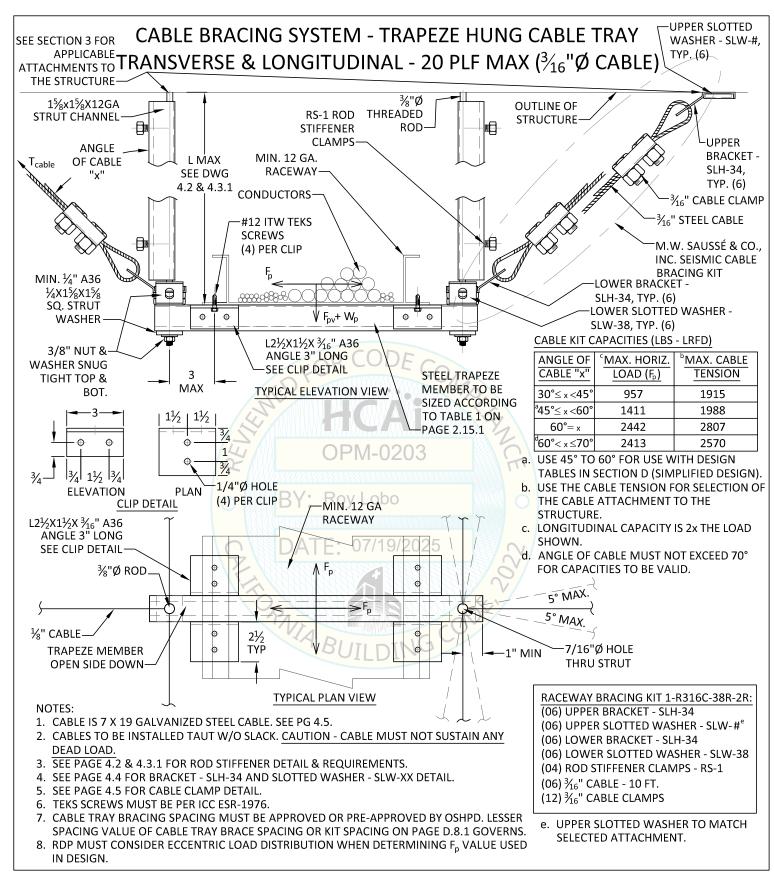
California PE No. S6481

Page No.:

2.11.2

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

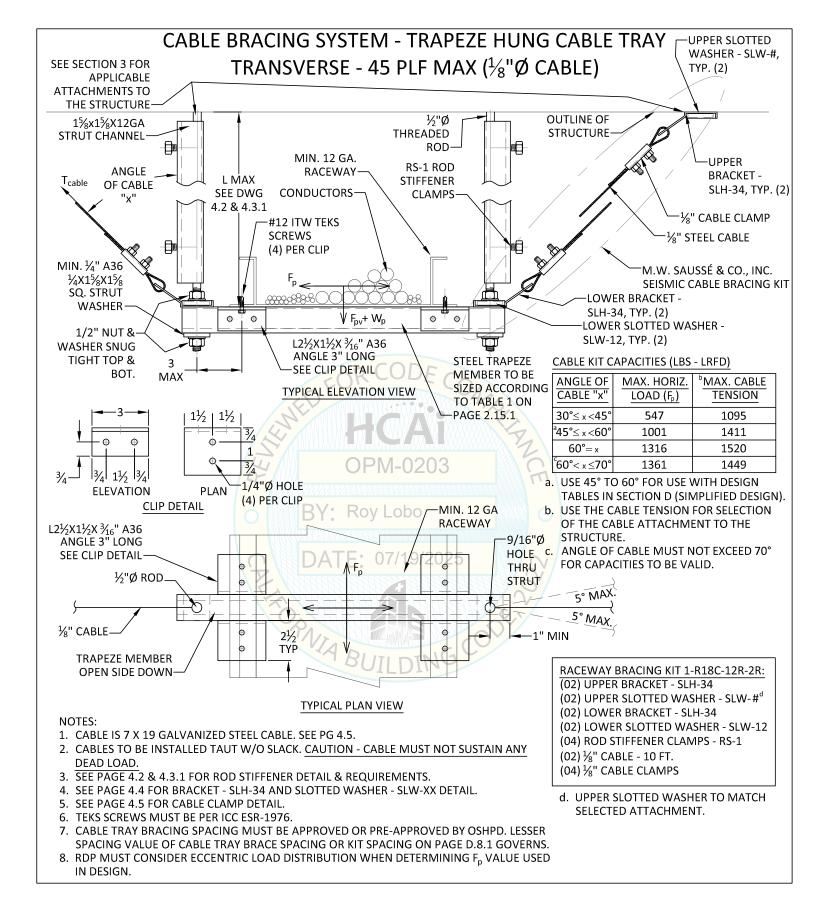

Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

2.11.3

Date:



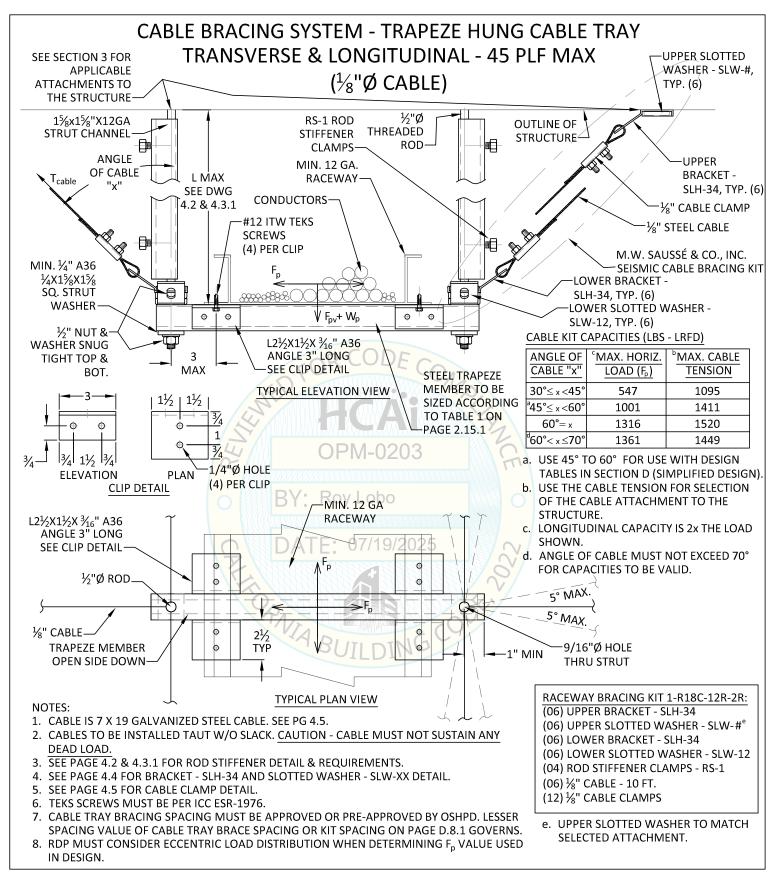
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

2.11.4

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay

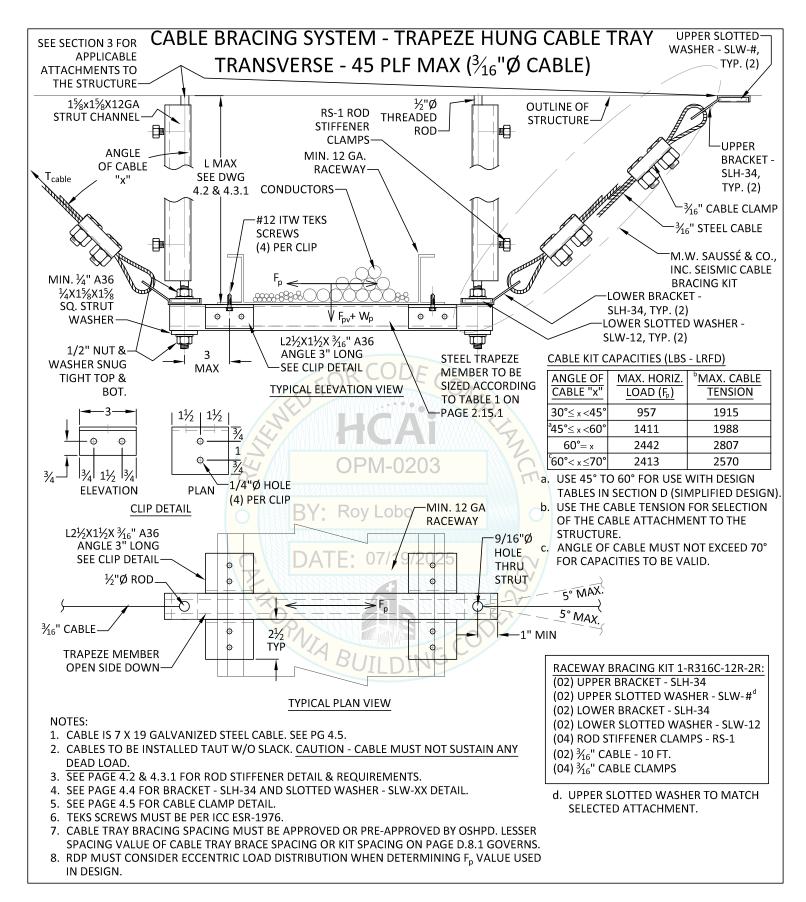
California PE No. S6481

Page No.:

2.11.5

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

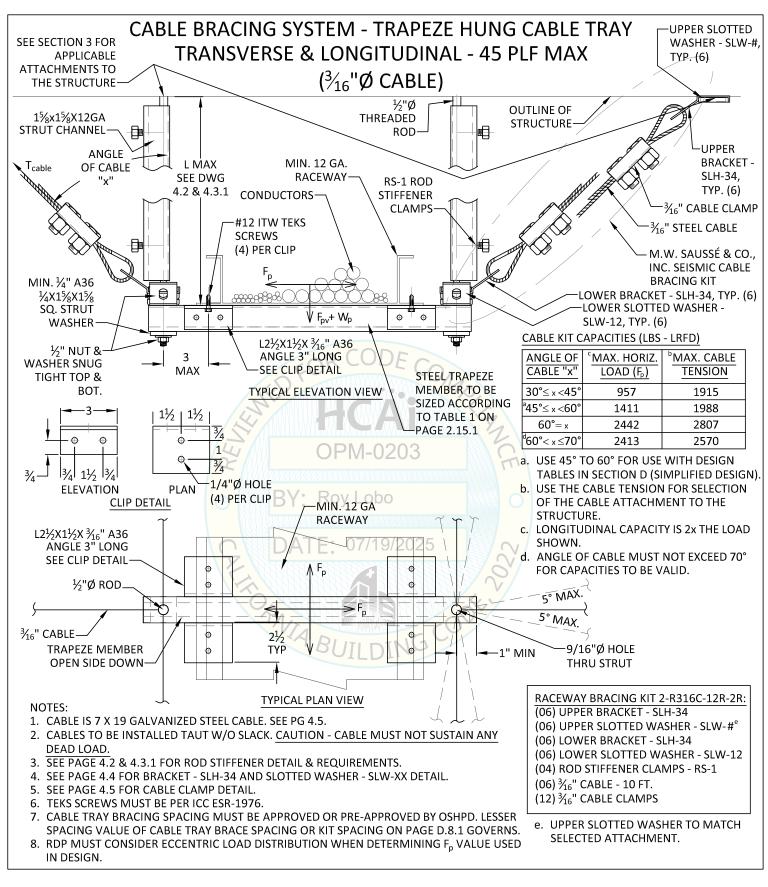

Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

2.11.6

Date:



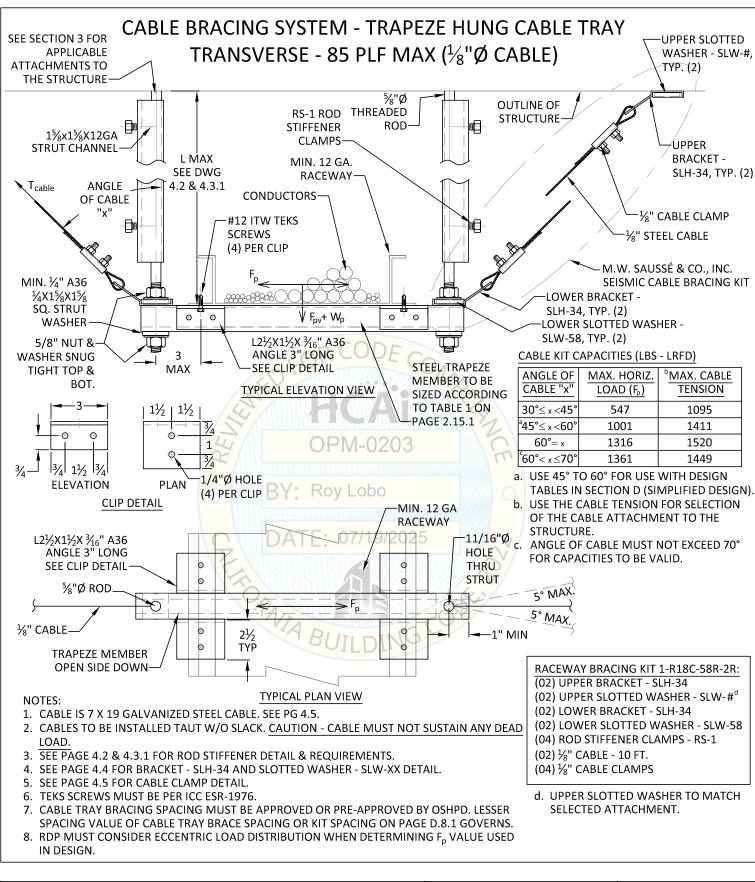
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.11.7

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

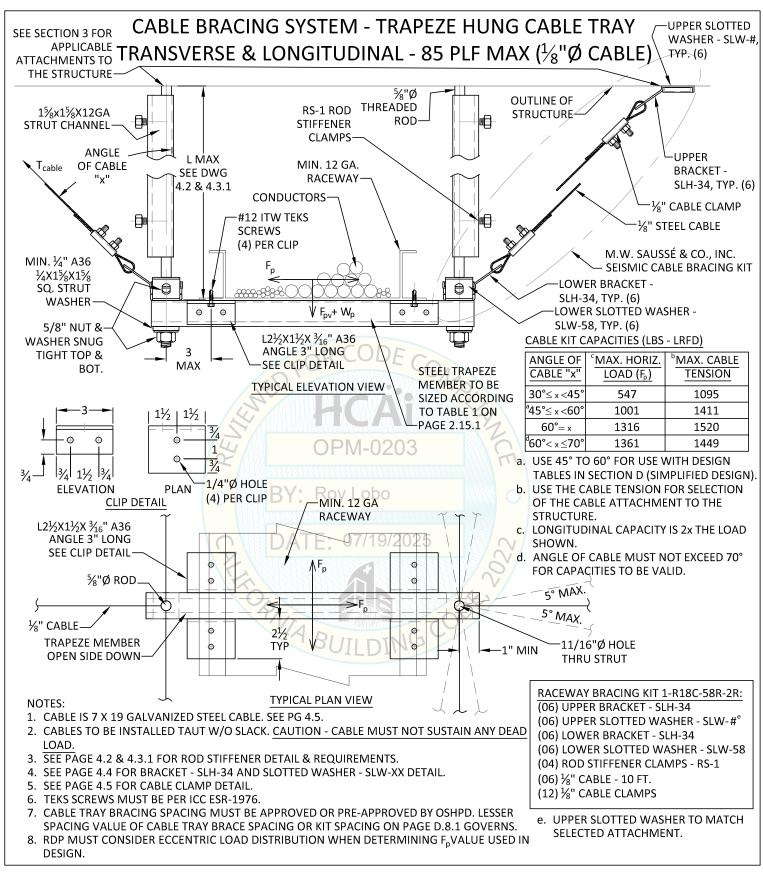

Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

2.11.8

Date:

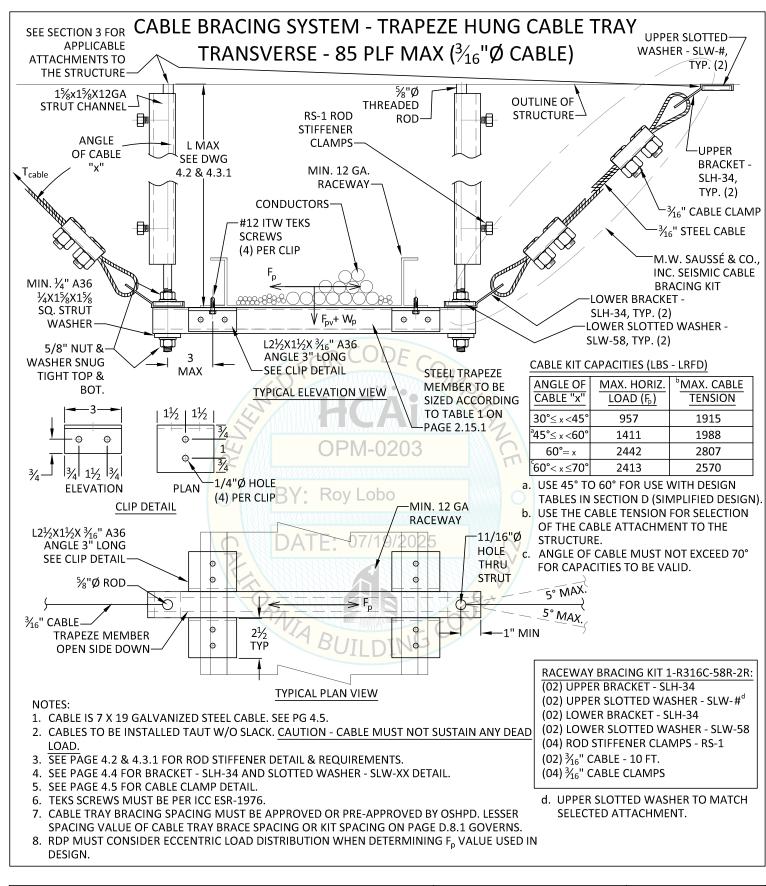

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481

Page No.:

2.11.9

Date:

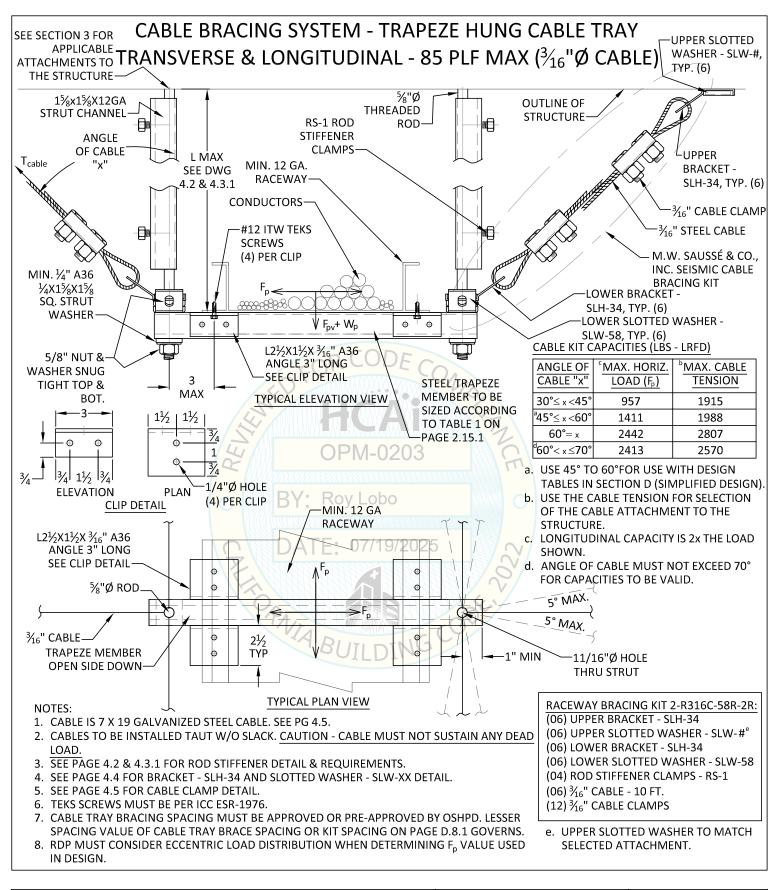


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.11.10

Date:



28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

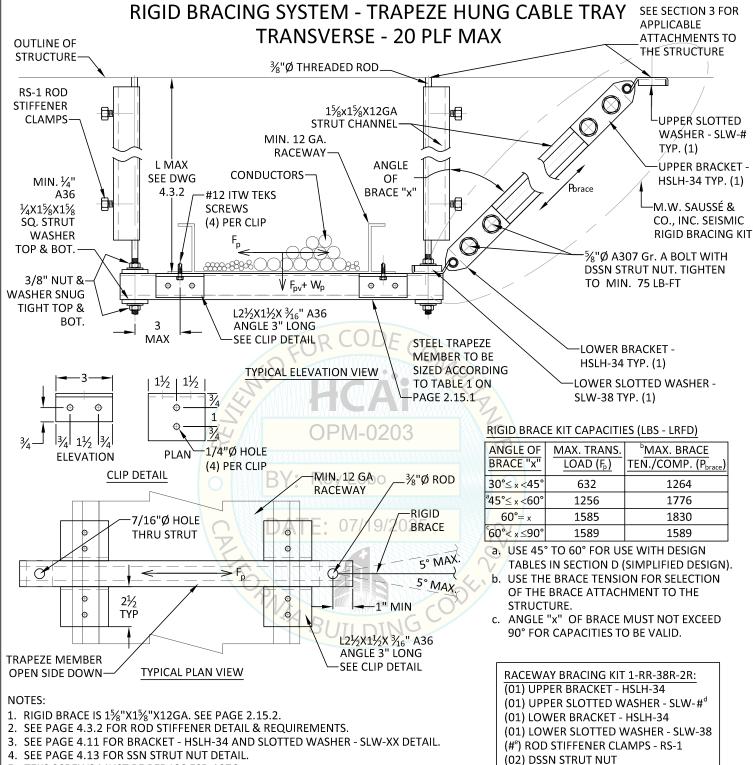
Page No.:

2.11.11

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay


Page No.:

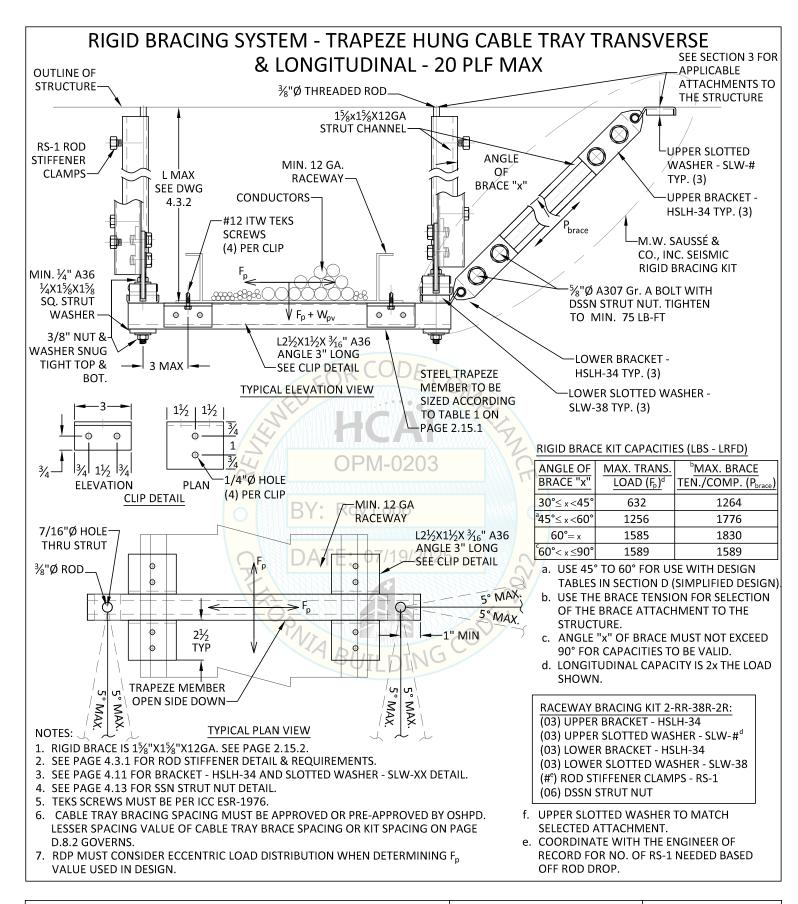
2.11.12

Date:

February 5, 2025

California PE No. S6481

- TEKS SCREWS MUST BE PER ICC ESR-1976.
- CABLE TRAY BRACING SPACING MUST BE APPROVED OR PRE-APPROVED BY OSHPD. LESSER SPACING VALUE OF CABLE TRAY BRACE SPACING OR KIT SPACING ON PAGE D.8.2 GOVERNS.
- 7. RDP MUST CONSIDER ECCENTRIC LOAD DISTRIBUTION WHEN DETERMINING F. VALUE USED IN DESIGN.
- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.
- e. COORDINATE WITH THE ENGINEER OF RECORD FOR NO. OF RS-1 NEEDED BASED OFF ROD DROP.



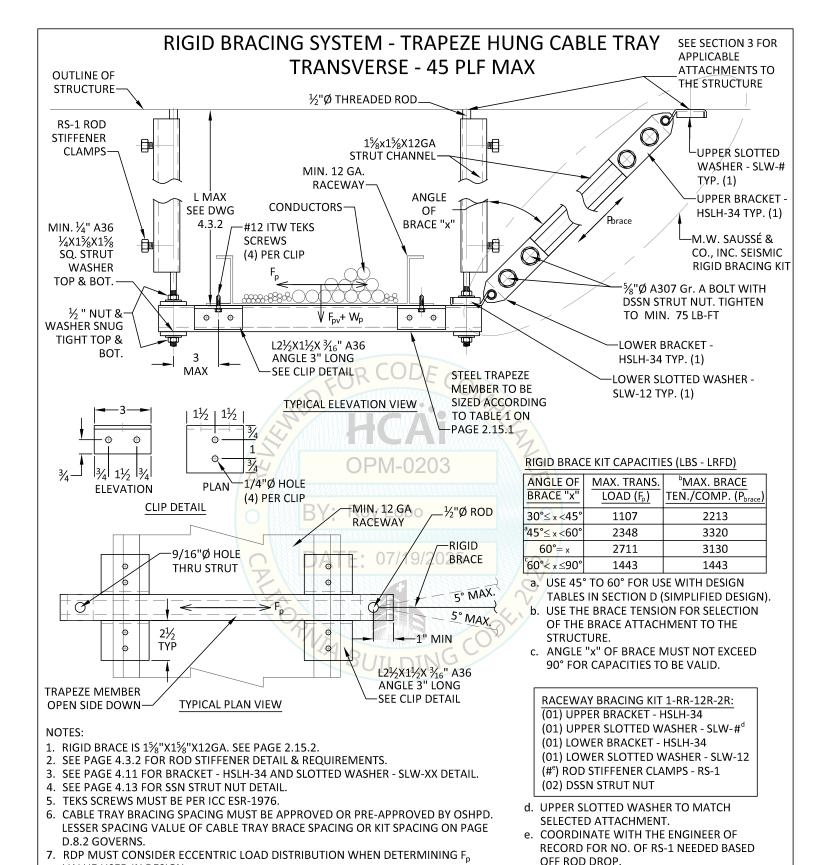
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

2.12.1

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay

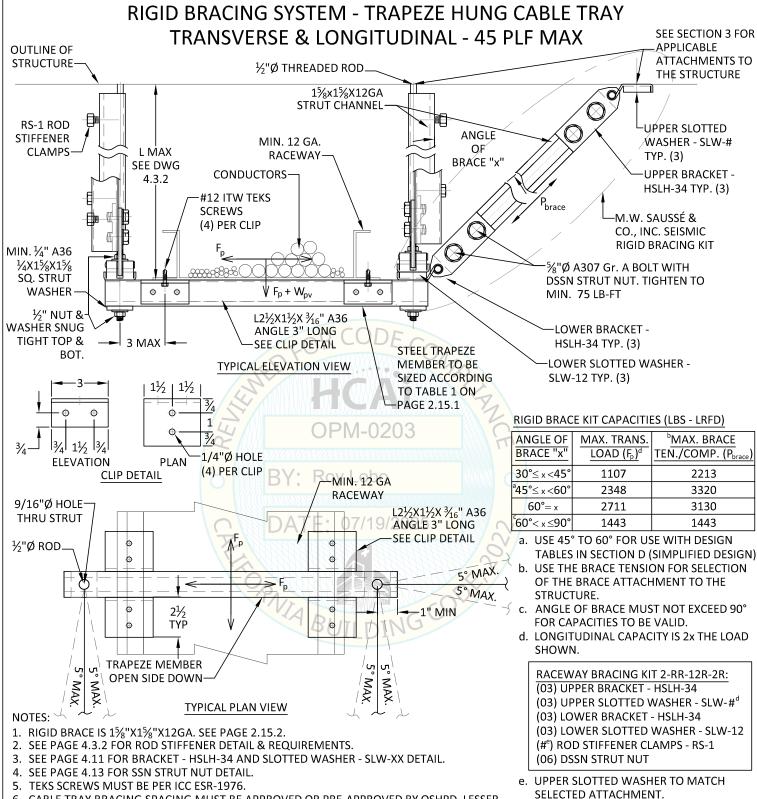
California PE No. S6481

Page No.:

2.12.2

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

2.12.3

Date:

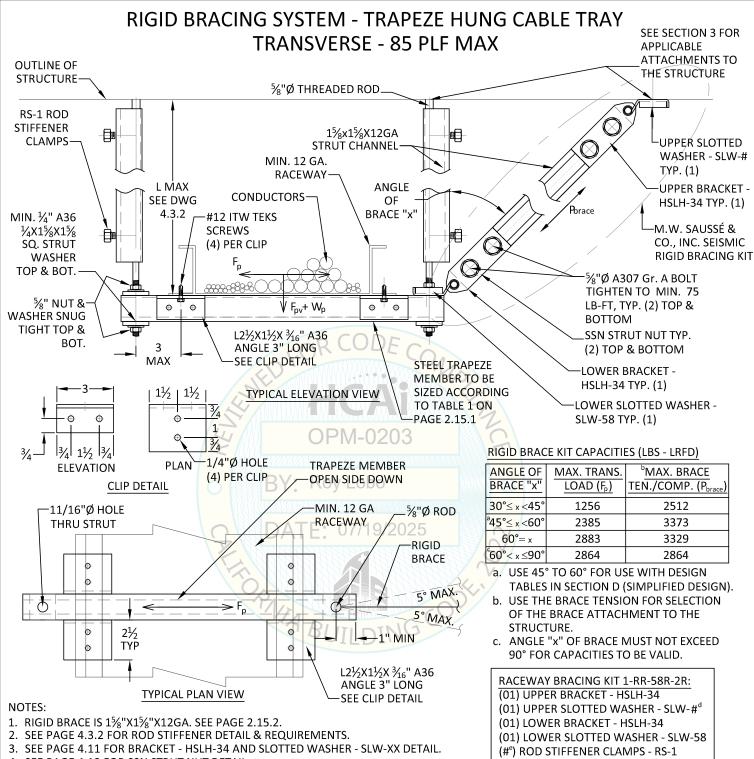
February 5, 2025

VALUE USED IN DESIGN.

- CABLE TRAY BRACING SPACING MUST BE APPROVED OR PRE-APPROVED BY OSHPD. LESSER SPACING VALUE OF CABLE TRAY BRACE SPACING OR KIT SPACING ON PAGE D.8.2 GOVERNS.
- 7. RDP MUST CONSIDER ECCENTRIC LOAD DISTRIBUTION WHEN DETERMINING ${\bf F}_{\rm p}$ VALUE USED IN DESIGN.

SELECTED ATTACHMENT. f. COORDINATE WITH THE ENGINEER OF

f. COORDINATE WITH THE ENGINEER OF RECORD FOR NO. OF RS-1 NEEDED BASED OFF ROD DROP.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: X. Tremblay
California PE No. S6481

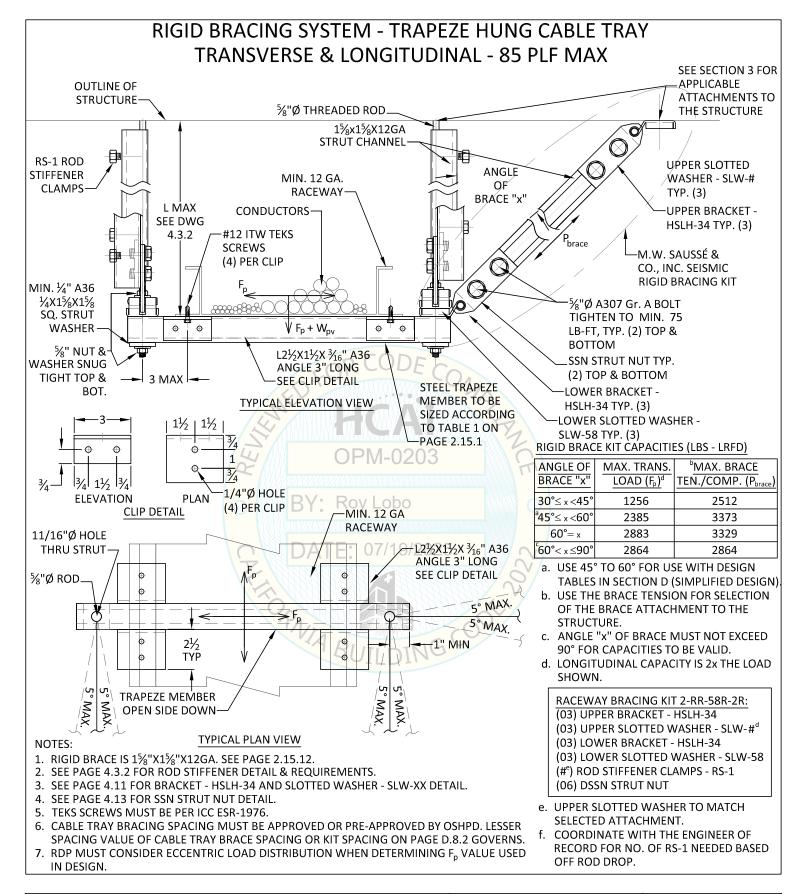
Page No.:

2.12.4

Date:

- 4. SEE PAGE 4.13 FOR SSN STRUT NUT DETAIL.
- 5. TEKS SCREWS MUST BE PER ICC ESR-1976.
- CABLE TRAY BRACING SPACING MUST BE APPROVED OR PRE-APPROVED BY OSHPD. LESSER SPACING VALUE OF CABLE TRAY BRACE SPACING OR KIT SPACING ON PAGE D.8.2 GOVERNS.
- 7. RDP MUST CONSIDER ECCENTRIC LOAD DISTRIBUTION WHEN DETERMINING ${\rm F}_{\rm p}$ VALUE USED IN DESIGN.
- (02) DSSN STRUT NUT
- d. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.
- COORDINATE WITH THE ENGINEER OF RECORD FOR NO. OF RS-1 NEEDED BASED OFF ROD DROP.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

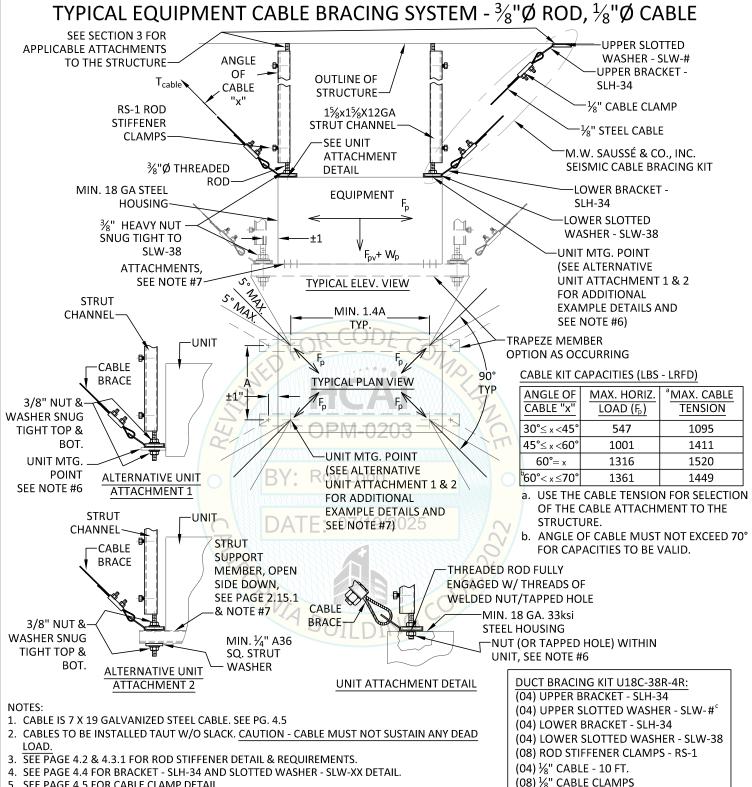

Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

180 of 337

2.12.5

Date:



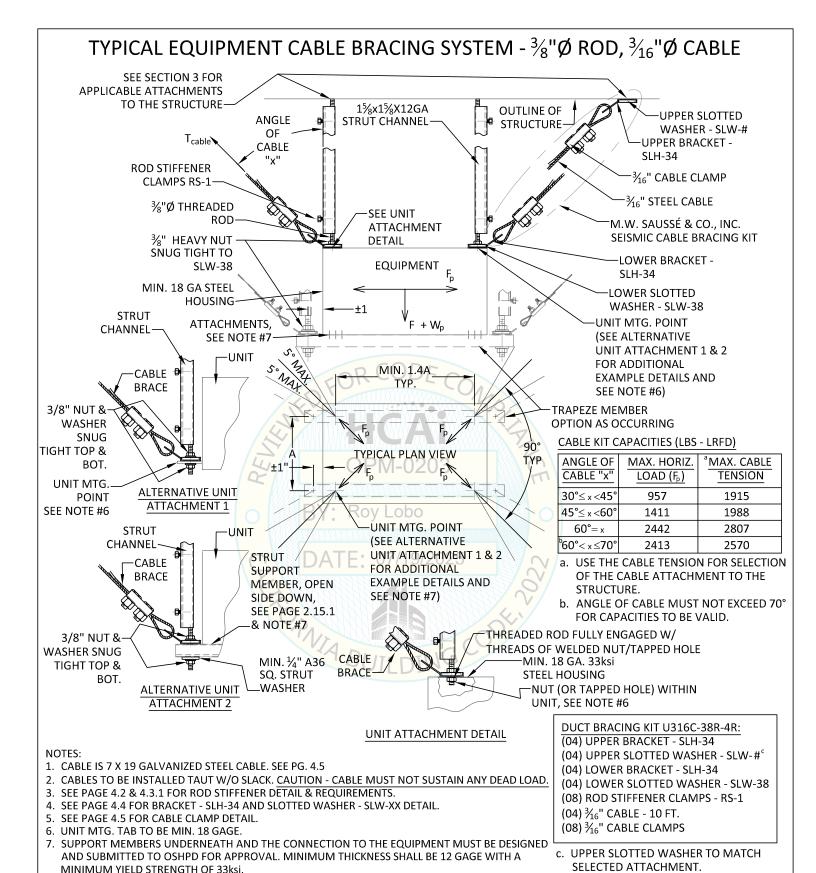
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.12.6

Date:

- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. UNIT MTG. TAB TO BE MIN. 18 GAGE.
- SUPPORT MEMBERS UNDERNEATH AND THE CONNECTION TO THE EQUIPMENT MUST BE DESIGNED AND SUBMITTED TO OSHPD FOR APPROVAL. MINIMUM THICKNESS SHALL BE 12 GAGE WITH A MINIMUM YIELD STRENGTH OF 33ksi.
- c. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.



28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

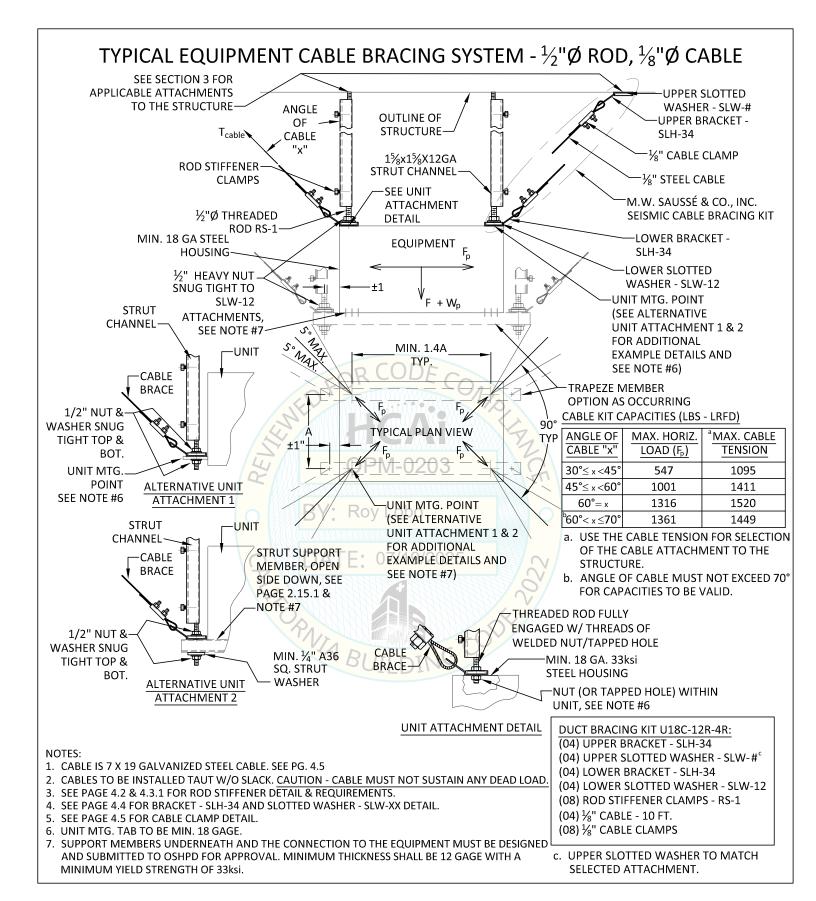
2.13.1

Date:

Vibrex® 28

vibration & seismic control systems

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: & Tremblay

Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

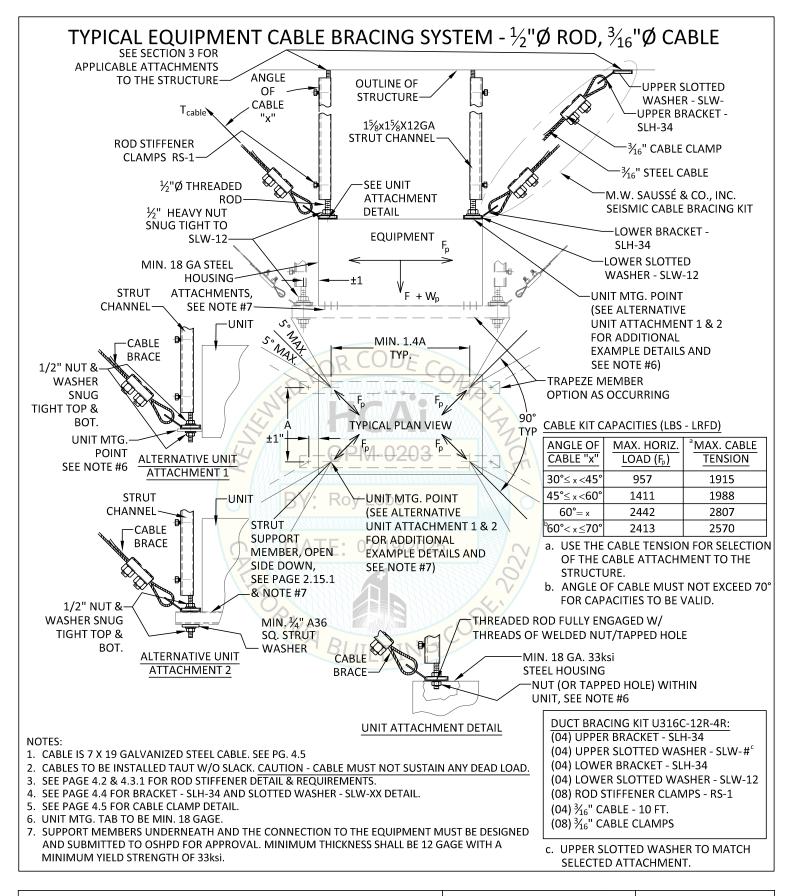
2.13.2

Date:

vibration & seismic control systems

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

2.13.3

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay

California PE No. S6481

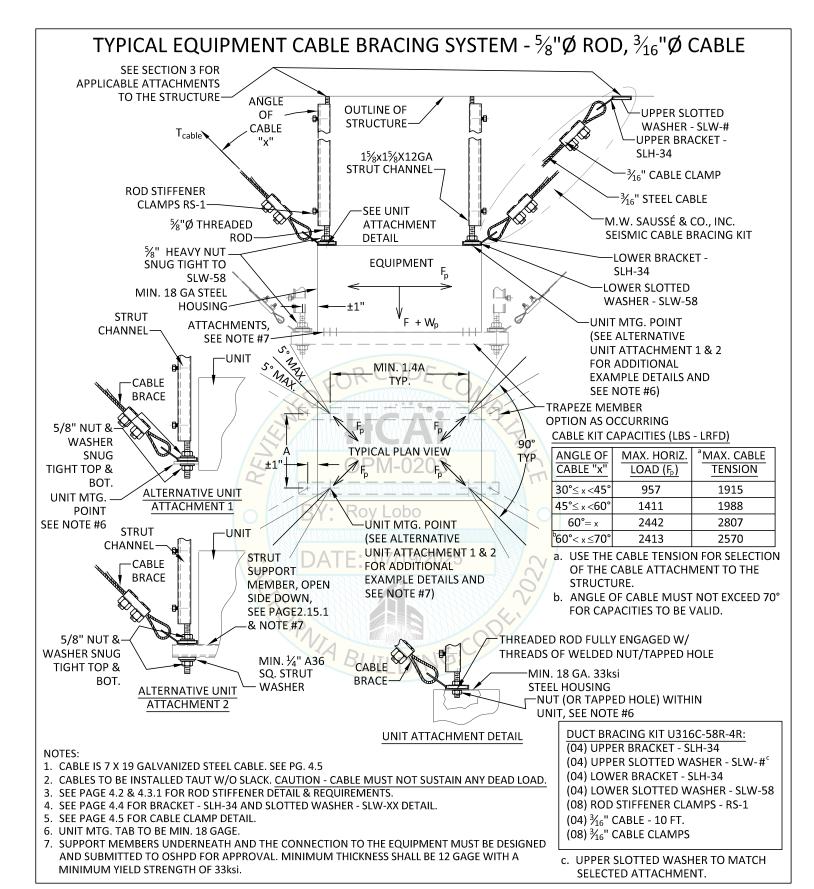
Page No.:

2.13.4

Date:

TYPICAL EQUIPMENT CABLE BRACING SYSTEM - $\frac{5}{8}$ "Ø ROD, $\frac{1}{8}$ "Ø CABLE **SEE SECTION 3 FOR UPPER SLOTTED** APPLICABLE ATTACHMENTS OUTLINE OF WASHER - SLW-# TO THE STRUCTURE **ANGLE STRUCTURE** UPPER BRACKET -OF T_{cable} SLH-34 CABLE 1%x1%X12GA "x" 1/8" CABLE CLAMP STRUT CHANNEL **ROD STIFFENER** 1/4" STEEL CABLE CLAMPS RS-1 SEE UNIT M.W. SAUSSÉ & CO., INC. ATTACHMENT %"Ø THREADED SEISMIC CABLE BRACING KIT DETAIL MIN. 18 GA STEEL LOWER BRACKET -**EQUIPMENT** HOUSING-SLH-34 %" HEAVY NUT LOWER SLOTTED WASHER - SLW-58 SNUG TIGHT TO +1 **SLW-58** $F + W_n$ UNIT MTG. POINT **STRUT** ATTACHMENTS. (SEE ALTERNATIVE CHANNEL SEE NOTE #7 **UNIT ATTACHMENT 1 & 2** FOR ADDITIONAL MIN. 1.4A **EXAMPLE DETAILS AND** SEE NOTE #6) CABLE TRAPEZE MEMBER **BRACE OPTION AS OCCURRING** 5/8" NUT & WASHER SNUG 90° CABLE KIT CAPACITIES (LBS - LRFD) TYPICAL PLAN VIEW **TIGHT TOP &** +1 ANGLE OF MAX. HORIZ. MAX. CABLE BOT. CABLE "x" TENSION LOAD (F_D) UNIT MTG. 30°≤ x <45° 547 1095 ALTERNATIVE UNIT POINT 45°≤ x <60° 1001 ATTACHMENT 1 1411 SEE NOTE #6 UNIT MTG. POINT $60^{\circ} = x$ 1316 1520 (SEE ALTERNATIVE **STRUT** UNIT ⁶60°< x≤70° 1361 1449 **UNIT ATTACHMENT 1 & 2 CHANNEL** FOR ADDITIONAL a. USE THE CABLE TENSION FOR SELECTION STRUT CABLE **EXAMPLE DETAILS AND** SUPPORT OF THE CABLE ATTACHMENT TO THE **BRACE** SEE NOTE #7) STRUCTURE. MEMBER, OPEN b. ANGLE OF CABLE MUST NOT EXCEED 70° SIDE DOWN, FOR CAPACITIES TO BE VALID. SEE PAGE2.15.1 & NOTE #7 THREADED ROD FULLY 5/8" NUT & ENGAGED W/THREADS OF WASHER SNUG MIN. 1/4" A36 WELDED NUT/TAPPED HOLE **TIGHT TOP &** CABLE SQ. STRUT ·MIN. 18 GA. 33ksi BOT. WASHER BRACE-STEEL HOUSING ALTERNATIVE UNIT NUT (OR TAPPED HOLE) WITHIN ATTACHMENT 2 UNIT, SEE NOTE #6 DUCT BRACING KIT U18C-58R-4R: UNIT ATTACHMENT DETAIL (04) UPPER BRACKET - SLH-34 (04) UPPER SLOTTED WASHER - SLW-#c 1. CABLE IS 7 X 19 GALVANIZED STEEL CABLE. SEE PG. 4.5 (04) LOWER BRACKET - SLH-34 2. CABLES TO BE INSTALLED TAUT W/O SLACK, CAUTION - CABLE MUST NOT SUSTAIN ANY DEAD LOAD. (04) LOWER SLOTTED WASHER - SLW-58 3. SEE PAGE 4.2 & 4.3.1 FOR ROD STIFFENER DETAIL & REQUIREMENTS. (08) ROD STIFFENER CLAMPS - RS-1 4. SEE PAGE 4.4 FOR BRACKET - SLH-34 AND SLOTTED WASHER - SLW-XX DETAIL.

- 5. SEE PAGE 4.5 FOR CABLE CLAMP DETAIL.
- 6. UNIT MTG. TAB TO BE MIN. 18 GAGE.
- SUPPORT MEMBERS UNDERNEATH AND THE CONNECTION TO THE EQUIPMENT MUST BE DESIGNED AND SUBMITTED TO OSHPD FOR APPROVAL. MINIMUM THICKNESS SHALL BE 12 GAGE WITH A MINIMUM YIELD STRENGTH OF 33ksi.
- $(04)\frac{1}{8}$ " CABLE 10 FT.
- (08) 1/8" CABLE CLAMPS
- c. UPPER SLOTTED WASHER TO MATCH SELECTED ATTACHMENT.

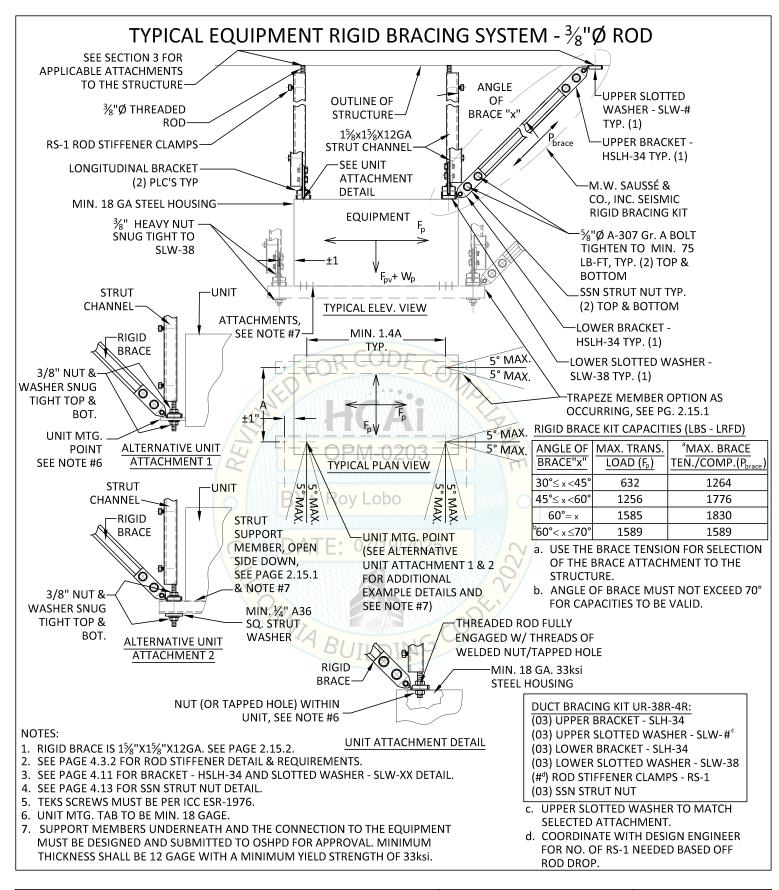

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.13.5

Date:


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineers N. Tromblay

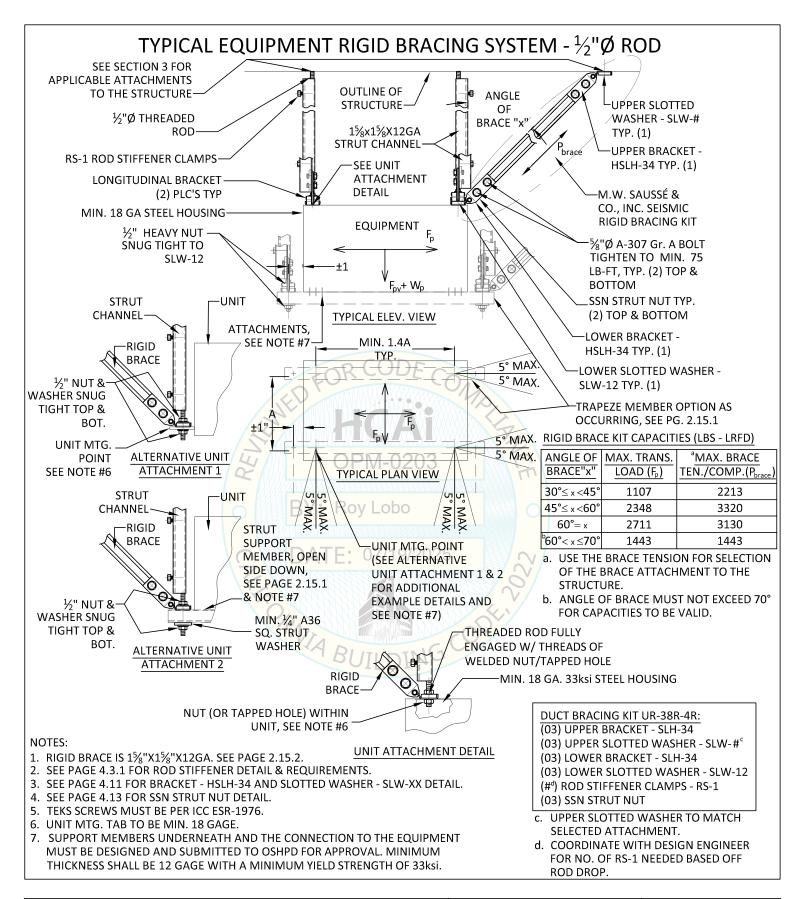
Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

2.13.6

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay

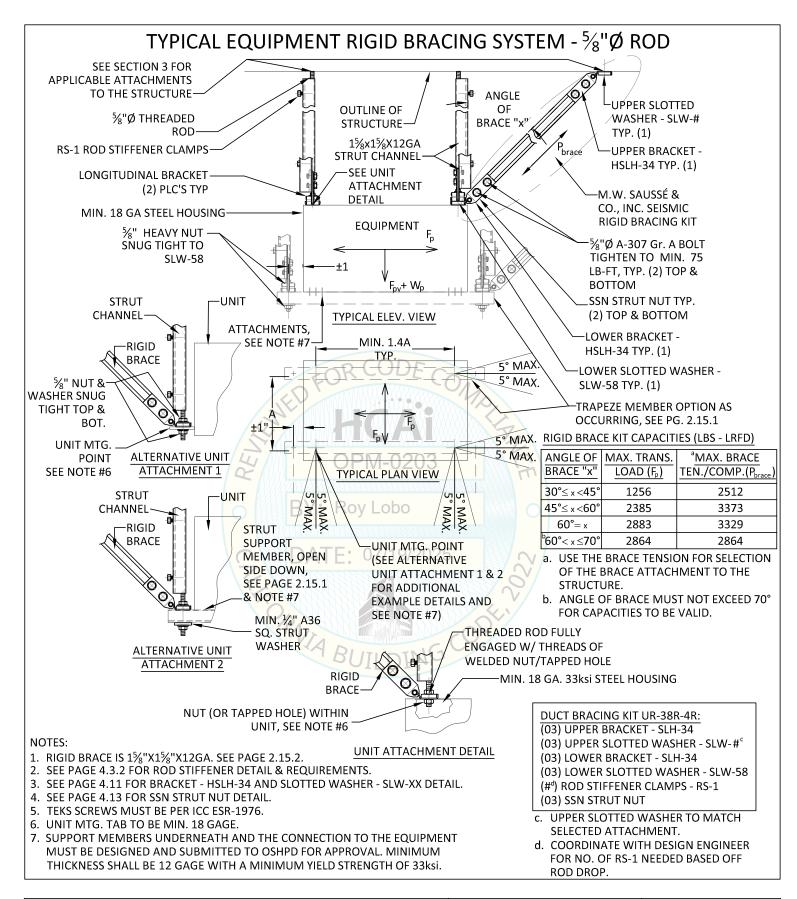
California PE No. S6481

Page No.:

2.14.1

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay


Page No.:

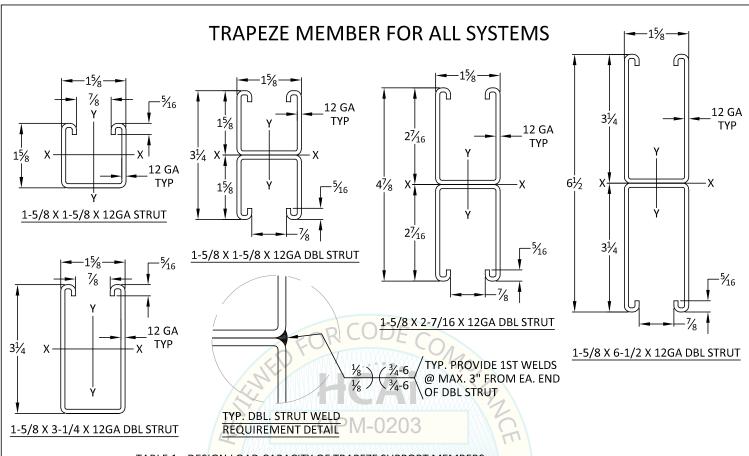
2.14.2

Date:

February 5, 2025

OPM-0203: Reviewed for Code Compliance by Roy Lobo

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

2.14.3

Date:

TABLE 1 - DESIGN LOAD CAPACITY OF TRAPEZE SUPPORT MEMBERS

					000		2222710				
MAX.		έχ <mark>1</mark> 2GA <mark>RUT</mark>	STRUT			% X 12GA STRUT		<mark>% X 12GA</mark> STRUT	15/8 X 61/2 X 12GA DBL STRUT		
SPAN	³ DIST. LOAD	POINT LOAD	³ DIST. LOAD	⁴ POINT LOAD	³ DIST. LOAD	^⁴ POINT LOAD	³ DIST. LOAD	⁴ POINT LOAD	³ DIST. LOAD	⁴ POINT LOAD	
18"	548	274	1178	589	1224	612	1893	946	2574	1287	
24"	410	205	881	440	914	457	1415	707	1925	962	
30"	326	163	702	351	728	364	1128	564	1535	767	
36"	270	135	582	291	603	301	935	467	1273	636	
48"	199	99	431	215	446	223	693	346	944	472	
60"	156	78	339	169	350	175	545	272	745	372	

TABLE 2 - MINIMUM GEOMETRIC PROPERTIES OF SECTIONS

1	.% X	1% X 1	L2GA S	TRUT	1% X	3½ X 1	L2GA S	TRUT	15/8X3 ¹ /	∕₄X12G	A DBL S	STRUT	15/8X47/	⁄ ₈ X12G.	A DBL S	STRUT	1%X6 ¹ / ₂	∕₂X12G	A DBL S	STRUT
i	l _x in⁴	l _y in⁴	S _x in ³	S _y in ³	l _x in ⁴	l _y in⁴	S _x in ³	S _y in³	l _x in⁴	l _y in⁴	S _x in ³	S _y in ³	l _x in⁴	l _ν in⁴	S _x in ³	S _y in ³	l _× in⁴	l _y in⁴	S _x in ³	S _y in³
0.	185	0.236	0.202	0.290	1.098	0.433	0.627	0.533	0.928	0.471	0.571	0.580	2.805	0.669	1.151	0.823	6.227	0.866	1.916	1.066

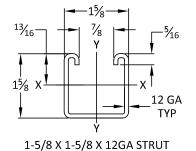
NOTES:

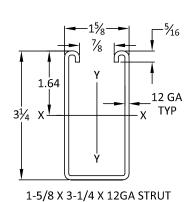
- ALL STRUT MEMBERS MUST BE MADE OF MIN. A1011 SS Gr. 33 STEEL. 1.
- ALL SUPPORTING STRUT MUST BE SOLID. SLOTTED OR HOLED STRUT NOT PERMITTED.
- TO MEET THE DIST. LOADING REQUIREMENT THE LOAD MUST BE SPREAD EVENLY OVER 90% OF THE SPAN OF THE MEMBER.
- TO MEET THE POINT LOAD REQUIREMENT THE LOAD MUST BE WITHIN THE MIDDLE THIRD OF THE SPAN OF THE MEMBER.

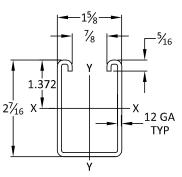
M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblay


California PE No. S6481


Page No.:


2.15.1

Date:

STRUT CHANNEL BRACE MEMBER SIZES FOR USE WITH HSLH-34 OR HSLH-1

1-5/8 X 2-7/16 X 12GA STRUT

HSLH-34 OR HSLH-1

OPM-0203

² TABLE 1 - DESIGN LOAD CAPACITY OF STRUT CHANNEL BRACE ARM

	- VX/X/VX/		
TOTAL BRACE	1% X 1% X 12GA STRUT	15/8 X 27/16 X 12GA STRUT	15/8 X 31/4 X 12GA STRUT
LENGTH "L"	MAXIMUM	MAXIMUM	MAXIMUM
<u>(in)</u>	P _{brace} (lbs)	P _{brace} (lbs)	P _{brace} (lbs)
12	4,493	5,947	7,415
24	4,394	5,888	7,372
36	4,224	5,788	7,301
48	3,978	5,645	7,199
60	3,652	5,457	7,066
72	3,245	4,221	6,900
84	2,772	4,936	6,701
96	2,350	4,602	6,466
108	2,004	4,219	6,196
120	1,721	3,791	5,888

² TABLE 2 - MINIMUM GEOMETRIC PROPERTIES OF SECTIONS

STRUT CHANNEL BRACE ARM

1% X	1% X 1% X 12GA STRUT										
I _x	S _x	A_g	r _x								
in⁴	in ³	in²	in								
0.156	0.188	0.496	0.561								
1% X	2½ X	12GA S	TRUT								
l _x	S _x	A_{g}	r _x								
in⁴	in³	in ²	in								
0.451	0.365	0.667	0.822								
1% X	3½ X 1	2GA S	TRUT								
I _x	S _x	A_g	r _x								
in⁴	in³	in ²	in								
0.966	0.601	0.837	1.074								

NOTES:

- 1. ALL STRUT MEMBERS MUST BE MADE OF MIN. A1011 SS Gr. 33 STEEL.
- 2. STRUT CHANNEL BRACE ARMS VALUES ABOVE ARE FOR SLOTTED STYLE CHANNEL (SLOTS ARE 1-1/8"x9/16"). SOLID STRUT CHANNEL OR STRUT CHANNEL WITH 9/16"Ø HOLES ARE ALSO PERMITTED.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

2.15.2

Date:

TESTING REQUIREMENTS OF POST-INSTALLED ANCHOR BOLTS

TESTING REQUIREMENTS FOR POST-INSTALLED ANCHOR BOLTS

- EXPANSION ANCHORS IN THIS SECTION SHALL BE TORQUE TESTED USING THE VALUES LISTED BELOW IN THE EXPANSION ANCHOR TORQUE TEST VALUES TABLE.
- SCREW-TYPE ANCHORS IN THIS SECTION SHALL BE TENSION TESTED USING THE VALUES LISTED BELOW IN THE SCREW ANCHOR TENSION TEST VALUES TABLE.
- TESTING OF THE ANCHORS IS NOT PERMITTED WITHIN THE FIRST 24 HOURS AFTER THE ANCHOR BOLTS ARE INSTALLED.
- **TESTING FREQUENCY IS AS FOLLOWS:**
- A MINIMUM OF 50% OR ALTERNATE BOLTS IN A GROUP, INCLUDING AT LEAST 1/2 OF THE ANCHORS IN EACH GROUP. 4.1.
- IF AN ANCHOR SHOULD FAIL THE TEST, CONTINUOUS TESTING IS REQUIRED UNTIL (20) CONSECUTIVE ANCHORS PASS, THEN THE TESTING FREQUENCY PER 4.1 ABOVE 4.2. SHALL RESUME.
- TESTING & SPECIAL INSPECTION OF ANCHORS SHALL BE PERFORMED BY SCREW ANCHOR TENSION TEST VALUES AN APPROVED INDEPENDENT AGENCY EMPLOYED BY THE FACILITY OWNER PER CBC 1704A & 1910A.5 AND CAC 7-149. ALL REPORTS

SHALL BE SENT TO THE INSPECTOR OF RECORD, OWNER AND THE ARCHITECT OR ENGINEER IN RESPONSIBLE CHARGE.

ACCEPTANCE CRITERIA FOR POST-INSTALLED ANCHOR BOLTS

FOR DIRECTION TENSION TESTS—THE ANCHOR SHOULD HAVE NO OBSERVABLE MOVEMENT AT THE TEST LOAD (WASHER SHOULD NOT BECOME LOOSE).

TORQUE TEST - THE SPECIFIED TORQUE MUST BE ACHIEVED WITHIN THE FOLLOWING LIMIT: ½ TURN OF THE NUT

GENERAL NOTE

- ALL TENSION TEST AND TORQUE TEST VALUES LISTED ARE SPECIFIC ONLY TO THE ANCHOR **DESIGNS SHOWN IN** SECTION 3. APPLICATION OF THESE VALUES TO ANY OTHER CASE IS OUTSIDE THE SCOPE OF THIS OPM AND WILL REQUIRE **REVIEW AND** APPROVAL BY OSHPD.
- MIN. CONCRETE COMPRESSIVE STRENGTH FOR ALL VALUES SHOWN IS 3000nsi

EXPANSION A			
MAKE & MODEL	ANCHOR DIAMETER (in)	REQUIRED TORQUE (lb-ft)	
CARBON ¹ STEEL	3/8	30	
HILTI	1/2	50	
KB-TZ2 PER PGS.	5/8	40	
3.1.1-3.2.4, 3.11.1-3.12.2	3/4	110	(
	3/8	20	
DEWALT SD2 ²	1/2	40	
PER PAGES 3.4, 3.5, 3.15 & 3.16	5/8	60	
	3/4	110	
DEWALT SD1 ³	7/8	175	
DEWALI 3D1		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	3/8	30	•
SIMPSON⁴	1/2	60	
SB2 (STRONG BOLT 2)	5/8	80	Т
BULI 2)	3/4	150	\ I
	1	230	

NOTES

- SEE PAGES 3.1.1, 3.2.1, 3.11.1, 3.12.1, 3.28, 3.29, 3.31, 3.33, 3.34, & 3.35 FOR DETAILS USING THE HILTI KB-TZ2 EXPANSION ANCHOR.
- SEE PAGES 3.4, 3.4.1, 3.5, 3.5.1, 3.15, 3.16, 3.28, 3.29, 3.31, 3.33, 3.34, & 3.35 FOR DETAILS USING THE DEWALT SD2 EXPANSION ANCHOR.
- SEE PAGE 3.35 FOR DETAIL USING THE DEWALT SD1 EXPANSION ANCHOR.
- SEE PAGES 3.7, 3.8, 3.8.1, 3.19, 3.20, 3.28, 3.31, 3.33, & 3.35 FOR DETAILS USING THE SIMPSON STRONG-BOLT 2 (SB2) EXPANSION ANCHORS.
- SEE PAGES 3.3.2, 3.3.4, 3.13.1, 3.13.2, 3.14.1, 3.14.2, & 3.30 FOR DETAILS USING THE HILTI KH-EZ SCREW ANCHOR.
- SEE PAGES 3.6.1, 3.6.8, 3.17.1 3.18.2, & 3.30 FOR DETAILS USING THE DEWALT SCREW BOLT ANCHOR.
- SEE PAGES 3.9.1 3.10.4, 3.21.1 3.22.2, & 3.30 FOR DETAILS USING THE SIMPSON STRONG-TIE TITEN HD SCREW ANCHOR.
- TENSION TESTS SHOWN ARE 125% OF THE MAXIMUM DESIGN CAPACITIES OF EACH ANCHOR. INSTALLATION OF THE ANCHORS IS INTO THE LOWER FLUTE OF THE DECK (OR SLAB) AS SHOWN IN ALL REFERENCED DETAILS (SEE NOTES 5 THRU 7 ABOVE), WITH THE EXCEPTION OF THE ANCHOR BOLTS ADDRESSED IN NOTE 9 BELOW.
- FOR THE 3/8" AND 1/2" SIMPSON TITEN HD ANCHORS INSTALLED IN THE UPPER FLUTE THE TEST CAPACITIES ARE AS FOLLOWS:
- 9.1. FOR THE 3/8" ANCHOR: 305 lbs
- FOR THE 1/2" ANCHOR: 1036 lbs
- 10. FOR SCREW-TYPE ROD HANGER ANCHORS, SEE PAGE 3.37.

MAKE &	DIAMETER		סבט. " (in)	ı	ьер. ' (in)				_
MODEL	(in)		DECK	-		TO DECK	SINGLE TO SLAB	DOUBLE TO SLAB	2
	3/8	15%	15%	11//8	11//8	494	484	484	\neg
	3/8	2½	2½	1%	1%	969	1439	1439	
	3/8	31/4	31/4	2½	2½	1694	2243	2243	
	1/2	21/4	21/4	1%6	1%6	500	1064	1064	
HILTI ⁵	1/2	3	3	23/16	23/16	1176	1801	1801	
KH-EZ	1/2	41/4	41/4	31/4	31/4	2057	3279	2996	
	5/8	31/4	31/4	2¾	2¾	1602	2094	2094	
CODE	5/8	5	5	31/8	37/8	3644	4329	3654	
CODE	3/4	4	4	2 ¹⁵ / ₁₆	2 ¹ 5⁄ ₁₆	1603	2831	2709	
	3/4	61/4	61/4	41/8	41//8	n/a	6041	4685	
Yaway	3/8	2	2	15/16	15/16	542	601	601	7
	3/8	2½	2½	13/4	13/4	957	1098	1098	
PM-020	3 3/8	31/4	31/4	23/8	2¾	1228	1846	1846	
	1/2	2½	2½	13/4	13/4	750	1098	1098	
DEWALT	1/2	3	3	23/16	2¾ ₁₆	1420	1679	1679	7
SCREW- BOLT+ ⁶	1/2	41/4	41/4	31/4	31/4	2456	3138	2970	
	5/8	31/4	31/4	21/4	21/4	603	1275	1275	
07/19/2	25/8	4	4	21/8	21//8	1054	1633	1633	
	5/8	5	5	33/4	3¾	1472	2250	2250	
	3/4	41/4	41/4	3½ ₁₆	31/16	2078	2728	2728	
	3/8	1%	17/8	11/4	11/4	229	1336	1336	7
	3/8	2½	2½	13/4	13/4	530 ⁹	1803	1803	
ITI DIN	1/2	31/4	2	2¾	13/4	552 ⁹	2044	2044	
SIMPSON	1/2	4	3½	3	2%16	1243	2934	2775	
TITEN HD ⁷	5/8	4	n/a	3	n/a	n/a	2029	2029	
	5/8	5½	n/a	41/4	n/a	n/a	3719	3719	
	3/4	5½	n/a	41/4	n/a	n/a	4053	4014	7
	3/4	61/4	n/a	41/8	n/a	n/a	4803	4708	
MAKE & MODEL	ANCHOR DIA. (in)		OM. ED.(in)		F. D.(in)	TO DECK UPPER FLUTE	TO DECK LOWER FLUT	SOLID E SLAB	TYPE "B" DECK
HILTI KH-EZ I ROD HANGER ¹⁰	1/4	2-:	1/2	1-1	5/16	566	593	750	n/a
DEWALT HANGERMATE ¹⁰	3/8	2-:	1/2	1-1	5/16	646	646	723	646
SIMPSON TITEN	3/8	2-:	1/2	1-3	3/4	n/a	530	753	n/a

NOMINAL EFFECTIVE

ANCHOR | EMBED. | EMBED.

TENSION TEST VALUES (lbs)

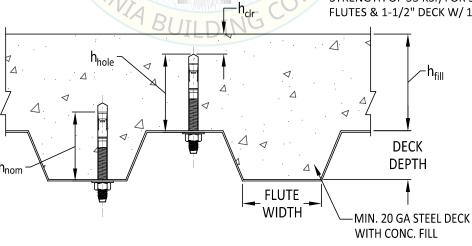
M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblay California PE No. S6481 Page No.:

3.0.1

Date:


February 5, 2025

HD HANGER10

MINIMUM COMPOSITE DECK DIMENSIONS FOR POST-INSTALLED **EXPANSION ANCHORS**

					3" DECK W	/ 4½" WIDE	FLUTES	3" DECK W,	/ 3¾" WIDE	FLUTES	1-1/2" DECK \	W/ 1¾" WII	DE FLUTES
MAKE & MODEL	ANCHOR DIAMETER (in)	NOMINAL EMBED. "h _{nom} " (in)	EFFECTIVE EMBED. "h _{ef} " (in)	HOLE DEPTH "h _o " (in)	CLEARANCE ABOVE HOLE "h _{clr} " (in)	"h _{fill}	THICKNESS " (in) ANCHOR TO UPPER FLUTE	CLEARANCE ABOVE HOLE "h _{clr} " (in)	"h _{fill}	THICKNESS " (in) ANCHOR TO UPPER FLUTE	CLEARANCE ABOVE HOLE "h _{clr} " (in)	"h _{fill}	THICKNESS " (in) ANCHOR TO UPPER FLUTE
	3/8	1-7/8	1-1/2	2	5/8	2-1/2	2-3/4	5/8	2-1/2	2-5/8	5/8	2-1/4	2-5/8
	3/8	2-1/2	2	2-3/4	5/8	2-1/2	3-1/2	5/8	2-1/2	3-3/8	5/8	2-1/4	3-3/8
	3/8	3	2-1/2	3-1/4	5/8	2-1/2	4	5/8	2-1/2	3-7/8	5/8		
HILTI	1/2	2-1/2	2	2-3/4	5/8	2-1/2	3-1/2	5/8	2-1/2	3-3/8	5/8	2-1/4	3-3/8
KB-TZ2	1/2	3-3/4	3-1/4	4-1/4	5/8	2-1/2	5	5/8	2-1/2	4-7/8	5/8	3-3/8	4-7/8
	5/8	3-1/4	2-3/4	3-3/4	5/8	2-1/2	4-1/2	5/8	2-1/2	4-3/8	5/8	2-7/8	4-3/8
	5/8	4-1/2	4	4-3/4	5/8	2-1/2	5-1/2	5/8	3-1/4	5-3/8	5/8		
	3/4	4-1/2	3-3/4	4-3/4	5/8	3-1/4	5-1/2	5/8	3-1/4	5-3/8	5/8		
	3/8	2-3/8	2	2-5/8	3/4	3-1/4	3-1/2	1	2-1/2	3-5/8	1	2-1/4	3-5/8
	1/2	2-1/2	2	2-3/4	3/4	3-1/4	3-1/2	1	2-1/2	3-3/4	1	2-1/4	3-3/4
DEWALT	1/2	3-3/4	3-1/4	4	3/4	3-1/4	4-3/4	1	2-1/2	5			
SD2	5/8	3-7/8	3-1/4	4-1/4	3/4	3-1/4	5						
	5/8	4-7/8	4-1/4	4-3/4	3/4	3-1/4	5-1/2						
	3/4	4-1/2	3-3/4	5	3/4	3-1/4	5-3/4						
	3/8	2	1-5/8	2-1/8	1/2	1-1/2	2-3/4	NOTES:					
	3/8	3-3/8	3 Q	3-1/2	1/2	1-1/2		1. FOR D		FILE DIMI	ENSIONS SEE	PAGE A.	5 IN THE
SIMPSON	1/2	2-3/4	2-1/4	3	1/2	1-1/2	3-1/2	APPEI		ERLINE O	FFSETS FROI	M THE ELL	ITE
STRONG-BOLT	1/2	4-1/2	4	4-3/4	5 Y _{1/2} KO	2-1/4		(10000000000000000000000000000000000000			N IN THE SPI		
2	5/8	3-3/8	2-3/4	3-5/8	1/2	1-1/2			IN SECTION		L DEOLUDE &	UNI ACTA	
	5/8	5-5/8	5	5-7/8	<u> </u>	3-3/8		1555			I REQUIRE IV 50 (MIN. YIE		

- A653/A653M SS GRADE 50 (MIN. YIELD STRENGTH OF 50 KSI) DECKING.
 - 3.1. EXCEPTION: POWERS SD2 & SIMPSON STRONG-BOLT 2 ANCHOR BOLTS REQUIRE MIN. ASTM A653/A653M SS GRADE 33 (MIN. YIELD STRENGTH OF 33 KSI) FOR 3" DECK W/ 31/8" WIDE FLUTES & 1-1/2" DECK W/ 13/4" WIDE FLUTES ONLY.

3/4

4-1/8

3-3/8

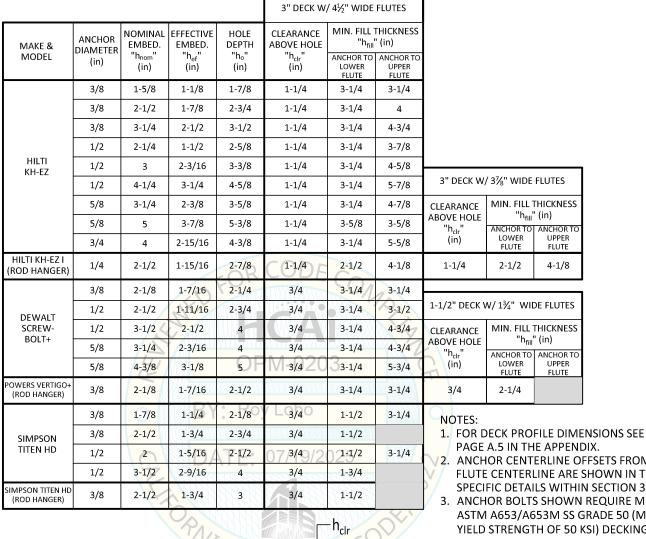
4-3/8

1/2

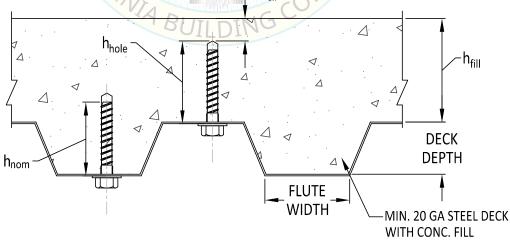
1-7/8

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay California PE No. S6481

Page No.:


3.0.2

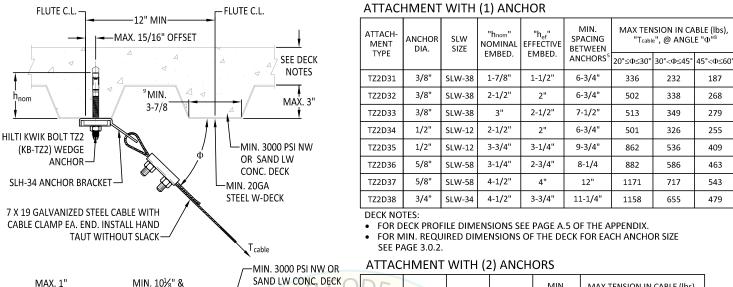
Date:

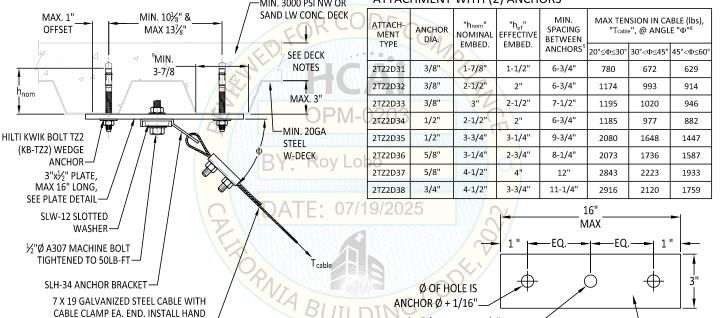
MINIMUM COMPOSITE DECK DIMENSIONS FOR POST-INSTALLED **SCREW ANCHORS**

- PAGE A.5 IN THE APPENDIX.
- ANCHOR CENTERLINE OFFSETS FROM THE FLUTE CENTERLINE ARE SHOWN IN THE SPECIFIC DETAILS WITHIN SECTION 3.
- 3. ANCHOR BOLTS SHOWN REQUIRE MIN. ASTM A653/A653M SS GRADE 50 (MIN. YIELD STRENGTH OF 50 KSI) DECKING.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: 7. Tremblay


California PE No. S6481

Page No.:

3.0.3

Date:

NOTES:

1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.

9/16"Ø HOLE FOR 1/2" BOLT

- INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.

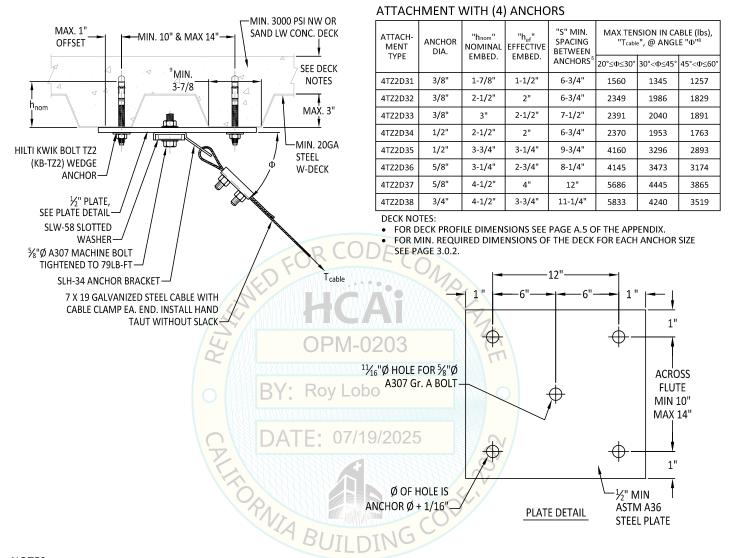
TAUT WITHOUT SLACK

- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:


3.1.1

3"X1/2" MIN ASTM

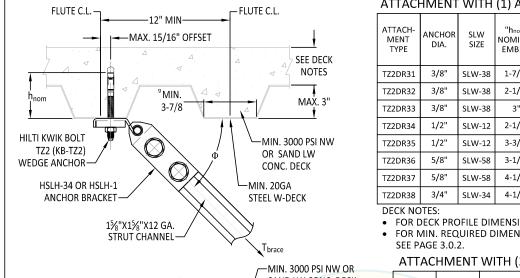
A36 STEEL PLATE

PLATE DETAIL

Date:

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_{\circ} = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR THE ¾" ANCHOR WITH 4-1/2" NOMINAL EMBEDMENT AND THE ¾" ANCHOR, THE MIN. FLUTE WIDTH IS 4-1/2". SEE PAGE 3.0.2 FOR ALL MINIMUM REQUIRED DIMENSIONS OF THE DECK.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

3.1.2

Date:

ATTACHMENT WITH (1) ANCHOR

ATTACH- MENT	ANCHOR DIA.	SLW SIZE	"h _{nom} " NOMINAL	"h _{ef} " EFFECTIVE	MIN. SPACING BETWEEN	MAX TENSION IN BRAC		
TYPE			EMBED.	EMBED.	ANCHORS ⁵	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°
TZ2DR31	3/8"	SLW-38	1-7/8"	1-1/2"	6-3/4"	324	242	188
TZ2DR32	3/8"	SLW-38	2-1/2"	2"	6-3/4"	483	353	268
TZ2DR33	3/8"	SLW-38	3"	2-1/2"	7-1/2"	494	365	279
TZ2DR34	1/2"	SLW-12	2-1/2"	2"	6-3/4"	481	342	252
TZ2DR35	1/2"	SLW-12	3-3/4"	3-1/4"	9-3/4"	824	564	399
TZ2DR36	5/8"	SLW-58	3-1/4"	2-3/4"	8-1/4	848	614	460
TZ2DR37	5/8"	SLW-58	4-1/2"	4"	12"	1118	754	528
TZ2DR38	3/4"	SLW-34	4-1/2"	3-3/4"	11-1/4"	1098	692	457

- FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX.
- FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH ANCHOR SIZE

ATTACHMENT WITH (2) ANCHORS

	∕−MIN. 3000 PSI NW OR				-, ,	0110			
MAX. 1" MIN. 10½" & / MAX 13½"	SAND LW CONC, DECK	ATTACH- MENT	ANCHOR DIA.	"hnom" NOMINAL	"h _{ef} " EFFECTIVE	MIN. SPACING BETWEEN		SION IN BR e", @ ANGL	
	SEE DECK	TYPE	1/1	EMBED.	EMBED.	ANCHORS⁵	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°
	NOTES	2TZ2DR31	3/8"	1-7/8"	1-1/2"	6-3/4"	732	637	605
h _{nom}		2TZ2DR32	3/8"	2-1/2"	2"	6-3/4"	1098	938	867
3-7/8	MAX. 3"	2TZ2DR33	3/8"	3"	2-1/2"	7-1/2"	1120	964	902
	PH OPM-02	2TZ2DR34	1/2"	2-1/2"	2"	6-3/4"	1102	919	820
HILTIKWIK BOLT / T / T W	MIN. 20GA STEEL	2TZ2DR35	1/2"	3-3/4"	3-1/4"	9-3/4"	1918	1545	1313
TZ2 (KB-TZ2)	Φ W-DECK	2TZ2DR36	5/8"	3-1/4"	2-3/4"	8-1/4"	1935	1638	1494
WEDGE ANCHOR— 3"x½" PLATE.	DY. KOY LODO	2TZ2DR37	5/8"	4-1/2"	4"	12"	2614	2080	1740
MAX 16" LONG, / / /		2TZ2DR38	3/4"	4-1/2"	3-3/4"	11-1/4"	2637	1968	1525
SEE PLATE DETAIL— SLW-12 FOR HSLH-34,	XTE: 07/19/	2025		1	EQ	16" MAX— E	Q. 	1"	
SLW-78 FOR HSLH-1—/ SEE NOTE #10—/	T _{brace}		LIOLE IC)		 	- 3"	

NOTES:

15/16"Ø HOLE FOR 7/8" BOLT-STRUT CHANNEL PLATE DETAIL STEEL PLATE 1. THE OVER STRENGTH FACTOR Ω_s = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN RIGID BRACE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.

Ø OF HOLE IS

9/16"Ø HOLE FOR 1/2" BOLT.

ANCHOR Ø + 1/16"-

- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING. SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.

HSLH-34 OR HSLH-1

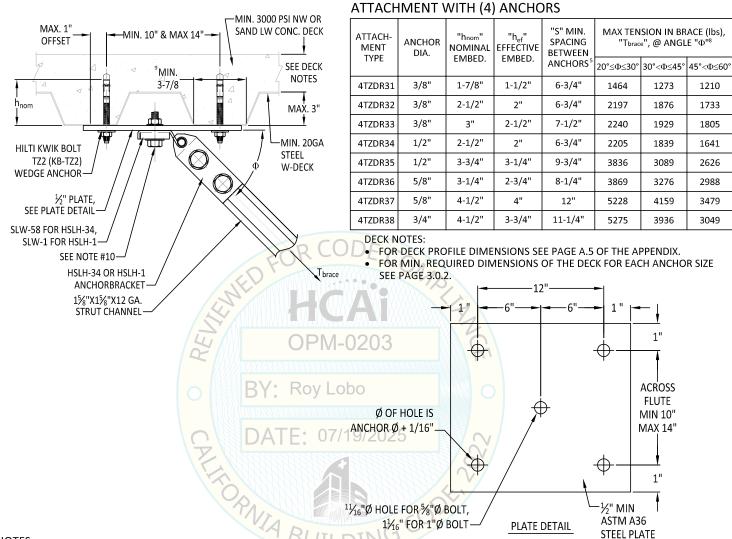
ANCHOR BRACKET

1%"X1%"X12 GA.

- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR THE ¾" ANCHOR WITH 4-7/16" NOMINAL EMBEDMENT AND THE ¾" ANCHOR, THE MIN. FLUTE WIDTH IS 4-1/2". SEE PAGE 3.0.2 FOR ALL MINIMUM REQUIRED DIMENSIONS OF THE DECK.
- 10.FOR HSLH-34 BRACKET & SLW-12 ON PAGE 4.11, USE ½" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 50 LB-FT. FOR HSLH-1 BRACKET & SLW-78 ON PAGE 4.12, USE $\frac{7}{8}$ " A307 Gr. A HEX BOLT TIGHTENED TO MIN. 100 LB-FT.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: 2. Tremblay California PE No. S6481 Page No.:

3.1.3

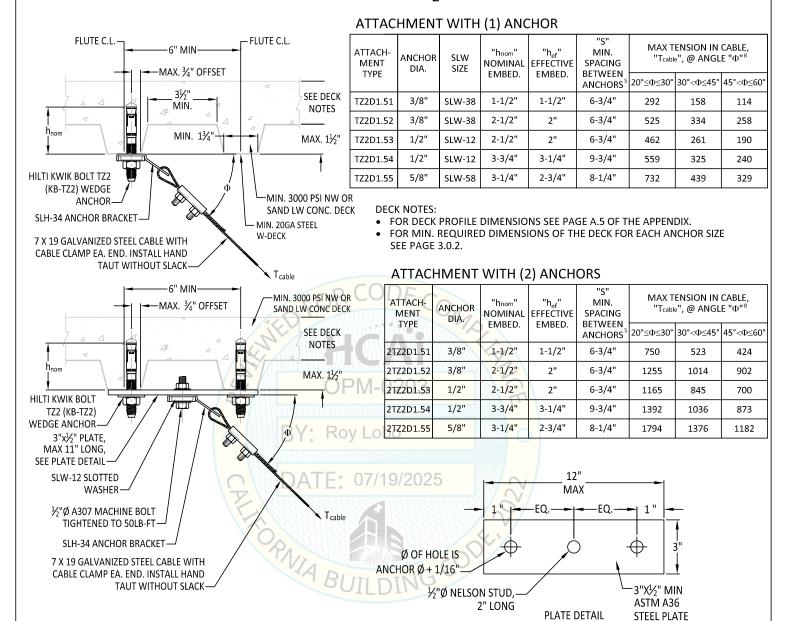
3"X1/5" MIN

ASTM A36

Date:

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω^0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN RIGID BRACE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR THE ¾" ANCHOR WITH 4-7/16" NOMINAL EMBEDMENT AND THE ¾" ANCHOR, THE MIN. FLUTE WIDTH IS 4-1/2". SEE PAGE 3.0.2 FOR ALL MINIMUM REQUIRED DIMENSIONS OF THE DECK.
- 10.FOR HSLH-34 BRACKET & SLW-58 ON PAGE 4.11, USE ½" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 65 LB-FT. FOR HSLH-1 BRACKET & SLW-1 ON PAGE 4.12, USE 1" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 100 LB-FT.



M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

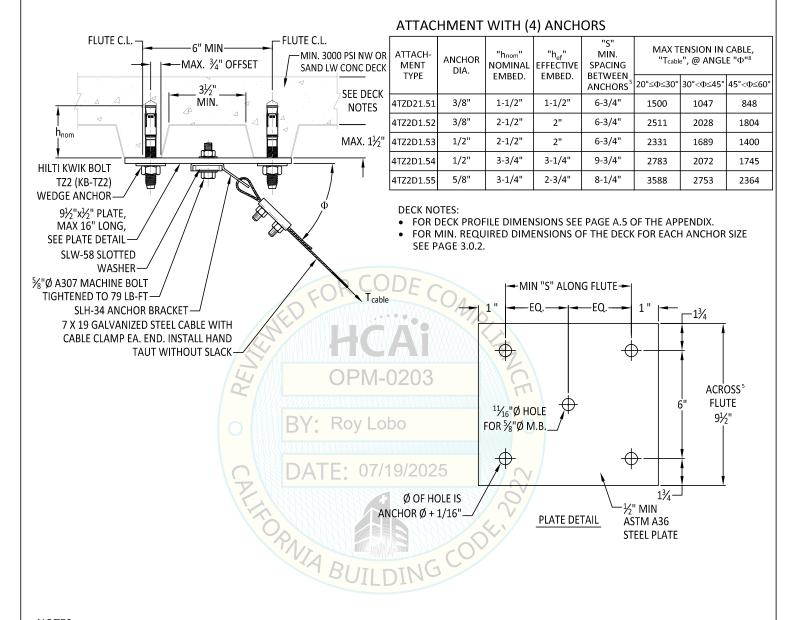
Civil Engineer: P.K. Sachdeva California PE No. C59644 Page No.:

3.1.4

Date:

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

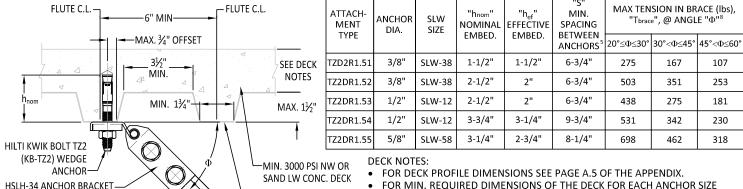
3.2.1

Date:

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.2.2

Date:

ATTACHMENT WITH (1) ANCHOR

 FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH ANCHOR SIZE SEE PAGE 3.0.2.

ATTACHMENT WITH (2) ANCHORS

STRUT CAHNNEI	——6" MIN————	T _{brace} MIN. 3000 PSI NW OR	ATTACH- MENT	ANCHOR DIA.	"hnom" NOMINAL	"h _{ef} " EFFECTIVE	"S" MIN. SPACING		SION IN BR •", @ ANGL	
+11	■MAX. ¾" OFFSET	SAND LW CONC DECK	TYPE	0/12	EMBED.	EMBED.	BETWEEN ANCHORS⁵	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°
7		SEE DECK	2TZ2DR1.51	3/8"	1-13/16"	1-1/2"	6-3/4"	672	484	361
	4 4	NOTES	2TZ2DR1.52	3/8"	2-5/16"	2"	6-3/4"	1163	952	828
h _{nom}		MAX. 1½"	2TZ2DR1.53	1/2"	2-3/8"	2"	6-3/4"	1053	784	606
· · · · · · · · · · · · · · · · · · ·			2TZ2DR1.54	1/2"	3-5/8"	3-1/4"	9-3/4"	1266	964	765
HILTI KWIK BOLT TZ2 (KB-TZ2)			2TZ2DR1.55	5/8"	3-1/4"	2-3/4"	9-3/8"	1643	1285	1053
WEDGE ANCHOR— 3"x½" PLATE, MAX 12" LONG, SEE PLATE DETAIL		Y: Roy Lo	bo				.2" IAX	- 1 1 11		
SLW-12 FOR HSLH-34,		XXXXIIE: OU	19/202	C		7 LQ. —	<u>-</u> ΕQ.		-	

Ø OF HOLE IS ANCHOR Ø + 1/16"-

9/16"Ø HOLE FOR 1/2" BOLT,

15/16"Ø HOLE FOR 7/8" BOLT

NOTES:

SLW-78 FOR HSLH-1

SEE NOTE #9

HSLH-34 OR HSLH-1 ANCHOR BRACKET

15/4"X15/4"X12 GA.

STRUT CHANNEL

W

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN RIGID BRACE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.

MIN. 20GA STEEL

B-DFCK

- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR HSLH-34 DETAILS.

1%"X1%"X12 GA.

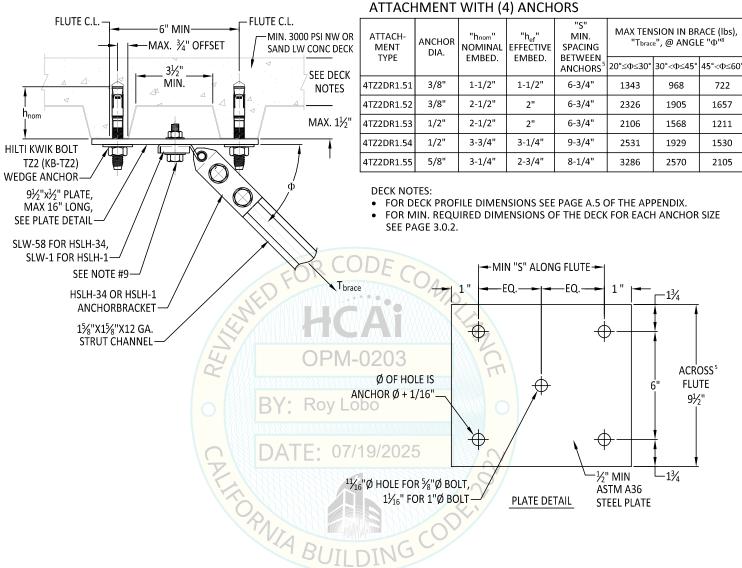
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-34 BRACKET & SLW-12 ON PAGE 4.11, USE $\frac{1}{2}$ " A307 Gr. A HEX BOLT TIGHTENED TO MIN. 50 LB-FT. FOR HSLH-1 BRACKET & SLW-78 ON PAGE 4.12, USE $\frac{7}{8}$ " A307 Gr. A HEX BOLT TIGHTENED TO MIN. 100 LB-FT.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

3"X½" MIN


ASTM A36

STEEL PLATE

PLATE DETAIL

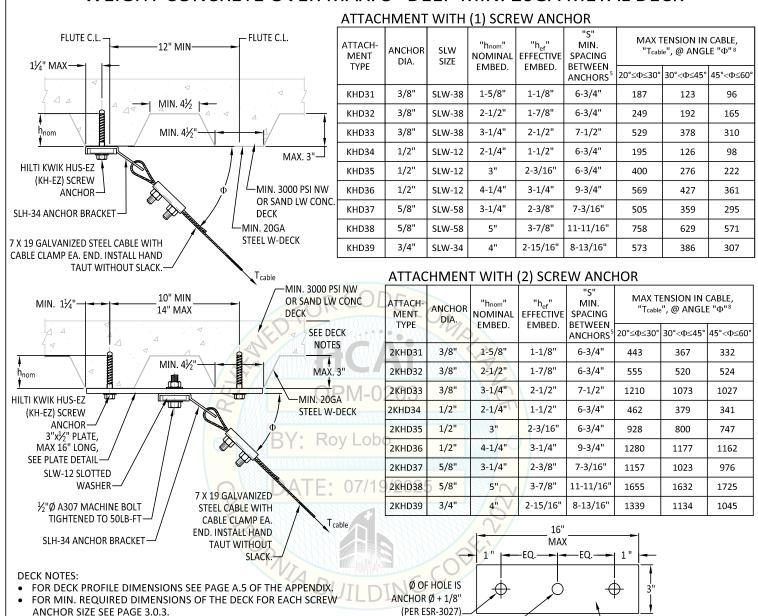
3.2.3

Date:

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-34 BRACKET & SLW-58 ON PAGE 4.11, USE ¾" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 65 LB-FT. FOR HSLH-1 BRACKET & SLW-1 ON PAGE 4.12, USE 1" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 100 LB-FT.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.2.4

Date:

HILTI KWIK HUS-EZ (KH-EZ) SCREW ANCHOR IN 3000 PSI NORMAL OR SAND LIGHT WEIGHT CONCRETE OVER MAX. 3" DEEP MIN. 20GA METAL DECK

NOTES:

1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.

9/16"Ø HOLE FOR 1/2" BOLT-

- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3027 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.

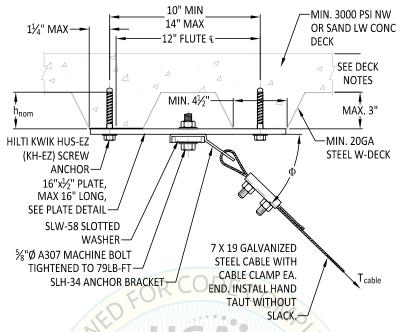
M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

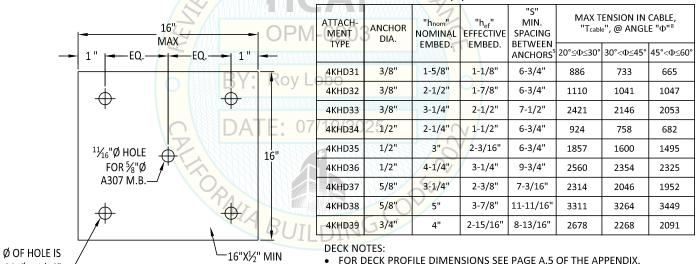
PLATE DETAIL

Page No.:

-3"X½" MIN


ASTM A36

STEEL PLATE


3.3.1

Date:

HILTI KWIK HUS-EZ (KH-EZ) SCREW ANCHOR IN 3000 PSI NORMAL OR SAND LIGHT WEIGHT CONCRETE OVER MAX. 3" DEEP MIN. 20GA METAL DECK

ATTACHMENT WITH (4) SCREW ANCHORS

ANCHOR SIZE SEE PAGE 3.0.3.

NOTES:

ANCHOR Ø + 1/16"-

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3027 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.

ASTM A36

STEEL PLATE

PLATE DETAIL

- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay

California PE No. S6481

FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH SCREW

Page No.:

3.3.2

Date:

HILTI KWIK HUS-EZ (KH-EZ) SCREW ANCHOR IN 3000 PSI NORMAL OR SAND LIGHT WEIGHT CONCRETE OVER MAX. 3" DEEP MIN. 20GA METAL DECK - FLUTE C.L. -12" MIN ATTACHMENT WITH (1) SCREW ANCHOR 11/4" MAX-MAX TENSION IN BRACE (lbs), MIN. ATTACH-ANCHOR SLW 'Tbrace". @ ANGLE "Φ' MENT NOMINAL EFFECTIVE **SPACING** SIZE DIA TYPF EMBED. EMBED. **BFTWFFN** 20°≤Φ≤30° 30°<Φ≤45° 45°<Φ≤60° ANCHORS MIN. $4\frac{1}{2}$ 3/8' 1-5/8 1-1/8 6-3/4 KHDR31 SI W-38 180 129 106 MIN. 41/2 KHDR32 3/8 2-1/2 1-7/8" 6-3/4" SI W-38 242 199 180 3-1/4" 2-1/2" 7-1/2" KHDR33 3/8 SLW-38 512 394 339 O MAX. 3" HILTI KWIK HUS-EZ KHDR34 1/2' SLW-12 2-1/4" 1-1/2" 6-3/4" 187 132 108 (KH-EZ) SCREW KHDR35 1/2' SLW-12 3" 2-3/16' 6-3/4" 386 288 243 MIN. 3000 PSI NW ANCHOR OR SAND LW CONC. KHDR36 1/2" SI W-12 4-1/4" 3-1/4" 9-3/4" 444 393 HSLH-34 ANCHOR BRACKET KHDR37 5/8" 3-1/4" 2-3/8" 7-3/16" SLW-58 375 322 MIN. 20GA KHDR38 5/8" SLW-58 5" 3-7/8" 11-11/16' 650 616 STEEL W-DECK 1%"X1%"X12 GA. KHDR39 3/4" SLW-34 2-15/16" 8-13/16" 404 337 STRUT CAHNNEL Thrace ATTACHMENT WITH (2) SCREW ANCHOR MIN. 3000 PSI NW 10" MIN MAX TENSION IN BRACE (lbs), OR SAND LW CONC ATTACH "hnom" "h_{ef}" MIN. MIN. 11/4" ANCHOR 14" MAX "Tbrace", @ ANGLE "Φ["] OMINAL FFECTIVE SPACING DECK MENT DIA. TYPE EMBED. EMBED. BETWEEN 20°<Ф<30° 30°<0<45° 45°<0<60 SEE DECK ANCHORS NOTES 3/8" 1-5/8' 1-1/8 6-3/4" 2KHDR31 412 345 316 MIN. 41/5' 6-3/4" 2KHDR32 3/8 2-1/2' 1-7/8 530 498 503 MAX. 2KHDR33 3/8" 3-1/4 2-1/2" 7-1/2 1143 1020 981 2KHDR34 1/2" 2-1/4" 1-1/2" 6-3/4" 429 357 HILTI KWIK HUS-EZ MIN. 20GA 324 O STEEL W-DECK (KH-EZ) SCREW 2KHDR35 1/2' 3" 2-3/16' 6-3/4" 872 757 712 ANCHOR 1/2" 4-1/4" 2KHDR36 3-1/4" 9-3/4" 1218 1124 1113 3"x1/2" PLATE, MAX 16" LONG, 5/8" 3-1/4" 2-3/8" 7-3/16" 2KHDR37 1092 971 932 SEE PLATE DETAIL Roy Lobo 2KHDR38 5/8" 5" 3-7/8" 11-11/16 1596 1573 1664 SLW-12 FOR HSLH-34. 2KHDR39 3/4" 4" 2-15/16" 8-13/16' 1071 1253 995 SLW-78 FOR HSLH-1 16" SEE NOTE #9 MAX HSLH-34 OR HSLH-1 1" 1 " -EO. EO. ANCHOR BRACKET 1%"X1%"X12 GA. Ø OF HOLE IS STRUT CHANNEL ANCHOR Ø + 1/8" **DECK NOTES:**

- FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX.
- FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH SCREW ANCHOR SIZE SEE PAGE 3.0.3.

NOTES:

 THE OVER STRENGTH FACTOR Ω₀ = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN RIGID BRACE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.

(PER ESR-3027).

9/16"Ø HOLE FOR 1/2" BOLT,

15/16"Ø HOLE FOR 7/8" BOLT

- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3027 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-34 BRACKET & SLW-12 ON PAGE 4.11, USE ½" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 50 LB-FT. FOR HSLH-1 BRACKET & SLW-78 ON PAGE 4.12, USE $\frac{7}{8}$ " A307 Gr. A HEX BOLT TIGHTENED TO MIN. 100 LB-FT.

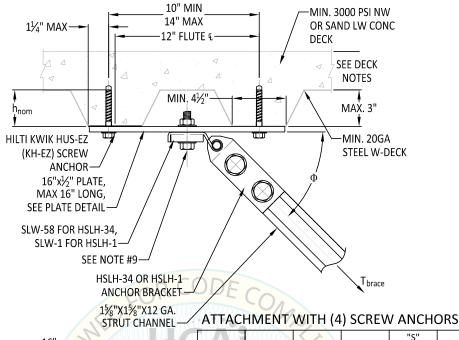
M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: 2. Tremblay California PE No. S6481 Page No.:

3.3.3

3"X1/5" MIN


ASTM A36

STEEL PLATE

PLATE DETAIL

Date:

HILTI KWIK HUS-EZ (KH-EZ) SCREW ANCHOR IN 3000 PSI NORMAL OR SAND LIGHT WEIGHT CONCRETE OVER MAX. 3" DEEP MIN. 20GA METAL DECK

			SINOIC	HAININEL	$\Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda^{2}$,				
	4 .	16" MAX			ATTACH- MENT	ANCHOR DIA.	"hnom" NOMINAL	"h _{ef} " EFFECTIVE	"S" MIN. SPACING		ENSION IN e", @ ANGL	
-	1"	-EQ. → EQ. –	1"	OPM	-0203	3	EMBED.	EMBED.	BETWEEN ANCHORS ⁵	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°
					4KHDR31	3/8"	1-5/8"	1-1/8"	6-3/4"	825	691	632
	+		Φ	Povil	4KHDR32	3/8"	2-1/2"	1-7/8"	6-3/4"	1060	997	1005
		I P III	BY.	ROY L	4KHDR33	3/8"	3-1/4"	<mark>2-</mark> 1/2"	7-1/2"	2286	2039	1961
Ø OF HOLE IS			<i>Taganaga</i>		4KHDR34	1/2"	2-1/4"	1-1/2"	6-3/4"	859	713	647
ANCHOR Ø + 1/8" (PER ESR-3027)_			DA	16" 07	4KHDR35	25/2"	3"	2-3/16"	6-3/4"	1743	1515	1425
(FEN ESN-3027)—	\downarrow				4KHDR36	1/2"	4-1/4"	3-1/4"	9-11/16"	2436	2247	2227
					4KHDR37	5/8"	3-1/4"	2-3/8"	7-3/16"	2184	1943	1864
	 				4KHDR38	5/8"	5"	3-7/8"	11-11/16"	3191	3147	3327
			TA		4KHDR39	3/4"	4"	2-15/16"	8-13/16"	2505	2142	1990
¹½6"Ø HOLE FOR 5%"Ø	BOLT,		16"X½	" MIN , T	DECK NO	TES:		ICIONIC CEE	DAGE A 5	05 THE AS	DENIEW.	

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN RIGID BRACE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3027 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.

ASTM A36

STEEL PLATE

PLATE DETAIL

- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.

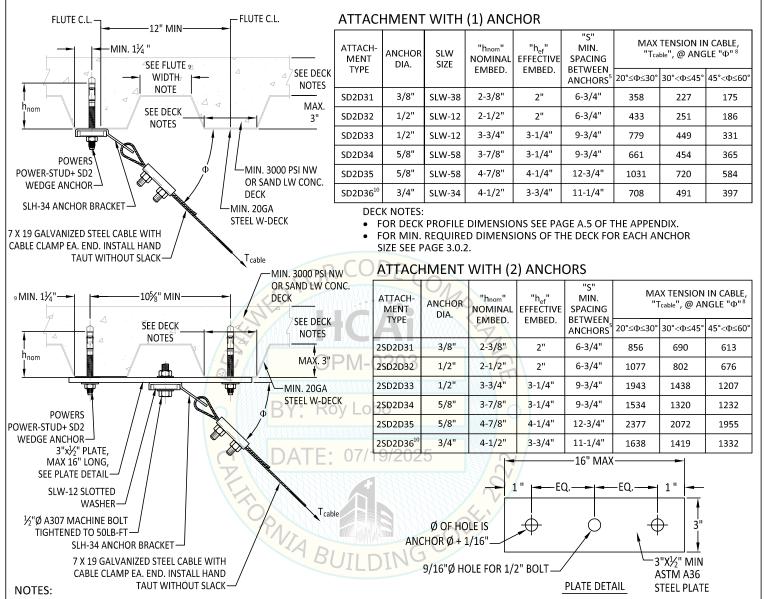
 $1\frac{1}{16}$ " FOR 1"Ø BOLT-

- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE"x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-34 BRACKET & SLW-58 ON PAGE 4.11, USE ¾" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 65 LB-FT. FOR HSLH-1 & SLW-1 ON PAGE. 4.12, USE 1" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 100 LB-FT.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

• FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX.


ANCHOR SIZE SEE PAGE 3.0.3.

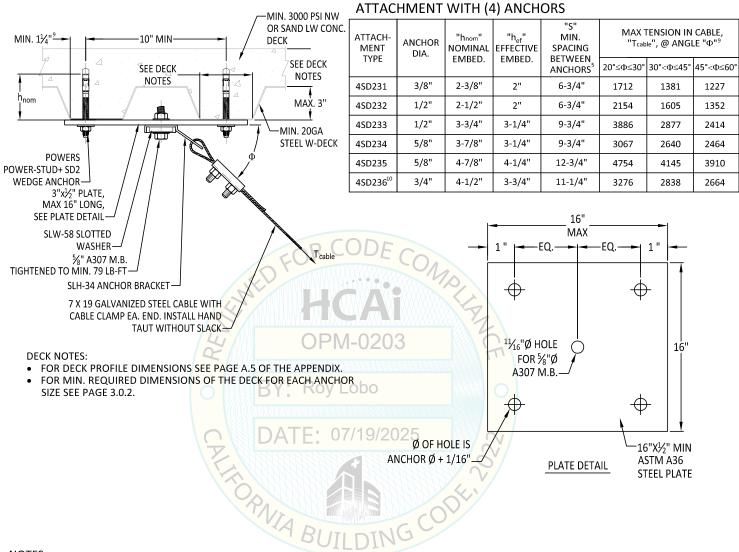
FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH SCREW

Page No.:

3.3.4

Date:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2502 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. EDGE OF FLUTE DISTANCE FOR 3-7/8" WIDE FLUTES IS 1" AND IS APPLICABLE TO THE 3/4" AND 3/5" DIA. ANCHORS ONLY.
- 10.MINIMUM DECK FLUTE WIDTH FOR 3/4" Ø ANCHORS IS 41/2".


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

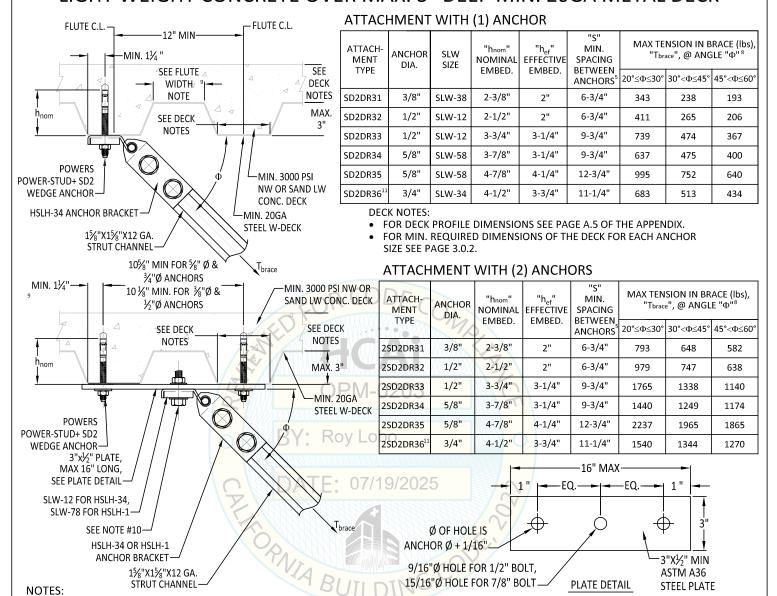
Page No.:

3.4.1

Date:

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω^0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2502 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. EDGE OF FLUTE DISTANCE FOR 3-7/8" WIDE FLUTES IS 1" AND IS APPLICABLE TO THE $\frac{3}{8}$ " AND $\frac{1}{2}$ " DIA. ANCHORS ONLY. 10.MINIMUM DECK FLUTE WIDTH FOR $\frac{3}{4}$ " Ø ANCHORS IS $\frac{4}{2}$ ".


M.W. Saussé & Co., Inc.

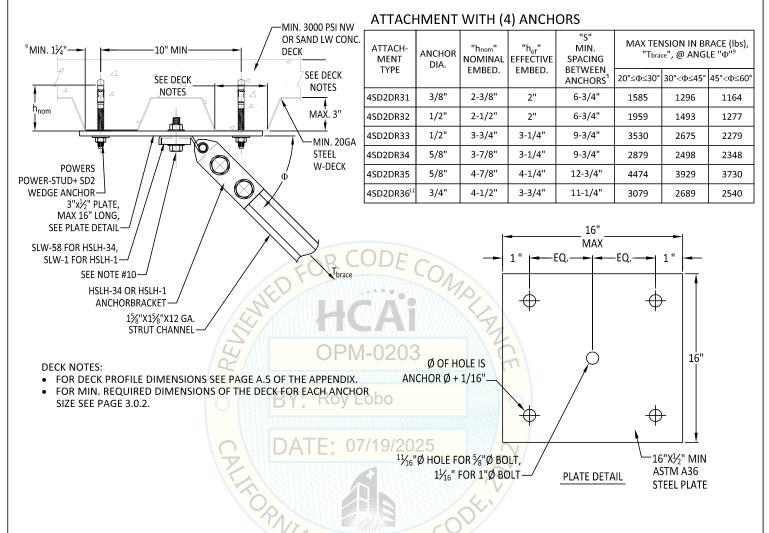
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

3.4.2

Date:

- 1. THE OVER STRENGTH FACTOR Ω_0 =2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN RIGID BRACE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2502 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. EDGE OF FLUTE DISTANCE FOR 3-7/8" WIDE FLUTES IS 1" AND IS APPLICABLE TO THE ¾" AND ½" DIA. ANCHORS ONLY.
- 10.FOR HSLH-34 BRACKET & SLW-12 ON PAGE 4.11, USE $\frac{1}{2}$ " A307 Gr. A HEX BOLT TIGHTENED TO MIN. 50 LB-FT. FOR HSLH-1 & SLW-78 ON PAGE 4.12, USE $\frac{7}{8}$ " A307 Gr. A HEX BOLT TIGHTENED TO MIN. 208 LB-FT.
- 11.MINIMUM DECK FLUTE WIDTH FOR 3/4" Ø ANCHORS IS 41/2".


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

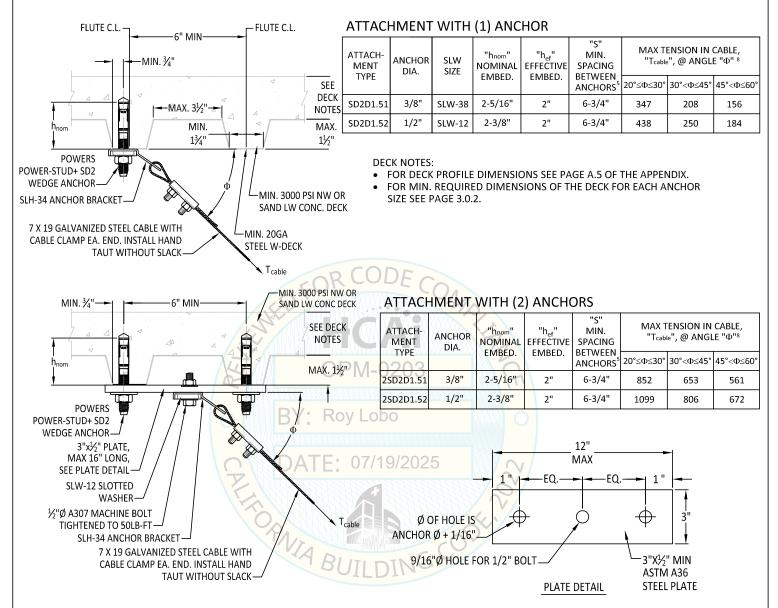
Page No.:

3.4.3

Date:

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN RIGID BRACE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2502 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. EDGE OF FLUTE DISTANCE FOR 3-7/8" WIDE FLUTES IS 1" AND IS APPLICABLE TO THE ¾" AND ½" DIA. ANCHORS ONLY.
- 10.FOR HSLH-34 BRACKET & SLW-58 ON PAGE 4.11, USE 3" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 65 LB-FT. FOR HSLH-1 & SLW-1 ON PAGE 4.12, USE 1" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 251 LB-FT.
- 11.MINIMUM DECK FLUTE WIDTH FOR 3/4" Ø ANCHORS IS 41/2".


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

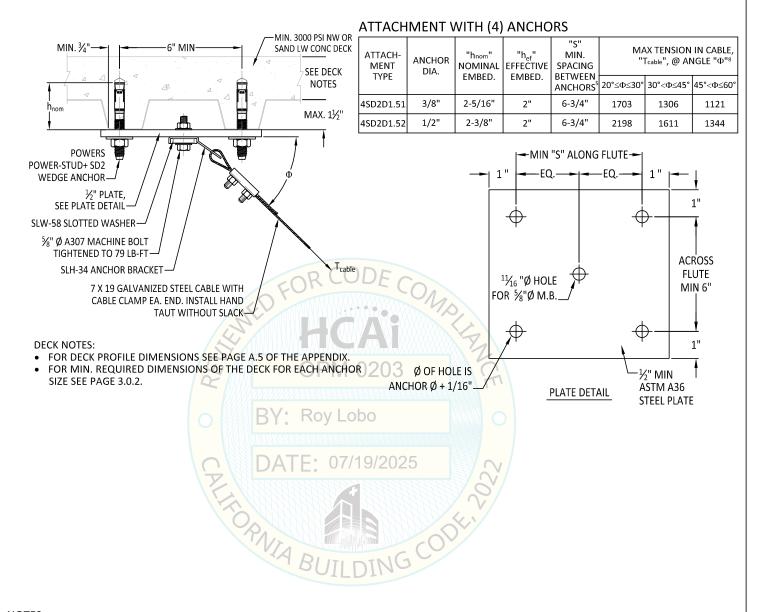
Page No.:

3.4.4

Date:

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2502 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

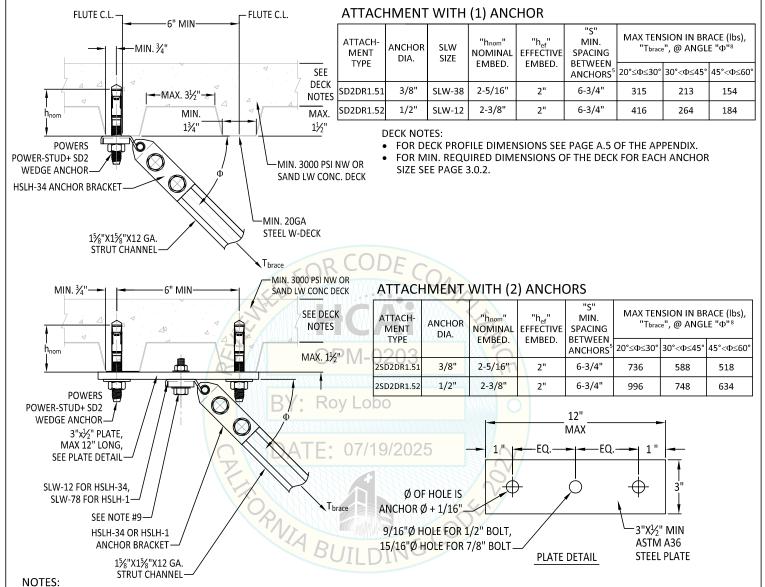
Page No.:

3.5.1

Date:

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2502 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.


M.W. Saussé & Co., Inc.

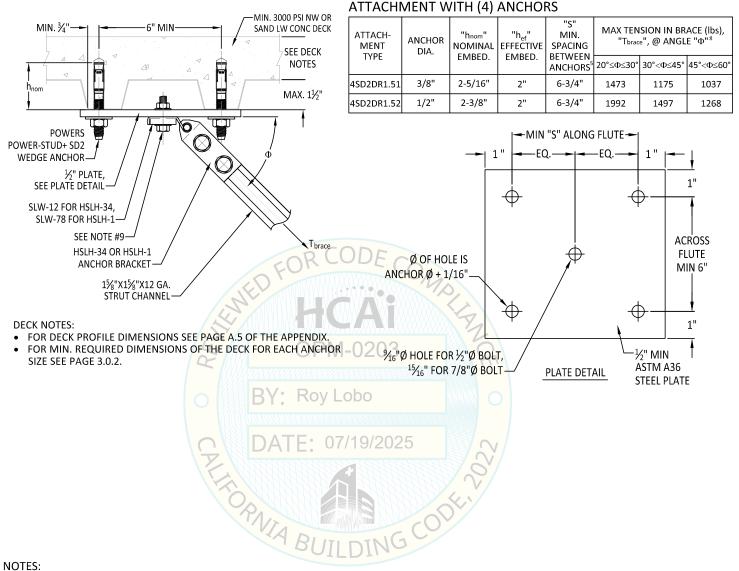
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.5.2

Date:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN RIGID BRACE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2502 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-34 BRACKET & SLW-12 ON PAGE 4.11, USE $\frac{1}{2}$ " A307 Gr. A HEX BOLT TIGHTENED TO MIN. 50 LB-FT. FOR HSLH-1 & SLW-78 ON PAGE 4.12, USE $\frac{7}{8}$ " A307 Gr. A HEX BOLT TIGHTENED TO MIN. 208 LB-FT.


M.W. Saussé & Co., Inc.

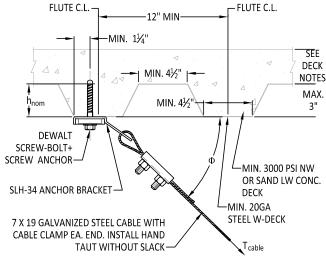
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

3.5.3

Date:

- 1. THE OVER STRENGTH FACTOR Ω₀ =2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN RIGID BRACE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2502 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-34 BRACKET & SLW-58 ON PAGE 4.11, USE %" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 65 LB-FT. FOR HSLH-1 & SLW-1 ON PAGE 4.12, USE 1" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 251 LB-FT.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: 7. Tremblay California PE No. S6481 Page No.:

3.5.4

Date:

ATTACHMENT WITH (1) SCREW ANCHOR

ATTACH- MENT	ANCHOR DIA.	SLW SIZE	"h _{nom} " NOMINAL	"h _{ef} " EFFECTIVE	"S" MIN. SPACING		MAX TENSION IN BI "Tcable", @ ANG	
TYPE			EMBED.	EMBED.	BETWEEN ANCHORS⁵	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°
SCD31	3/8"	SLW-38	2"	1-5/16"	6-3/4"	264	153	113
SCD32	3/8"	SLW-38	2-1/2"	1-3/4"	6-3/4"	383	245	189
SCD33	3/8"	SLW-38	3-1/4"	2-3/8"	6-3/4"	466	306	239
SCD34	1/2"	SLW-12	2-1/2"	1-3/4"	6-3/4"	334	203	153
SCD35	1/2"	SLW-12	3"	2-3/16"	6-3/4"	481	332	267
SCD36	1/2"	SLW-12	4-1/4"	3-1/4"	9-3/4"	950	617	481
SCD37	5/8"	SLW-58	3-1/4"	2-1/4"	6-3/4"	301	172	127
SCD38	5/8"	SLW-58	4"	2-7/8"	8-5/8"	437	275	211
SCD39	5/8"	SLW-58	5"	3-3/4"	11-1/4"	728	418	308
SCD310	3/4"	SLW-34	4-1/4"	3-1/16"	9-3/16"	822	528	410

ATTACHMENT WITH (2) SCREW ANCHORS

	· ·					ATTACHIVIENT WITH (2) SCREW ANCHORS							
MIN. 1½" 10" MIN 14" MAX		MIN. 3000 PSI NW OR SAND LW CONC DECK	ATTACH- MENT TYPE	ANCHOR DIA.	"h _{nom} " NOMINAL EMBED.	"h _{ef} " EFFECTIVE EMBED.	"S" MIN. SPACING BETWEEN ANCHORS ⁵	MAX TENSION IN BRACE (lbs), "Tcable", @ ANGLE "Φ" 8					
								20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°			
MIN. 4½"		NOTES MAX. 3"	2SCD31	3/8"	2"	1-5/16"	6-3/4"	657	488	411			
			2SCD32	3/8"	2-1/2"	1-3/4"	6-3/4"	912	740	661			
			2SCD33	3/8"	3-1/4"	2-3/8"	6-3/4"	1101	912	826			
DEWALT SCREW-BOLT+ SCREW ANCHOR 3"x½" PLATE, MAX 16" LONG, SEE PLATE DETAIL SLW-12 SLOTTED WASHER		MIN. 20GA STEEL W-DECK ROY LOBO	2SCD34	1/2"	2-1/2"	1-3/4"	6-3/4"	814	631	546			
			2SCD35	1/2"	3"	2-3/16"	6-3/4"	1115	962	900			
			2SCD36	1/2"	4-1/4"	3-1/4"	9-3/4"	2252	1852	1669			
			2SCD37	5/8"	3-1/4"	2-1/4"	6-3/4"	753	554	463			
			2SCD38	5/8"	4"	2-7/8"	8-5/8"	1050	840	742			
		TATE. 07/40/0	2SCD39	5/8"	5"	3-3/4"	11-1/4"	1821	1343	1125			
	10	1 E: 07/19/2	2SCD310	3/4"	4-1/4"	3-1/16"	9-3/16"	1956	1595	1428			
½"Ø A307 MACHINE BOLT TIGHTENED TO 50LB-FT		T _{cable}	16"										
SLH-34 ANCHOR BRACKET—			1" "	 -EQ		. 1"							
7 X 19 GALVANIZED STEEL CA CABLE CLAMP EA. END. INST.		PARTITION	MARK	OV	1	<u>-</u> -		1	 				

DECK NOTES:

• FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX.

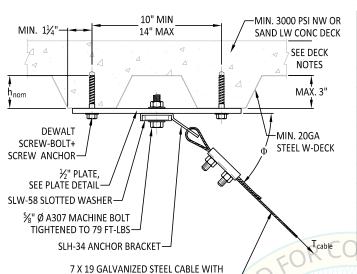
TAUT WITHOUT SLACK-

 FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH SCREW ANCHOR SIZE SEE PAGE 3.0.3.

9/16"Ø HOLE FOR 1/2" BOLT 9/16"Ø HOLE FOR 1/2" BOLT 3"X½" MIN ASTM A36 PLATE DETAIL STEEL PLATE

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3889 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

3.6.1

Date:

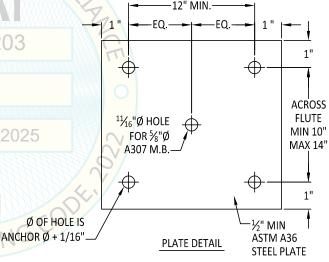
ATTACHMENT WITH (4) SCREW ANCHORS

ATTACH- MENT	ANCHOR DIA.	DIA NOMINAL		"S" MIN. SPACING BETWEEN		SION IN BR ", @ ANGL	
TYPE		EMBED.	EMBED.	ANCHORS⁵	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°
4SCD31	3/8"	2"	1-5/16"	6-3/4"	1313	977	822
4SCD32	3/8"	2-1/2"	1-3/4"	6-3/4"	1825	1481	1322
4SCD33	3/8"	3-1/4"	2-3/8"	6-3/4"	2203	1824	1653
4SCD34	1/2"	2-1/2"	1-3/4"	6-3/4"	1628	1262	1091
4SCD35	1/2"	3"	2-3/16"	6-3/4"	2229	1924	1800
4SCD36	1/2"	4-1/4"	3-1/4"	9-3/4"	4504	3704	3338
4SCD37	5/8"	3-1/4"	2-1/4"	6-3/4"	1507	1107	925
4SCD38	5/8"	4"	2-7/8"	8-5/8"	2100	1679	1483
4SCD39	5/8"	5"	3-3/4"	11-1/4"	3641	2686	2249
4SCD310	3/4"	4-1/4"	3-1/16"	9-3/16"	3912	3189	2856

DECK NOTES:

FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX.

TAUT WITHOUT SLACK-


CABLE CLAMP EA. END. INSTALL HAND

FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH SCREW

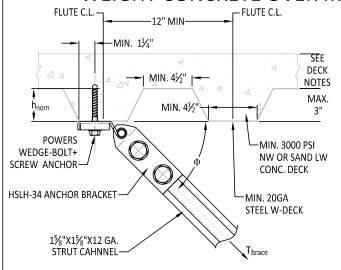
 ANCHOR SIZE SEE PAGE 3.0.3.

BY: Roy Lobo

DATE: 07/19/2025

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3889 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

3.6.2

Date:

ATTACHMENT WITH (1) SCREW ANCHOR

ATTACH- MENT	ANCHOR SLW		"hnom" NOMINAL	"h _{ef} " EFFECTIVE	"S" MIN. SPACING		NSION IN B	
TYPE			EMBED.	EMBED.	BETWEEN ANCHORS⁵	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°
SCDR31	3/8"	SLW-38	2"	1-5/16"	6-3/4"	251	161	125
SCDR32	3/8"	SLW-38	2-1/2"	1-3/4"	6-3/4"	367	257	208
SCDR33	3/8"	SLW-38	3-1/4"	2-3/8"	6-3/4"	448	320	263
SCDR34	1/2"	SLW-12	2-1/2"	1-3/4"	6-3/4"	318	213	169
SCDR35	1/2"	SLW-12	3"	2-3/16"	6-3/4"	464	347	293
SCDR36	1/2"	SLW-12	4-1/4"	3-1/4"	9-3/4"	912	647	293
SCDR37	5/8"	SLW-58	3-1/4"	2-1/4"	6-3/4"	285	182	140
SCDR38	5/8"	SLW-58	4"	2-7/8"	8-5/8"	418	289	232
SCDR39	5/8"	SLW-58	5"	3-3/4"	11-1/4"	691	441	341
SCDR310	3/4"	SLW-34	4-1/4"	3-1/16"	9-3/16"	788	554	451

ATTACHMENT WITH (2) SCREW ANCHORS

MIN. 11/4"	10" MIN 14" MAX	MIN. 3000 PSI NW OR SAND LW CONC DECK	ATTACH- MENT	ANCHOR DIA.		"h _{ef} " EFFECTIVE	"S" MIN. SPACING		NSION IN B ace", @ ANG	
44 1	4MIN. 4½" 	SEE DECK	TYPE	1	EMBED.	EMBED.	BETWEEN ANCHORS ⁵	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°
		NOTES	2SCDR31	3/8"	2"	1-5/16"	6-3/4"	597	455	388
h _{nom}	MIN. 4½"	MAX. 3"	2SCDR32	3/8"	2-1/2"	1-3/4"	6-3/4"	846	696	627
			2SCDR33	3/8"	3-1/4"	2-3/8"	6-3/4"	1025	859	785
<u> </u>		MIN. 20GA /	2SCDR34	1/2"	2-1/2"	1-3/4"	6-3/4"	747	590	516
POWERS / / WEDGE-BOLT+ /		STEEL W-DECK	2SCDR35	1/2"	3"	2-3/16"	6-3/4"	1047	911	858
SCREW ANCHOR—		φ ,	2SCDR36	1/2"	4-1/4"	3-1/4"	9-3/4"	2094	1743	1585
3"x½" PLATE, MAX 16" LONG. / /		BY: Roy Lobo	2SCDR37	5/8"	3-1/4"	2-1/4"	6-3/4"	683	514	437
SEE PLATE DETAIL			2SCDR38	5/8"	4"	2-7/8"	8-5/8"	970	788	703
SLW-12 FOR HSLH-34,		12 15 07/40/00	2SCDR39	5/8"	5"	3-3/4"	11-1/4"	1652	1249	1062
SLW-78 FOR HSLH-1—/		E: 07/19/20	2SCDR310	3/4"	4-1/4"	3-1/16"	9-3/16"	1815	1499	1356
SEE NOTE #9—		T _{brace}	HHH:		16" MA		-			

DECK NOTES:

- FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX.
- FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH SCREW ANCHOR SIZE SEE PAGE 3.0.3.

15/8"X15/8"X12 GA.

STRUT CAHNNEL-

\emptyset OF HOLE IS ANCHOR \emptyset + 1/16"

9/16"Ø HOLE FOR 1/2" BOLT, 15/16"Ø HOLE FOR 7/8" BOLT- 3"X½" MIN
ASTM A36
PLATE DETAIL STEEL PLATE

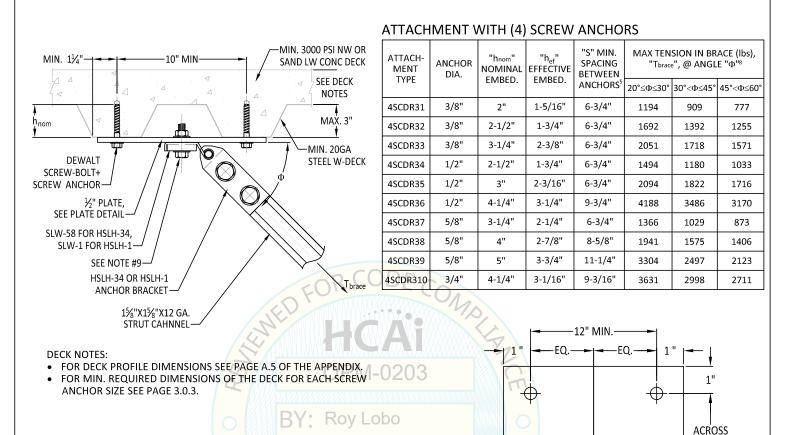
NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN RIGID BRACE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3889 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.

HSLH-34 OR HSLH-1

ANCHOR BRACKET

- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-34 BRACKET & SLW-12 ON PAGE 4.11, USE ½" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 50 LB-FT. FOR HSLH-1 & SLW-78 ON PAGE 4.12, USE ¾" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 208 LB-FT.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

3.6.3

Date:

Ø OF HOLE IS

 1 $_{16}$ "Ø HOLE FOR $\frac{5}{8}$ "Ø BOLT,

 $1\frac{1}{16}$ " FOR 1"Ø BOLT

ANCHOR Ø + 1/16".

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN RIGID BRACE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3889 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-34 BRACKET & SLW-58 ON PAGE 4.11, USE ¾" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 65 LB-FT. FOR HSLH-1 & SLW-1 ON PAGE 4.12, USE 1" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 251 LB-FT.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

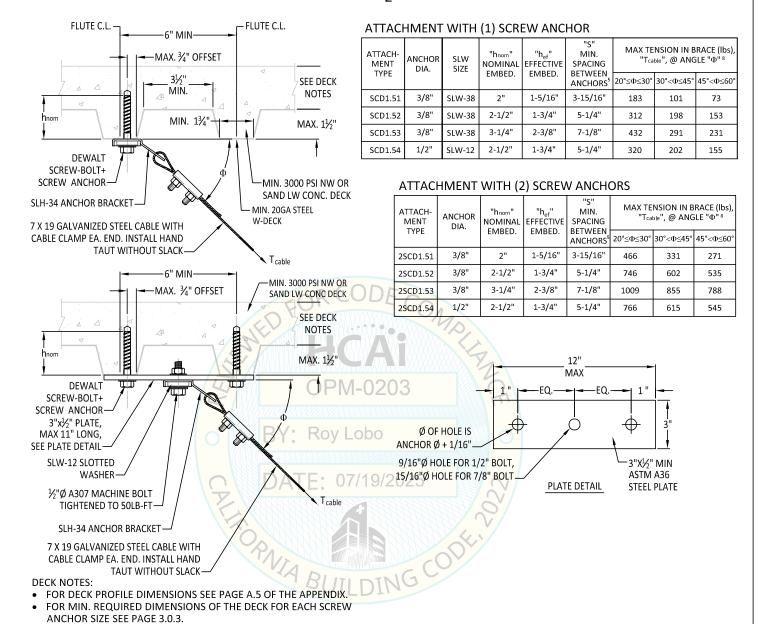
Page No.:

3.6.4

FLUTE

MIN 10'

MAX 14"


1"

½" MIN ASTM A36

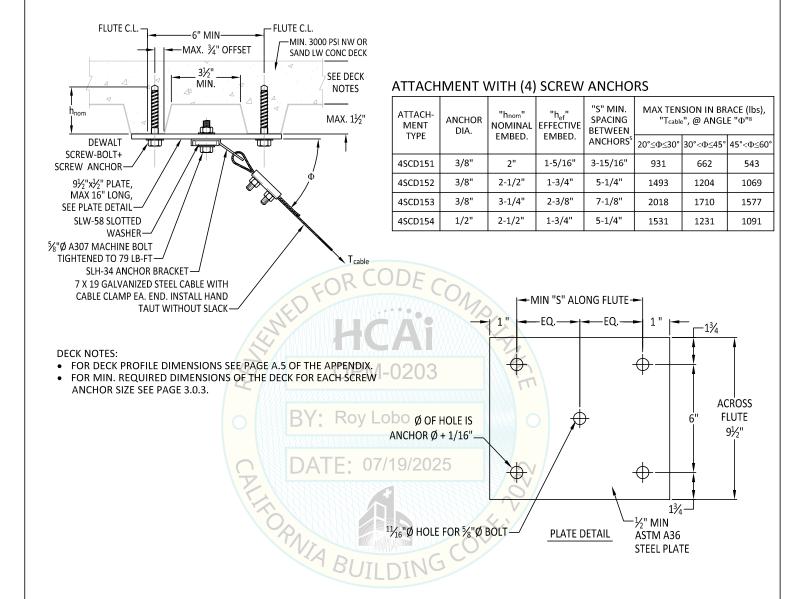
STEEL PLATE

PLATE DETAIL

Date:

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3889 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

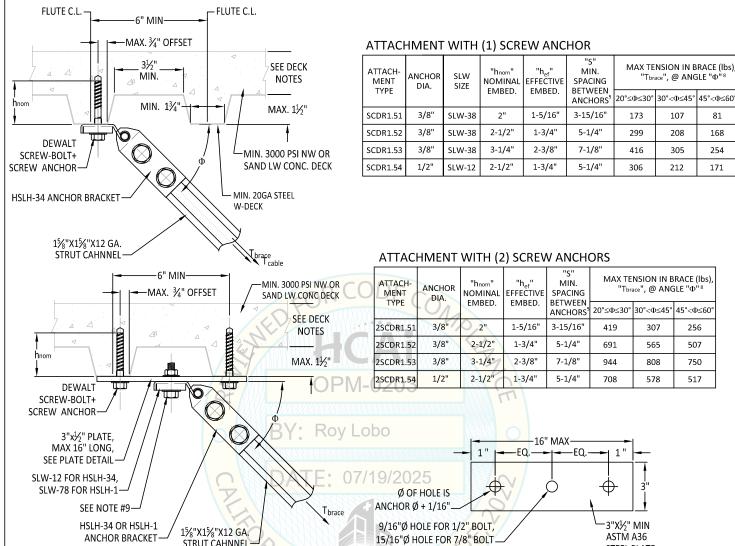
Page No.:

3.6.5

Date:

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3889 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

3.6.6

Date:

ANCHOR SIZE SEE PAGE 3.0.3. NOTES:

DECK NOTES:

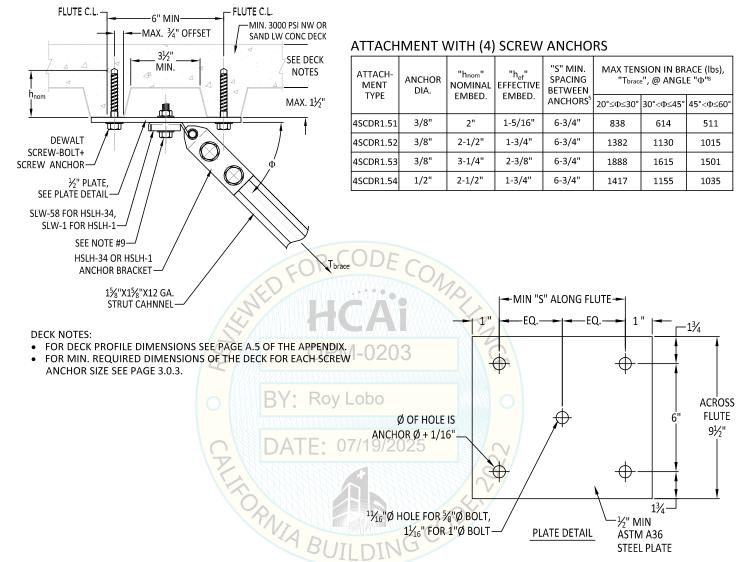
- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN RIGID BRACE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3889 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.

FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX. FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH SCREW

- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-34 BRACKET & SLW-12 ON PAGE 4.11, USE $\frac{1}{2}$ " A307 Gr. A HEX BOLT TIGHTENED TO MIN. 50 LB-FT. FOR HSLH-1 & SLW-58 ON PAGE 4.12, USE $\frac{7}{8}$ " A307 Gr. A HEX BOLT TIGHTENED TO MIN. 208 LB-FT.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481


Page No.:

STEEL PLATE

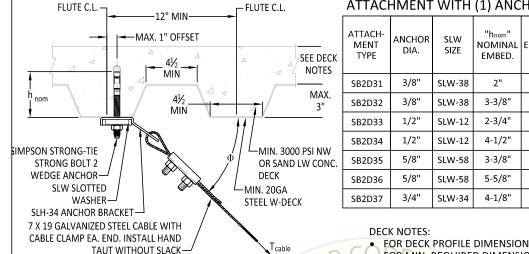
PLATE DETAIL

3.6.7

Date:

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN RIGID BRACE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3889 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-34 BRACKET & SLW-58 ON PAGE 4.11, USE ⁵/₈" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 65 LB-FT. FOR HSLH-1 & SLW-1 ON PAGE 4.12, USE 1" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 251 LB-FT.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.6.8

Date:

ATTACHMENT WITH (1) ANCHOR

	ATTACH- MENT	ANCHOR SLW DIA. SIZE				"h _{nom} " NOMINAL	"h _{ef} " EFFECTIVE	"S" MIN. SPACING		ENSION IN _e ", @ ANGL	
	TYPE			EMBED.	EMBED.	BETWEEN ANCHORS ⁵	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°		
	SB2D31	3/8"	SLW-38	2"	1-5/8"	6-3/4"	288	173	130		
	SB2D32	3/8"	SLW-38	3-3/8"	3"	9"	683	422	322		
	SB2D33	1/2"	SLW-12	2-3/4"	2-1/4"	6-3/4"	451	302	239		
	SB2D34	1/2"	SLW-12	4-1/2"	4"	12"	750	452	340		
ſ	SB2D35	5/8"	SLW-58	3-3/8"	2-3/4"	8-1/4"	567	383	305		
	SB2D36	5/8"	SLW-58	5-5/8"	5"	15"	1271	796	609		
	SB2D37	3/4"	SLW-34	4-1/8"	3-3/8"	10-1/8"	729	453	345		

- FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX.
- FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH ANCHOR SIZE SEE PAGE 3.0.2.

EFFECTIVE

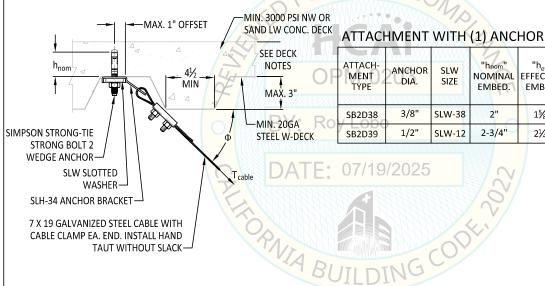
EMBED.

15/3"

21/1

MIN.

SPACING


BETWEEN ANCHORS⁵ 20°≤Φ≤30°

6-3/4"

6-3/4"

446

1011

NOTES:

- THE OVER STRENGTH FACTOR Ω₀ = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3037 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: 1. Tremblay

California PE No. S6481

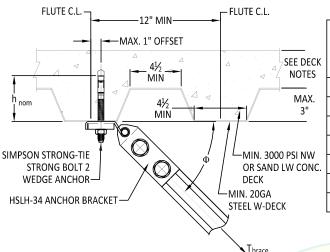
Page No.:

3.7.1

MAX TENSION IN CABLE,

"T_{cable}", @ ANGLE "Φ" [§]

243


618

|30°<Φ≤45°|45°<Φ≤60°

175

468

Date:

ATTACHMENT WITH (1) ANCHOR

ATTACH- MENT	T ANCHOR SLW		I NOMINAL LEFER TIME SPACING 1			ISION IN BR e", @ ANGL		
TYPE			EMBED.	EMIBED.	ANCHORS ⁵	20°≤Φ≤30°	30°<Ф≤45°	45°<Φ≤60°
SB2DR31	3/8"	SLW-38	2"	1-5/8"	6-3/4"	274	182	143
SB2DR32	3/8"	SLW-38	3-3/8"	3"	9"	652	444	355
SB2DR33	1/2"	SLW-12	2-3/4"	2-1/4"	6-3/4"	434	316	262
SB2DR34	1/2"	SLW-12	4-1/2"	4"	12"	846	594	483
SB2DR35	5/8"	SLW-58	3-3/8"	2-3/4"	8-1/4"	546	401	334
SB2DR36	5/8"	SLW-58	5-5/8"	5"	15"	1216	836	672
SB2DR37	3/4"	SLW-34	4-1/8"	3-3/8"	10-1/8"	697	476	381

DECK NOTES:

FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX.
FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH ANCHOR SIZE SEE PAGE 3.0.2.

HCAI

OPM-0203

BY: Roy Lobo

DATE: 07/19/2025

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3037 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

3.7.2

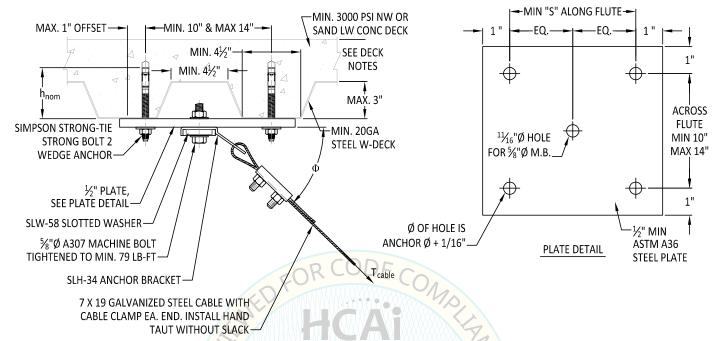
Date:

DECK NOTES:

- FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX.
- FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH ANCHOR SIZE SEE PAGE 3.0.2.

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω^{0} = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3037 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR SLH-34 BRACKET & SLW-12 ON PAGE 4.4, USE ½" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 50 LB-FT.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.8.1

Date:

ATTACHMENT WITH (4) ANCHORS

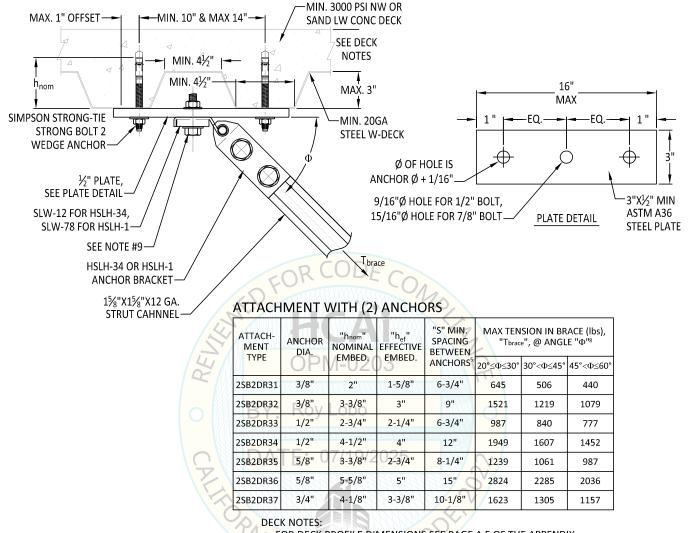
ATTACH- MENT	ANCHOR DIA.	"hnom" NOMINAL	"h _{ef} " EFFECTIVE	"S" MIN. SPACING BETWEEN	MAX TENSION IN CABLE, "Tcable", @ ANGLE "Φ" ⁸		
TYPE	BY:	ROY LO	EMBED.	ANCHORS⁵	20°≤Φ≤ <mark>30°</mark>	30°<Φ≤45°	45°<Φ≤60°
4SB2D31	3/8"	2"	1-5/8"	6-3/4"	1409	1083	931
4SB2D32	3/8"	3-3/8"	1103/20	9"	3301	2603	2277
4SB2D33	1/2"	2-3/4"	2-1/4"	6-3/4"	2112	1779	1634
4SB2D34	1/2"	4-1/2"	4"	12"	3669	2829	2437
4SB2D35	5/8"	3-3/8"	2-3/4"	8-1/4"	2648	2247	2074
4SB2D36	5/8"	5-5/8"	5"	15"	6116	4874	4295
4SB2D37	3/4"	4-1/8"	3-3/8"	10-1/8"	3520	2785	2442

DECK NOTES:

- FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX.
- FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH ANCHOR SIZE SEE PAGE 3.0.2.

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3037 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

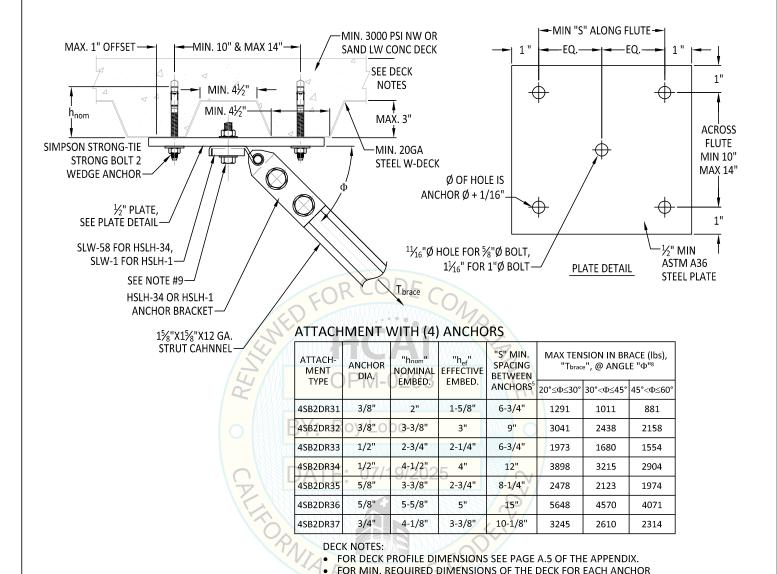
3.8.2

Date:

- FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX.
- FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH ANCHOR SIZE SEE PAGE 3.0.2.

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 =2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3037 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-34 BRACKET & SLW-12 ON PAGE 4.11, USE ½" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 50 LB-FT. FOR HSLH-1 & SLW-78 ON PAGE 4.12, USE $\frac{7}{8}$ " A307 Gr. A HEX BOLT TIGHTENED TO MIN. 208 LB-FT.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: 7. Tremblay California PE No. S6481 Page No.:

3.8.3

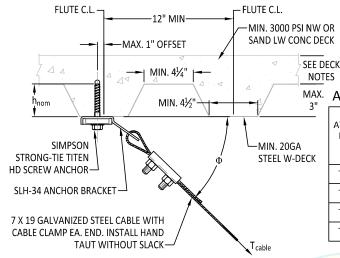
Date:

NOTES:

- 1. THE OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN THE DESIGN LOAD ON THE ANCHORS MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3037 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.

SIZE SEE PAGE 3.0.2.

- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-34 BRACKET & SLW-58 ON PAGE 4.11, USE ⁵/₈" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 65 LB-FT. FOR HSLH-1 & SLW-1 ON PAGE 4.12, USE 1" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 251 LB-FT.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

3.8.4

Date:

ATTACHMENT WITH (1) SCREW ANCHOR

ATTACH- MENT	ANCHOR DIA.	SLW SIZE	"hnom" NOMINAL	"h _{ef} " EFFECTIVE	"S" MIN. SPACING	MAX TENSION IN CAE "Tcable", @ ANGLE		
TYPE			EMBED.	EMBED.	BETWEEN ANCHORS⁵	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°
THD31	3/8"	SLW-38	1-7/8"	1-1/4"	6-3/4"	134	70	50
THD32	3/8"	SLW-12	2-1/2"	1-3/4"	6-3/4"	246	146	109
THD33	1/2"	SLW-12	2"	1-5/16"	6-3/4"	254	152	113
THD34	1/2"	SLW-58	3-1/2"	2-9/16"	711/16"	524	327	250

DECK NOTES:

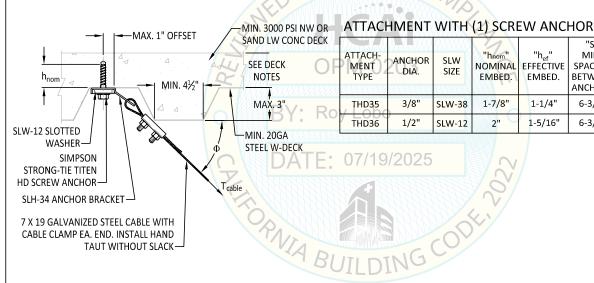
- FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX.
- FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH SCREW ANCHOR SIZE SEE PAGE 3.0.3.

"h_{ef}"

EMBED.

1-1/4"

1-5/16"


MIN.

SPACING

BETWEEN

6-3/4"

6-3/4"

NOTES:

- 1. OVER STRENGTH FACTOR Ω₀ =2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2713 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: 1. Tremblay California PE No. S6481 Page No.:

3.9.1

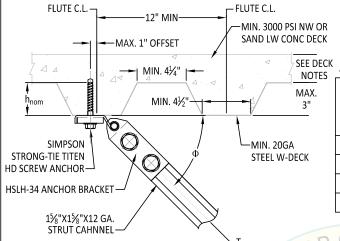
MAX TENSION IN CABLE,

"T_{cable}", @ ANGLE "Φ"

96

306

67

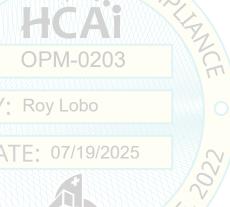

221

ANCHORS⁵ 20°≤Φ≤30° 30°<Φ≤45° 45°<Φ≤60°

191

556

Date:



SEE DECK ATTACHMENT WITH (1) SCREW ANCHOR

ATTACH- MENT TYPE	ANCHOR DIA.	SLW SIZE	"h _{nom} " NOMINAL EMBED.	"h _{ef} " EFFECTIVE EMBED.	"S" MIN. SPACING BETWEEN	"Tbrac	SION IN BR e", @ ANGL	Ε "Φ ^{'' 8}
				EIVIDED.	ANCHORS ⁵	20°≤Ф≤30°	30°<Ф≤45°	45°<Φ≤60°
THDR31	3/8"	SLW-38	1-7/8"	1-1/4"	6-3/4"	126	74	55
THDR32	3/8"	SLW-12	2-1/2"	1-3/4"	6-3/4"	234	154	121
THDR33	1/2"	SLW-12	2"	1-5/16"	6-3/4"	242	160	125
THDR34	1/2"	SLW-58	3-1/2"	2-9/16"	7-11/16"	501	343	275

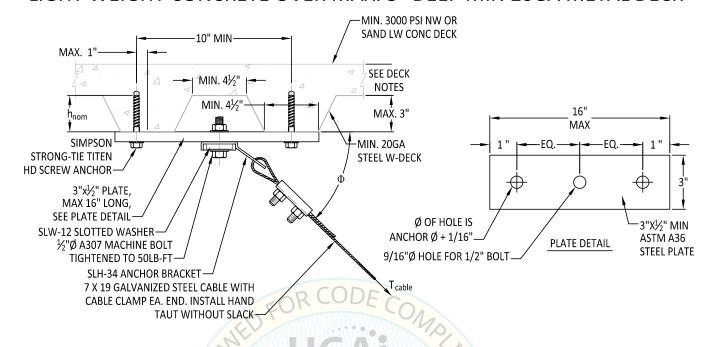
DECK NOTES:

- FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX.
- FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH SCREW ANCHOR SIZE SEE PAGE 3.0.3.

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2713 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.9.2

Date:

ATTACHMENT WITH (2) SCREW ANCHORS

ATTACH- MENT	ANCHOR DIA.	"hnom" NOMINAL	"h _{ef} "2	"S" MIN. SPACING	MAX TEN "Tcabl	BLE (lbs), E "Φ" ⁸	
TYPE		EMBED.	EMBED.	BETWEEN ANCHORS ⁵	<mark>20°≤</mark> Φ≤30°	30°<Φ≤45°	45°<Φ≤60°
2THD31	3/8"	1-7/8"	1-1/4"	6-3/4"	351	236	188
2THD32	3/8"	2-1/2"	1-3/4"	6-3/4"	606	461	394
2THD33	1/2"	2" (1-5/16"/	6-3/4"	625	477	408
2THD34	1/2"	3-1/2"	2-9/16"	7-11/16"	1263	1003	882

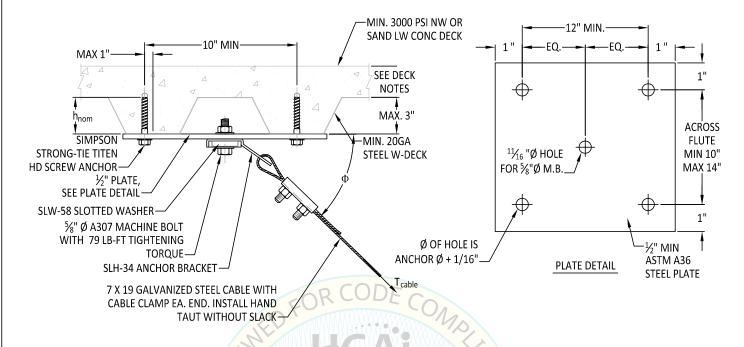
DECK NOTES:

- FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX.
- FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH SCREW ANCHOR SIZE SEE PAGE 3.0.3.

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2713 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. Φ = 90° ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.10.1

Date:

ATTACHMENT WITH (4) SCREW ANCHOR

ATTACH- MENT	ANCHOR DIA.	"hnom" NOMINAL	"h _{ef} "	EFFECTIVE SPACING		MAX TENSION IN CA		
TYPE	D	EMBED.	EMBED.	ANCHORS ⁵	20°≤Φ≤30°	30°<Ф≤45°	45°<Φ≤60°	
4THD31	3/8"	1-7/8"	1-1/4"	6-3/4"	703	473	375	
4THD32	3/8"	2-1/2"	1-3/4"	6-3/4"	1212	922	787	
4THD33	1/2"	AT2 'E:	1-5/16")/6-3/4"5	1250	954	816	
4THD34	1/2"	3-1/2"	2-9/16"	7-11/16"	2527	2006	1763	

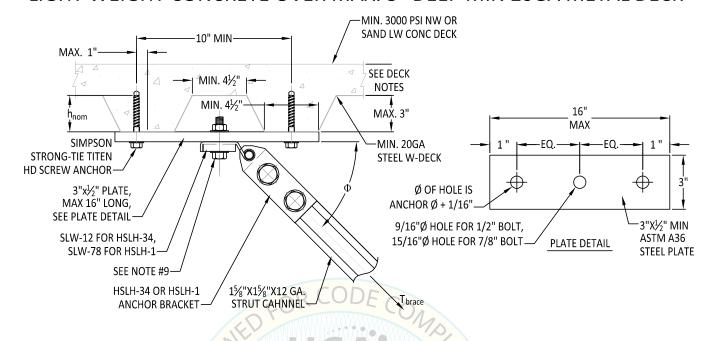
DECK NOTES:

- FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX.
- FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH SCREW ANCHOR SIZE SEE PAGE 3.0.3.

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2713 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.10.2

Date:

ATTACHMENT WITH (2) SCREW ANCHORS

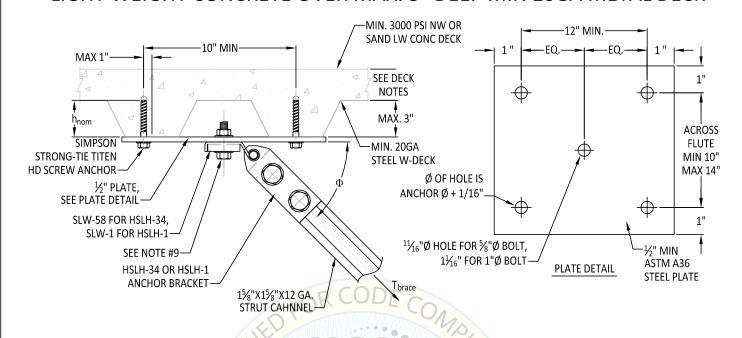
ATTACH- MENT	ANCHOR DIA.	"hnom" NOMINAL	"h _{ef} "2	"S" MIN. SPACING	MAX TENSION IN BRA		
TYPE		EMBED.	EMBED.	BETWEEN ANCHORS ⁵	<mark>20°≤</mark> Φ≤30°	30°<Φ≤45°	45°<Φ≤60°
2THDR31	3/8"	1-7/8"	1-1/4"	6-3/4"	312	218	176
2THDR32	3/8"	2-1/2"	1-3/4"	6-3/4"	554	430	372
2THDR33	1/2" 🛆	2" (7-5/16"/	6-3/4"	572	445	386
2THDR34	1/2"	3-1/2"	2-9/16"	7-11/16"	1166	940	836

DECK NOTES:

- FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX.
- FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH SCREW ANCHOR SIZE SEE PAGE 3.0.3.

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2713 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-34 BRACKET & SLW-12 ON PAGE 4.11, USE $\frac{1}{2}$ " A307 Gr. A HEX BOLT TIGHTENED TO MIN. 50 LB-FT. FOR HSLH-1 & SLW-78 ON PAGE 4.11, USE $\frac{7}{8}$ " A307 Gr. A HEX BOLT TIGHTENED TO MIN. 208 LB-FT.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

3.10.3

Date:

ATTACHMENT WITH (4) SCREW ANCHOR

ATTACH- MENT	ANCHOR DIA.	"hnom" NOMINAL	"h _{ef} "	"S" MIN. SPACING BETWEEN		ACE (lbs), .Ε "Φ" ⁸	
TYPE		EMBED.	EMBED.	ANCHORS⁵	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°
4THDR31	3/8"	1-7/8"	1-1/4"	6-3/4"	624	435	353
4THDR32	3/8"	2-1/2"	1-3/4"	6-3/4"	1108	860	744
4THDR33	1/2"	△ T 2" - •	1-5/16"	6-3/4"5	1143	830	772
4THDR34	1/2"	3-1/2"	2-9/16"	7-11/16"	2332	1881	1671

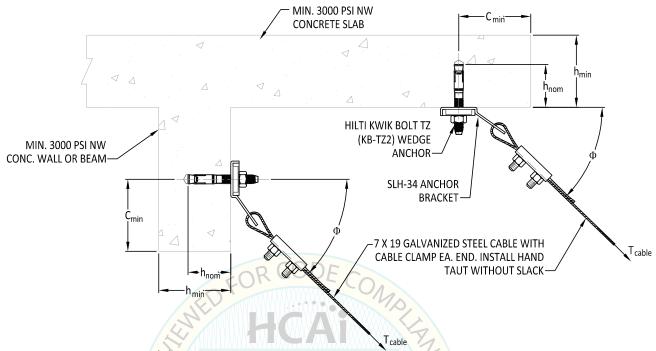
DECK NOTES:

- FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX.
- FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH SCREW ANCHOR SIZE SEE PAGE 3.0.3.

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0
- INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2713 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS TABULATED ABOVE ARE ALONG THE FLUTE LENGTH.
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-34 BRACKET & SLW-58 ON PAGE 4.11, USE ⁵/₈" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 65 LB-FT. FOR HSLH-1 & SLW-1 ON PAGE 4.12, USE 1" A307 Gr. A HEX BOLT TIGHTENED TO MIN. 100 LB-FT.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

3.10.4

Date:

HILTI KWIK BOLT TZ2 (KB-TZ2) WEDGE ANCHOR IN 3000 PSI NORMAL WEIGHT CONCRETE SLAB/WALL/BEAM

ATTACHMENT WITH (1) ANCHOR

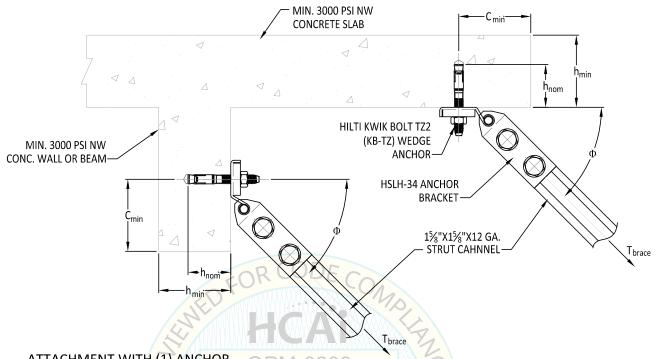
						11/113		XXXX				
ATTACH- MENT TYPE	ANCHOR DIA.	SLW SIZE	"hnom" NOMINAL EMBED.	"h _{ef} " EFFECTIVE EMBED.	"C _{a1} & C _{a2} " MIN. EDGE DISTANCE	I CONSIC	"Tcabl	NSION IN CA e", @ ANGL HORING TO 30°<Φ≤45°	E "Φ" SLAB ⁷	"Tcab ANCHOR	NSION IN CA e", @ ANGI ING TO WA 45°≤Ф<60°	.Ε "Φ" ΄΄
TZ2RC1	3/8"	SLW-38	1-7/8"	1-1/2"	5"	3-1/4"	482	318	250	250	318	482
TZ2RC2	3/8"	SLW-38	2-1/2"	∆ 2"T F	4-3/8"	19/4202	5 608	438	361	361	438	608
TZ2RC3	3/8"	SLW-38	3"	2-1/2"	5-1/2"	5"	798	539	429	429	539	798
TZ2RC4	1/2"	SLW-12	2-1/2"	2"	5-1/2"	4"	725	483	382	382	483	725
TZ2RC5	1/2"	SLW-12	3-3/4"	3-1/4"	10"	5-1/2"	1388	870	666	666	870	1388
TZ2RC6	5/8"	SLW-58	3-3/4"	3-1/4"	11-1/2"	5-1/2"	1759	1088	829	829	1088	1759
TZ2RC7	5/8"	SLW-58	4-1/2"	4"	9-1/2"	6"	1791	1153	895	895	1153	1791
TZ2RC8	3/4"	SLW-34	4-1/2"	3-3/4"	10"_	6"	1963	1277	997	997	1277	1963
TZ2RC9	3/4"	SLW-34	5-1/2"	4-3/4"	9"	8"	2147	1400	1094	1094	1400	2147

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481


Page No.:

3.11.1

Date:

January 19, 2024

HILTI KWIK BOLT TZ2 (KB-TZ2) WEDGE ANCHOR IN 3000 PSI NORMAL WEIGHT **CONCRETE SLAB/WALL/BEAM**

ATTACHMENT WITH (1) ANCHOR

ATTAC	IIIVILIVI	VVIIII	T) AINCI	ion ()PIM-	<u> </u>						
ATTACH- MENT	ANCHOR DIA.	SLW SIZE	"hnom" NOMINAL	7-11-	"C _{a1} & C _{a2} " MIN. EDGE	r CONC.	"Tbrac	ISION IN BR .e", @ ANGL HORING TO	<u>.Ε "Φ"</u>	"Tbrac	ISION IN BR e", @ ANGL ING TO WA	.Ε "Φ" ´´
TYPE			EMBED.	EMBED.	DISTANCE	THICKNESS	20°≤Φ≤30°	30°<Φ≤ <mark>45</mark> °	<mark>45°</mark> <Φ≤60°	30°≤Φ<45°	45°≤Φ<60°	60°≤Φ≤70°
TZ2RCR1	3/8"	SLW-38	1-7/8"	1-1/2"	5"	3-1/4"	463	333	275	275	333	463
TZ2RCR2	3/8"	SLW-38	2-1/2"	A2"TE	• 4-3/8"/	19/202	5 589	456	394	394	456	589
TZ2RCR3	3/8"	SLW-38	3"	2-1/2"	5-1/2"	5"	768	564	470	470	564	768
TZ2RCR4	1/2"	SLW-12	2-1/2"	2"	5-1/2"	4"	697	506	420	420	506	697
TZ2RCR5	1/2"	SLW-12	3-3/4"	3-1/4"	10"	5-1/2"	1329	914	734	734	914	1329
TZ2RCR6	5/8"	SLW-58	3-3/4"	3-1/4"	11-1/2"	5-1/2"	1681	1144	914	914	1144	1681
TZ2RCR7	5/8"	SLW-58	4-1/2"	4"	9-1/2"	-6"1	1718	1209	985	985	1209	1718
TZ2RCR8	3/4"	SLW-34	4-1/2"	3-3/4"	10"_	6"	1884	1339	1097	1097	1339	1884
TZ2RCR9	3/4"	SLW-34	5-1/2"	4-3/4"	9"	8"	2061	1467	1203	1203	1467	2061

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: 16. Tremblay California PE No. S6481 Page No.:

3.11.2

Date:

CONCRETE SLAB/WALL/BEAM MIN. 3000 PSI NW CONCRETE SLAB h_{nom} HILTI KWIK BOLT TZ2 (KB-TZ2) WEDGE ANCHOR MOUNTING PLATE CJL NELSON STUD SLH-34 ANCHOR BRACKET 7 X 19 GALVANIZED STEEL CABLE WITH CABLE CLAMP EA. END. INSTALL HAND MIN. 3000 PSI NW TAUT WITHOUT SLACK CONC. WALL OR BEAM- $\mathsf{T}_{\mathsf{cable}}$ | 1½ " | Ø OF HOLE IS ANCHOR Ø + 1/16' min

HILTI KWIK BOLT TZ2 (KB-TZ2) WEDGE ANCHOR IN 3000 PSI NORMAL WEIGHT

ATTACH- MENT	ANCHOR DIA.	SLW SIZE	"hnom" NOMINAL	EFFECTIVE	"C _{a1} & C _{a2} " MIN. EDGE	"h _{min} " MIN. CONC.	"Tcab	ENSION IN	Е "Ф"	"Tcabl	ENSION IN e", @ ANGL ING TO WA	.Е "Ф"	MIN. PLATE THICK-	STUD DIA- METER
TYPE			EMBED.	EMBED.	DISTANCE	THICKNESS	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤ <mark>60°</mark>	<mark>30°≤</mark> Ф<45°	45°≤Φ<60°	60°≤Φ≤70°	NESS "t"	"D"
2TZ2RC1	3/8"	SLW-38	1-7/8"	1-1/2"	5"	3-1/4"	1550	1301	1191	1191	1301	1550	3/8"	1/2"
2TZ2RC2	3/8"	SLW-38	2-1/2"	2"	4-3/8"	4"	1765	1614	1586	1586	1614	1765	3/8"	1/2"
2TZ2RC3	3/8"	SLW-38	3"	2-1/2"	5-1/2"	5"	2492	2144	2001	2001	2144	2492	3/8"	1/2"
2TZ2RC4	1/2"	SLW-12	2-1/2"	2"	5-1/2"	4"	2302	1954	1804	1804	1954	2302	3/8"	1/2"
2TZ2RC5	1/2"	SLW-12	3-3/4"	3-1/4"	10"	5-1/2"	4706	3618	3111	3111	3618	4706	1/2"	1/2"
2TZ2RC6	5/8"	SLW-58	3-3/4"	3-1/4"	11-1/2"	5-1/2"	6071	4592	3906	3906	4592	6071	1/2"	1/2"
2TZ2RC7	5/8"	SLW-58	4-1/2"	4"	9-3/4"	6"	5731	4449	3850	3850	4449	5731	1/2"	3/4"
2TZ2RC8	3/4"	SLW-34	4-1/2"	3-3/4"	10"	6"	6232	4938	4334	4334	4938	6232	5/8"	3/4"
2TZ2RC9	3/4"	SLW-34	5-1/2"	4-3/4"	9"	8"	7024	5816	5269	5269	5816	7024	5/8"	3/4"

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.4 FOR SLH-34 DETAILS.

ATTACHMENT WITH (2) ANCHORS

- 7. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

D"Ø CJL NELSON

STUD, 2" LONG.

PLATE DETAIL

Page No.:

11X3X"t"

MIN ASTM

A36 STEEL PLATE

3.12.1

Date:

HILTI KWIK BOLT TZ2 (KB-TZ2) WEDGE ANCHOR IN 3000 PSI NORMAL WEIGHT **CONCRETE SLAB/WALL/BEAM** C_{min} h_{nom} HILTI KWIK BOLT TZ2 MIN. 3000 PSI NW (KB-TZ2) WEDGE **CONCRETE SLAB ANCHOR** MOUNTING PLATE CJL NELSON STUD HSLH-34 OR HSLH-1 ANCHOR BRACKET 1%"X1%"X12 GA. MIN. 3000 PSI NW STRUT CAHNNEL CONC. WALL OR BEAM- $\mathsf{T}_{\mathsf{brace}}$ -min Ø OF HOLE IS ANCHOR Ø + 1/16' h_{nom} D"Ø CJL NELSON 11X3X"t" STUD, 2" LONG-MIN ASTM A36 STEEL PLATE DETAIL ATTACHMENT WITH (2) ANCHORS PLATE MAX TENSION IN BRACE (lbs), MIN. STUD STUD MAX TENSION IN BRACE (lbs). ATTACH-"hnom" PLATE "Tbrace", @ ANGLE "Φ' Thrace". @ ANGLE "Φ' ANCHOR SLW MIN MENT NOMINAL EFFECTIVE MÎN. EDĞE ANCHORING TO SLAB ANCHORING TO WALL/BEAM8 THICK-METER METER DIA. SIZE CONC. TYPF EMBED. EMBED. DISTANCE NESS "t" 'D" FOR "D" FOR HICKNESS 20°≤Φ≤30° 30° < 0<45 45°<0<60 30°<⊕∠45 45°<₫∠60° 60°<क<70 HSLH-34 HSLH-1 3/8" 1-13/16" 1-1/2" 3-1/4" 3/8" 1/2" 1053 867 1053 2T72RCR1 SI W-38 5" 783 867

NOTES:

2TZ2RCR2

2TZ2RCR3

2TZ2RCR4

2TZ2RCR5

2T72RCR6

2T72RCR7

2TZ2RCR8

2TZ2RCR9

3/8'

3/8'

1/2"

1/2'

5/8'

5/8

SLW-38

SI W-38

SLW-12

SLW-12

SI W-58

SI W-58

SLW-34^s

SLW-349

2-5/16"

3-1/16"

2-3/8"

3-5/8"

3-9/16"

4-7/16

4-5/16

5-9/16"

2"

2-1/2"

2"

3-1/4"

3-1/4

4"

3-3/4"

4-3/4"

4-3/8"

5-1/2"

5-1/2"

10'

11-1/2

9-3/4"

10'

4"

5"

4"

5-1/2"

5-1/2

6"

6"

1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.

1309

1736

1582

2925

3711

3597

3994

4708

1151

1455

1313

2273

2856

2812

3163

3839

1093

1331

1192

1969

2457

2445

2775

1093

1331

1192

1969

2457

2445

2775

3439

1151

1455

1313

2273

2856

2812

3163

3839

- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 7. Φ = 90° ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-1 ON PAGE 4.12, USE SLW-78 FROM PAGE 4.12.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.12.2

Date:

3/8'

3/8"

3/8"

1/2"

1/2"

1/2"

5/8"

5/8'

1309

1736

1582

2925

3711

3597

3994

4708

1/2'

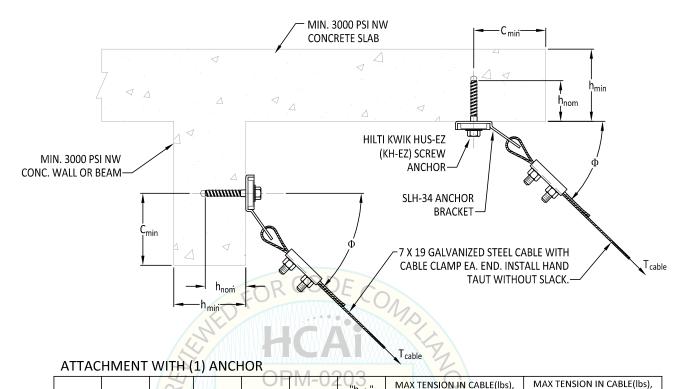
1/2"

1/2"

1/2"

1/2'

3/4'


3/4"

7/8'

7/8'

7/8'

HILTI KWIK HUS-EZ (KH-EZ) SCREW ANCHOR IN 3000 PSI NORMAL WEIGHT CONCRETE SLAB/WALL/BEAM

ATTACH- MENT	ANCHOR DIA.	SLW SIZE	7// 3/7//			"hmin" MIN. CONC.	"Tcabl	e", @ ANGL HORING TO	.Ε "Φ`'_ ´´	"Tcable	e", @ ANGL ING TO WA	Е "Ф"
TYPE			EMBED.	EMBED.	DISTANCE LOOC	THICKNESS	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°	30°≤Ф<45°	45°≤Φ<60°	60°≤Φ≤70°
KHRC1	3/8"	SLW-38	1-5/8"	1-1/8"	2-1/8"	3-1/4"	190	123	95	95	123	190
KHRC2	3/8"	SLW-38	2-1/2"	1-7/8"	07/10	/2025	423	310	258	258	310	423
KHRC3	3/8"	SLW-38	3-1/4"	2-1/2"	3-3/4"	4-3/4"	629	469	396	396	469	629
KHRC4	1/2"	SLW-12	2-1/4"	1-1/2"	2-3/4"	4-1/2"	367	251	201	201	251	367
KHRC5	1/2"	SLW-12	3"	2-3/16"	3-11/16"	5-1/2"	620	425	341	341	425	620
KHRC6	1/2"	SLW-12	4-1/4"	3-1/4"	5-1/4"	6-3/4"	1080	754	612	612	754	1080
KHRC7	5/8"	SLW-58	3-1/4"	2-3/8"	3-5/8"	5"	665	472	386	386	472	665

1383

944

2009

979

656

1397

799

530

799

530

979

656

1397

1383

944

2009

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 =2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3027 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.

5-13/16"

4-7/16"

7-5/16"

- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.

6-1/4"

- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.4 FOR SLH-34 DETAILS.

KHRC8

KHRC9

KHRC10

5/8

3/4"

SLW-58

SLW-34

SLW-34

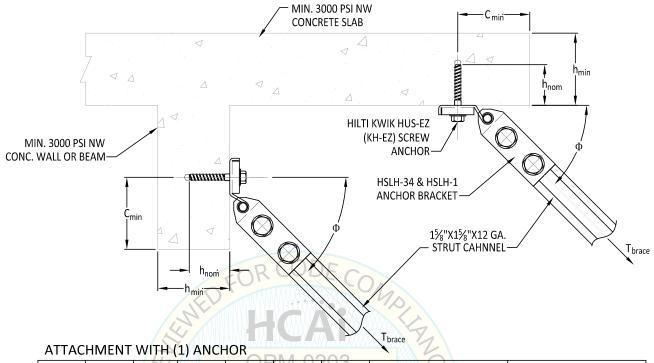
7. $\Phi = 90^{\circ}$ – ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.

3-7/8"

2-15/16"

8. $\Phi = 90^{\circ}$ – ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.13.1

Date:

HILTI KWIK HUS-EZ (KH-EZ) SCREW ANCHOR IN 3000 PSI NORMAL WEIGHT CONCRETE SLAB/WALL/BEAM

ATTACH- MENT	ANCHOR DIA.	SLW SIZE	"hnom" NOMINAL		"C _{a1} & C _{a2} " MIN. EDGE	"h _{min} " MIN. CONC.	"Tbrac	SION IN BR e", @ ANGL HORING TO	Е "Ф"	"Tbrac	ISION IN BR e", @ ANGL ING TO WA	Е "Ф"
TYPE			EMBED.	EMBED.	DISTANCE LOOC	THICKNESS	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°	30°≤Ф<45°	45°≤Φ<60°	60°≤Φ≤70°
KHRCR1	3/8"	SLW-38	1-5/8"	1-1/8"	2-1/8"	3-1/4"	182	129	105	105	129	182
KHRCR2	3/8"	SLW-38	2-1/2"	1-7/8"	073/10	/2025	410	323	282	282	323	410
KHRCR3	3/8"	SLW-38	3-1/4"	2-1/2"	3-3/4"	4-3/4"	611	488	431	431	488	611
KHRCR4	1/2"	SLW-12	2-1/4"	1-1/2"	2-3/4"	4-1/2"	354	263	221	221	263	354
KHRCR5	1/2"	SLW-12	3"	2-3/16"	3-11/16"	5-1/2"	593	444	374	374	444	593
KHRCR6	1/2"	SLW-12	4-1/4"	3-1/4"	5-1/4"	6-3/4"	1043	788	670	670	788	1043
KHRCR7	5/8"	SLW-58	3-1/4"	2-3/8"	3-5/8"	5"	643	492	422	422	492	643
KHRCR8	5/8"	SLW-58	5"	3-7/8"	5-13/16"	7"	1337	1021	874	874	1021	1337
KHRCR9	3/4"	SLW-34	4"	2-15/16"	4-7/16"	6"	911	685	581	581	685	911
KHRCR10	3/4"	SLW-34	6-1/4"	4-7/8"	7-5/16"	8"	1939	1459	1238	1238	1459	1939

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 =2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3027 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

3.13.2

Date:

HILTI KWIK HUS-EZ (KH-EZ) SCREW ANCHOR IN 3000 PSI NORMAL WEIGHT **CONCRETE SLAB/WALL/BEAM** MIN. 3000 PSI NW **CONCRETE SLAB** n_{nom} HILTI KWIK HUS-EZ (KH-EZ) SCREW AHHHHHH **ANCHOR** MOUNTING PLATE MOUNTING STUD SLH-34 ANCHOR BRACKET 7 X 19 GALVANIZED STEEL CABLE WITH MIN. 3000 PSI NW CABLE CLAMP EA. END. INSTALL HAND CONC. WALL OR BEAM- $\mathsf{T}_{\mathsf{cable}}$ TAUT WITHOUT SLACK ишши Ø OF HOLE IS C_{min} ANCHOR Ø + 1/8" h_{nom} D"Ø CJL NELSON 11X3X"t" MIN ASTM STUD, 2" LONG A36 STEEL PLATE PLATE DETAIL ATTACHMENT WITH (2) SCREW ANCHORS MAX TENSION IN CABLE, MAX TENSION IN CABLE, MIN. STUD "hmin ATTACH "Tcable", @ ANGLE "Φ" PLATE Tcable", @ ANGLE "Φ **ANCHOR** SLW MIN. MENT EFFECTIVE MIN. EDGE ANCHORING TO SLAB THICK-IANIMON ANCHORING TO WALL/BEAM CONC METER SIZE NESS TYPF **EMBED** DISTANCE EMBED. HICKNESS "D" 20°≤Φ≤30 30°<Φ≤45° 45°<Φ≤60' 30°≤Φ<45° 45°≤Φ<60° 60°<Ф<70 3/8" 1-5/8 1-1/8' 2-1/8" 3/8" 1/2" 2KHRC1 SLW-38 377 484 4" 484 377 328 328 3/8" 2-1/2 1-7/8' 311 4" 1008 882 834 882 1008 3/8" 1/2" 2KHRC2 SLW-38 834 2KHRC3 3/8" SLW-38 3-1/4" 2-1/2" 3-3/4" 4-3/4" 1487 1320 1265 1265 1320 1487 3/8" 1/2" 1/2" 2-1/4" 2-3/4" 4-1/2" 2KHRC4 SLW-12 1-1/2' 905 746 673 673 746 905 3/8' 1/2 1/2" 2-3/16" 3-11/16" 5-1/2" 1/2" 2KHRC5 SLW-12 1529 1261 1139 1139 1261 1529 3/8" 1/2" 4-1/4' 3-1/4" 5-1/4" 6-3/4" 1/2" 1/2" 2KHRC6 SLW-12 2561 2107 1899 1899 2107 2561 5/8" SLW-58 3-1/4" 2-3/8" 3-5/8" 5" 1/2" 1/2" 2KHRC7 1610 1369 1267 1369 1610 2KHRC8 5/8" SLW-58 5" 3-7/8" 5-13/16 7" 3178 2599 2333 2333 2599 3178 1/2" 1/2" 2KHRC9 3/4' SLW-34 ۵" 2-15/16" 4-7/16' 2278 1884 1705 1705 1884 2278 1/2' 1/2

NOTES:

1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.

4502

3558

3117

3117

3558

- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3027 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.

7-5/16"

- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.4 FOR SLH-34 DETAILS.

3/4"

SLW-34

2KHRC10

6-1/4"

4-7/8"

7. $\Phi = 90^{\circ}$ – ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.

8"

8. $\Phi = 90^{\circ}$ – ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

5/8"

4502

3/4

3.14.1

Date:

HILTI KWIK HUS-EZ (KH-EZ) SCREW ANCHOR IN 3000 PSI NORMAL WEIGHT **CONCRETE SLAB/WALL/BEAM** MIN. 3000 PSI NW **CONCRETE SLAB** HILTI KWIK HUS-EZ (KH-EZ) SCREW ANCHOR-MOUNTING PLATE MOUNTING STUD HSLH-34 OR HSLH-1 ANCHOR BRACKET MIN. 3000 PSI NW 15/8"X15/8"X12 GA. STRUT CAHNNEL CONC. WALL OR BEAMannininini Ø OF HOLE IS C_{min} ANCHOR Ø + 1/8' h_{nom} D"Ø CJL NELSON 11X3X"t" MIN ASTM STUD, 2" LONG. A36 STEEL PLATE PLATE DETAIL ATTACHMENT WITH (2) SCREW ANCHORS

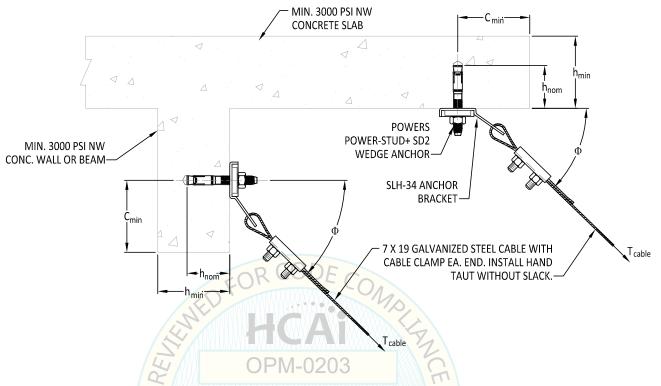
ATTACH- MENT TYPE	ANCHOR DIA.	SLW SIZE	"hnom" NOMINAL EMBED.	"hef" EFFECTIVE EMBED.	"C _{a1} & C _{a2} " MIN. EDGE DISTANCE	"hmin" MIN. CONC.	- "Tbrac ANCI	ISION IN BR e", @ ANGL HORING TO	E "Φ ["] SLAB ⁷	"Tbrac ANCHOR	SION IN BR e", @ ANGL ING TO WA	E "Φ" LLL/BEAM ⁸	MIN. PLATE THICK- NESS	STUD DIA- METER "D" FOR	STUD DIA- METER "D" FOR
ITTE			EIVIDED.	EIVIBED.	DISTANCE	THICKNESS	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°	30°≤Φ<45°	45°≤Φ<60°	60°≤Φ≤70°	"t"	HSLH-34	HSLH-1
2KHRCR1	3/8"	SLW-38	1-5/8"	1-1/8"	2-1/8"	4"	417	338	301	301	338	417	3/8"	1/2"	
2KHRCR2	3/8"	SLW-38	2-1/2"	1-7/8"	L3"/A	4"	907	9/ 808/ 4	775	775	808	907	3/8"	1/2"	
2KHRCR3	3/8"	SLW-38	3-1/4"	2-1/2"	3-3/4"	4-3/4"	1345	1214	1179	1179	1214	1345	3/8"	1/2"	
2KHRCR4	1/2"	SLW-12	2-1/4"	1-1/2"	2-3/4"	4-1/2"	797	675	622	622	675	797	3/8"	1/2"	
2KHRCR5	1/2"	SLW-12	3"	2-3/16"	3-11/16"	5-1/2"	1347	1141	1052	1052	1141	1347	3/8"	1/2"	
2KHRCR6	1/2"	SLW-12	4-1/4"	3-1/4"	5-1/4"	6-3/4"	2254	1906	1755	1755	1906	2254	1/2"	1/2"	
2KHRCR7	5/8"	SLW-58 ⁹	3-1/4"	2-3/8"	3-5/8"	5"	1434	1247	1174	1174	1247	1434	1/2"	1/2"	7/8"
2KHRCR8	5/8"	SLW-58 ⁹	5"	3-7/8"	5-13/16"	7"	2791	2349	2155	2155	2349	2791	1/2"	1/2"	7/8"
2KHRCR9	3/4"	SLW-34 ⁹	4"	2-15/16"	4-7/16"	6"	2009	1706	1576	1576	1706	2009	1/2"	1/2"	7/8"
2KHRCR10	3/4"	SLW-34 ⁹	6-1/4"	4-7/8"	7-5/16"	8"	3904	3195	2870	2870	3195	3904	5/8"	3/4"	7/8"

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3027 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-1 ON PAGE 4.12, USE SLW-78 ON PAGE 4.12.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: 2. Tremblay


California PE No. S6481

Page No.:

3.14.2

Date:

DEWALT POWER-STUD+ SD2 WEDGE ANCHOR IN 3000 PSI NORMAL WEIGHT CONCRETE SLAB/WALL/BEAM

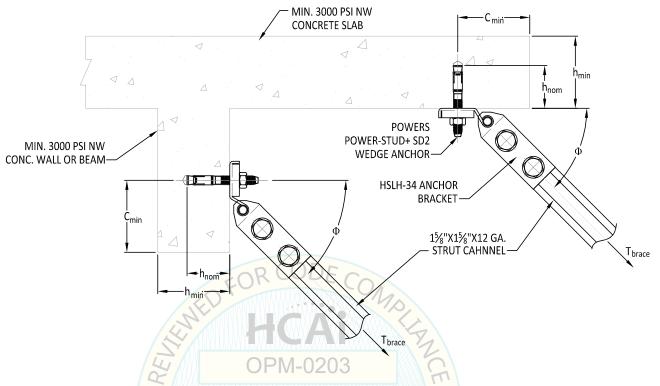
ATTACHMENT WITH (1) ANCHOR BOLT

			WXXXX									
ATTACH- MENT	ANCHOR DIA.	SLW SIZE	"hnom" NOMINAL	EFFECTIVE	"C _{a1} & C _{a2} " MIN. EDGE	CONC.	"T _{cab} l	ENSION IN IN @ ANGL HORING TO	.Ε "Φ" [´]	"Tcabl	ENSION IN e", @ ANGL ING TO WA	.Ε "Φ" ໌
TYPE			EMBED.	EMBED.	DISTANCE 7	THICKNESS	20°≤Φ≤30°	30°<Φ≤45°	45°< Φ≤60°	30°≤Ф<45°	45°≤Φ<60°	60°≤Φ≤70°
SD2RC1	3/8"	SLW-38	2-3/8"	2"	6-1/2"	4"	521	345	272	272	345	521
SD2RC2	1/2"	SLW-12	2-1/2"	2"	8"	4-1/2"	623	404	315	315	404	623
SD2RC3	1/2"	SLW-12	3-3/4"	3-1/4"	10"	5-3/4"	1083	717	565	565	717	1083
SD2RC4	5/8"	SLW-58	3-7/8	3-1/4"	8"	5-3/4"	1290	837	652	652	837	1290
SD2RC5	5/8"	SLW-58	4-7/8"	4-1/4"	15-3/4"	6-1/2"	1684	1162	936	936	1162	1684
SD2RC6	3/4"	SLW-34	4-1/2"	3-3/4"	12"	7"	1678	1064	820	820	1064	1678
SD2RC7	3/4"	SLW-34	5-3/4"	5"	12"	10"	1889	1264	1001	1001	1264	1889

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2502 (2022). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.15.1

Date:

DEWALT POWER-STUD+ SD2 WEDGE ANCHOR IN 3000 PSI NORMAL WEIGHT CONCRETE SLAB/WALL/BEAM

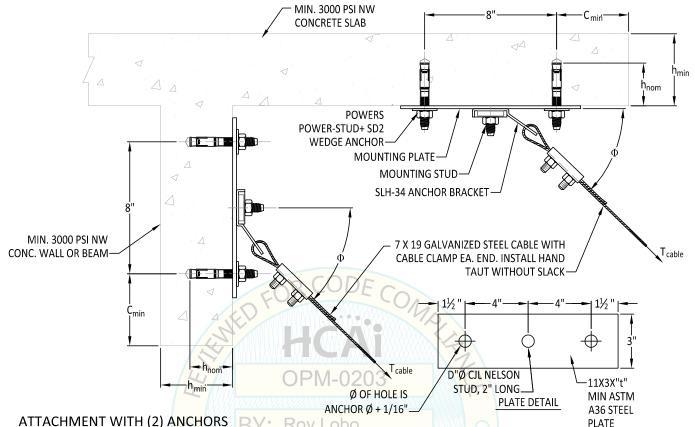
ATTACHMENT WITH (1) ANCHOR BOLT

			INXXXX									
ATTACH- MENT	ANCHOR DIA.	SLW SIZE	"hnom" NOMINAL	$(X \times X \times$	"C _{a1} & C _{a2} " MIN. EDGE	CONC.	"Tbrac ANCI	ISION IN BR e", @ ANGL HORING TO	Ε "Φ" //	"Tbrac	ISION IN BR e", @ ANGL ING TO WA	.Е "Ф"
TYPE			EMBED.	EMBED.	DISTANCE	THICKNESS	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°	30°≤Ф<45°	45°≤Φ<60°	60°≤Φ≤70°
SD2RCR1	3/8"	SLW-38	2-3/8"	2"	6-1/2"	4"	501	361	298	298	361	501
SD2RCR2	1/2"	SLW-12	2-1/2"	2"	8"	4-1/2"	598	424	346	346	424	598
SD2RCR3	1/2"	SLW-12	3-3/4"	3-1/4"	10"	5-3/4"	1052	756	623	623	756	1052
SD2RCR4	5/8"	SLW-58	3-7/8	3-1/4"	8"	5-3/4"	1287	898	727	727	898	1287
SD2RCR5	5/8"	SLW-58	4-7/8"	4-1/4"	15-3/4"	6-1/2"	1625	1214	1025	1025	1214	1625
SD2RCR6	3/4"	SLW-34	4-1/2"	3-3/4"	12"	Dī	1607	1117	903	903	1117	1607
SD2RCR7	3/4"	SLW-34	5-3/4"	5"	12"	10"	1818	1323	1099	1099	1323	1818

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2502 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

3.15.2

Date:

DEWALT POWER-STUD+ SD2 WEDGE ANCHOR IN 3000 PSI NORMAL WEIGHT CONCRETE SLAB/WALL/BEAM

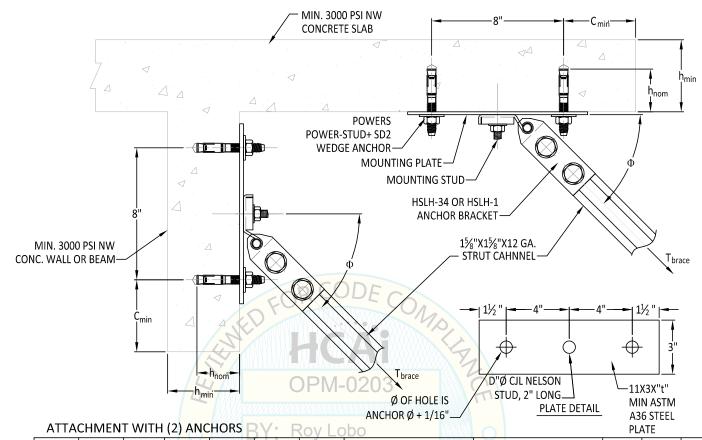
ATTA	CHMEN	I WITH	(2) AN	CHORS

ATTACH- MENT TYPE	ANCHOR DIA.	SLW SIZE	"hnom" NOMINAL EMBED.	"h _{ef} " EFFECTIVE EMBED.	"C _{a1} & C _{a2} " MIN. EDGE DISTANCE	CONC.7	"Tcab ANC	ENSION IN le", @ ANGL HORING TO	E "Φ" SLAB ⁷	"T _{cable} ANCHOR	ENSION IN e", @ ANGL ING TO WA	E "Φ" ´ ALL/BEAM ⁸	MIN. PLATE THICK- NESS	STUD DIA- METER
11116			LIVIDED.	EIVIBED.	DISTANCE	THICKNESS	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤ <mark>60°</mark>	<mark>30°</mark> ≤Φ<45°	45°≤Φ<60°	60°≤Φ≤70°	"t"	"D"
2SD2RC1	3/8"	SLW-38	2-3/8"	2"	6-1/2"	4"	1308	1045	922	922	1045	1308	3/8"	1/2"
2SD2RC2	1/2"	SLW-12	2-1/2"	2"	8"	4-1/2"	1582	1239	1079	1079	1239	1582	3/8"	1/2"
2SD2RC3	1/2"	SLW-12	3-3/4"	3-1/4"	10"	5-3/4"	2755	2192	1929	1929	2192	2755	1/2"	1/2"
2SD2RC4	5/8"	SLW-58	3-7/8	3-1/4"	8"	5-3/4"	3428	2548	2144	2144	2548	3428	1/2"	1/2"
2SD2RC5	5/8"	SLW-58	4-7/8"	4-1/4"	15-3/4"	6-1/2"	3853	3055	2682	2682	3055	3853	1/2"	1/2"
2SD2RC6	3/4"	SLW-34	3-7/8	3-1/4"	12"	7"	4042	2990	2508	2508	2990	4042	5/8"	3/4"
2SD2RC7	3/4"	SLW-34	4-7/8"	4-1/4"	15-3/4"	6-1/2"	4603	3658	3217	3217	3658	4603	5/8"	3/4"

NOTES

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2502 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.16.1

Date:

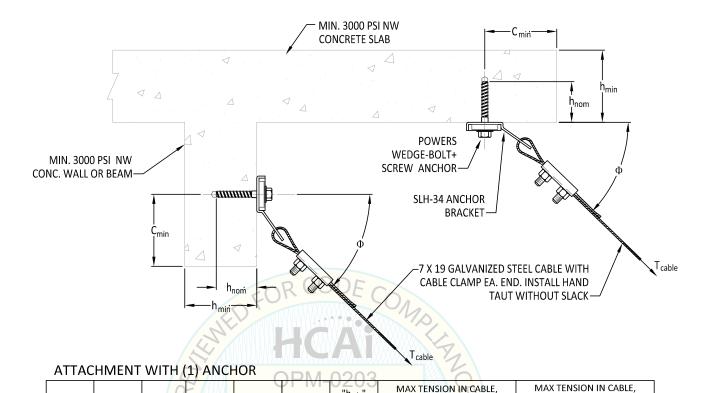
DEWALT POWER-STUD+ SD2 WEDGE ANCHOR IN 3000 PSI NORMAL WEIGHT CONCRETE SLAB/WALL/BEAM

ATTACH- MENT TYPE	ANCHOR DIA.	SLW SIZE		"h _{ef} " EFFECTIVE	"C _{a1} & C _{a2} " MIN. EDGE	CONC.	"Tbrac ANC	ENSION IN e", @ ANGL HORING TO	E "Φ" [´] SLAB ⁷	"T _{brac} ANCHOR	ENSION IN e", @ ANGI ING TO WA	_E "Φ" [°] ALL/BEAM ⁸	MIN. PLATE THICK- NESS	STUD DIA- METER "D" FOR	STUD DIA- METER "D" FOR
TYPE			EMBED.	EMBED.	DISTANCE	THICKNESS	20°≤Φ≤30°	30°<Φ≤45°	45° <Φ≤60°	30°≤Φ<45°	45°≤Φ<60°	60°≤Φ≤70°	"t"	HSLH-34	HSLH-1
2SD2RCR1	3/8"	SLW-38	2-3/8"	2"	6-1/2"	4"	1139	940	850	850	940	1139	3/8"	1/2"	
2SD2RCR2	1/2"	SLW-12	2-1/2"	2"	8"	4-1/2"	1367	1111	992	992	1111	1367	3/8"	1/2"	
2SD2RCR3	1/2"	SLW-12	3-3/4"	3-1/4"	10"	5-3/4"	2395	1970	1777	1777	1970	2395	1/2"	1/2"	
2SD2RCR4	5/8"	SLW-58 ⁹	3-7/8	3-1/4"	8"	5-3/4"	3047	2414	2118	2118	2414	3047	1/2"	1/2"	7/8"
2SD2RCR5	5/8"	SLW-58 ⁹	4-7/8"	4-1/4"	15-3/4"	6-1/2"	3652	3111	2881	2881	3111	3652	1/2"	1/2"	7/8"
2SD2RCR6	3/4"	SLW-34 ⁹	3-7/8	3-1/4"	12"	7 ⁻¹ L	3700	2952	2603	2603	2952	3700	5/8"	3/4"	7/8"
2SD2RCR7	3/4"	SLW-34 ⁹	4-7/8"	4-1/4"	15-3/4"	6-1/2"	4121	3429	3118	3118	3429	4121	5/8"	3/4"	7/8"

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2502 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-1 ON PAGE 4.12, USE SLW-78 ON PAGE 4.12.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.16.2

Date:

DEWALT SCREW-BOLT+ SCREW ANCHOR IN 3000 PSI NORMAL WEIGHT **CONCRETE SLAB/WALL/BEAM**

MENT	ANCHOR DIA.	SL <mark>W</mark> SIZE			MIN. EDGE		ANCI	e", @ ANGL HORING TO	SLAB ⁷	ANCHOR	e", @ ANGL ING TO WA	LL/BEAM ⁸
TYPE			EMBED.	EMBED.	DISTANCE	THICKNESS	20°≤Φ≤30°	30°<Φ≤ <mark>45°</mark>	4 <mark>5°</mark> <Φ≤60°	30°≤Φ<45°	45°≤Φ<60°	60°≤Φ≤70°
SCRC1	3/8"	SLW-38	2"	1-5/16"	5"	3-1/2"	275	165	123	123	165	275
SCRC2	3/8"	SLW-38	2-1/2"	1-3/4"	6-1/4"	19/202	5 455	286	219	219	286	455
SCRC3	3/8"	SLW-38	3-1/4"	2-3/8"	7-3/4"	5"	663	446	354	354	446	663
SCRC4	1/2"	SLW-12	2-1/2"	1-3/4"	3-3/8"	4-1/2"	429	278	216	216	278	429
SCRC5	1/2"	SLW-12	3"	2-3/16"	6"	5-1/4"	676	431	333	333	431	676
SCRC6	1/2"	SLW-12	4-1/4"	3-1/4"	8"	6-3/4"	1309	820	628	628	820	1309

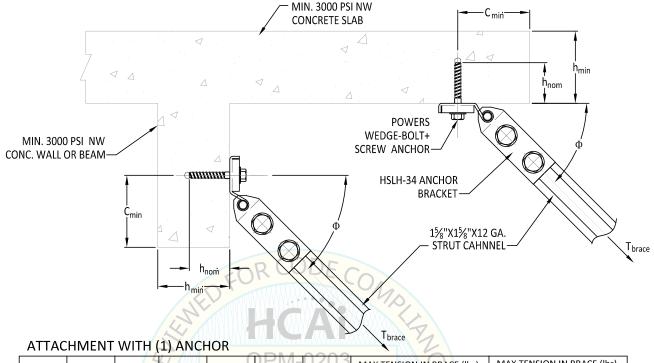
SCRC7 5/8' SLW-58 3-1/4" 2-1/4' 6-1/4" 5" 588 820 628 628 820 588 6" 5/8" 2-7/8" 8" SCRC8 SLW-58 864 479 347 347 479 864 SCRC9 5/8" SLW-58 3-3/4" 10" 1202 663 480 480 663 1202 3/4" 4-1/4" 3-1/16" SLW-34 11" 6" SCRC10 1388 785 575 575 785 1388

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3889 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: M. Tremblay California PE No. S6481

Page No.:

3.17.1

Date:

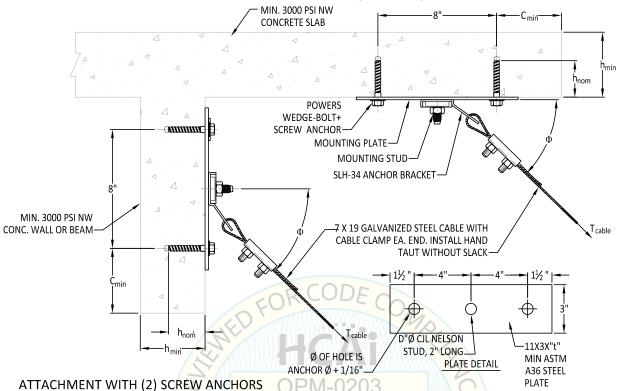
DEWALT SCREW-BOLT+ SCREW ANCHOR IN 3000 PSI NORMAL WEIGHT CONCRETE SLAB/WALL/BEAM

ATTACH- MENT TYPE ANCHOL DIA.	ANCHOR DIA.	SLW SIZE	"hnom" NOMINAL		DISTANCE	"hmin" MIN. CONC. THICKNESS	"Tbrac	SION IN BR e", @ ANGL HORING TO	E "Φ"	MAX TENSION IN BRACE (lbs), "Tbrace", @ ANGLE "Φ" ANCHORING TO WALL/BEAM ⁸			
			EMBED.				20°≤ ⊕ ≤30°	30°< Ф ≤ <mark>45°</mark>	<mark>45°<</mark> Φ≤60°	30°≤ Ф <45°	45°≤ ⊕ <60°	60°≤ ⊕ ≤70°	
SCRCR1	3/8"	SLW-38	2"//-	1-5/16"	5"	3-1/2"	262	173	136	136	173	262	
SCRCR2	3/8"	SLW-38	2-1/2"	1-3/4"	6-1/4"	4"	435	300	388	388	300	435	
SCRCR3	3/8"	SLW-38	3-1/4"	2-3/8"	7-3/4"	19/5-02	638	466	388	388	466	638	
SCRCR4	1/2"	SLW-12	2-1/2"	1-3/4"	3-3/8"	4-1/2"	412	291	238	238	291	412	
SCRCR5	1/2"	SLW-12	3"	2-3/16"	6"	5-1/4"	648	452	367	367	452	648	
SCRCR6	1/2"	SLW-12	4-1/4"	3-1/4"	8"	6-3/4"	1253	862	693	693	862	1253	
SCRCR7	5/8"	SLW-58	3-1/4"	2-1/4"	6-1/4"	5"	560	369	290	290	369	560	
SCRCR8	5/8"	SLW-58	4"	2-7/8"	8"	6"	817	506	385	385	506	817	
SCRCR9	5/8"	SLW-58	5"	3-3/4"	10"	7"	1137	701	533	533	701	1137	
SCRCR10	3/4"	SLW-34	4-1/4"	3-1/16"	11"	6"	1315	829	637	637	829	1315	

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3889 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.17.2

Date:

DEWALT SCREW-BOLT+ SCREW ANCHOR IN 3000 PSI NORMAL WEIGHT **CONCRETE SLAB/WALL/BEAM**

ATTACHMENT WITH (2) SCREW ANCHORS

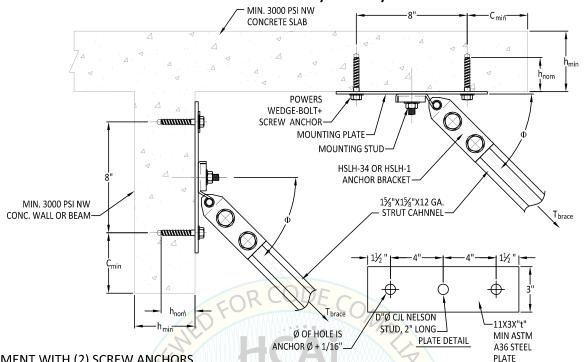
	SLW SIZE	"hnom" NOMINAL		"C _{a1} & C _{a2} " MIN. EDGE	CONC -	"Tcabl	ENSION IN e", @ ANGL HORING TO	Ε "Φ"	"Tcabl	ENSION IN le", @ ANGL RING TO WA	MIN. PLATE THICK- NESS	STUD DIA- METER		
		EMBED.	EMBED.	DISTANCE		20°≤Φ≤30°	30°<Φ≤45°	<mark>45°<</mark> Φ≤60°	30°≤Φ<45°	45°≤Φ<60°	60°≤Φ≤70°	"t"	"D"	
2SCRC1	3/8"	SLW-38	2"	1-5/16"	5"	3-1/2"	686	508	427	427	508	686	1/4"	3/8"
2SCRC2	3/8"	SLW-38	2-1/2"	1-3/4"	6-1/4"	F-4" 07	7 / 1109/ 2	861	745	745	861	1109	1/4"	3/8"
2SCRC3	3/8"	SLW-38	3-1/4"	2-3/8"	7-3/4"	5"	1570	1294	1168	1168	1294	1570	3/8"	3/8"
2SCRC4	1/2"	SLW-12	2-1/2"	1-3/4"	3-3/8"	4-1/2"	1035	824	725	725	824	1035	3/8"	1/2"
SCRC5	1/2"	SLW-12	3"	2-3/16"	6"	5-1/4"	1639	1288	1124	1124	1288	1639	3/8"	1/2"
SCRC6	1/2"	SLW-12	4-1/4"	3-1/4"	8"	6-3/4"	3119	2387	2046	2046	2387	3119	1/2"	1/2"
SCRC7	5/8"	SLW-58	3-1/4"	2-1/4"	6-1/4"	5"	1470	1085	909	909	1085	1470	3/8"	5/8"
SCRC8	5/8"	SLW-58	4"	2-7/8"	8"	Q6.1	2245	1539	1235	1235	1539	2245	3/8"	5/8"
SCRC9	5/8"	SLW-58	5"	3-3/4"	10"	7"	3132	2136	1709	1709	2136	3132	1/2"	5/8"
SCRC10	3/4"	SLW-34	4-1/4"	3-1/16"	11"	6"	3564	2498	2029	2029	2498	3564	1/2"	3/4"

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3889 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE. COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: M. Tremblay California PE No. S6481

Page No.:

3.18.1

Date:

DEWALT SCREW-BOLT+ SCREW ANCHOR IN 3000 PSI NORMAL WEIGHT **CONCRETE SLAB/WALL/BEAM**

ATTACHMENT WITH (2) SCREW ANCHORS

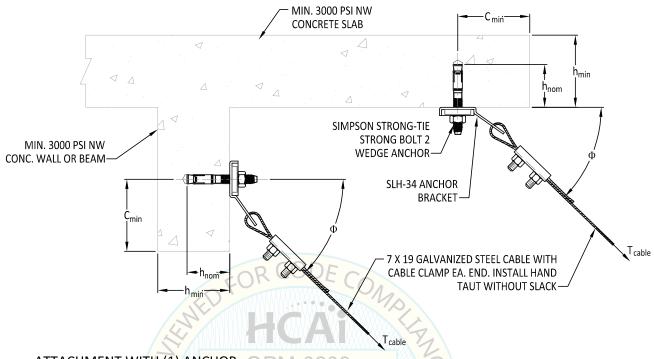
ATTAC	JI IIVILIN I	7 111117	Z) JCILL	VAIVELLE	حار	VVY	V // //	/A/XXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		, -				
ATTACH- MENT TYPE ANCHOR DIA.	1	SLW SIZE	"hnom" NOMINAL		1 1 / Y / II	CONC	— "Tcabl	ENSION IN e", @ ANGL HORING TO	.Е "Ф"	"Tcabl	ENSION IN •", @ ANGL ING TO WA	.Ε "Φ" ´ _	MIN. PLATE THICK- NESS	STUD DIA- METER	STUD DIA- METER
		EMBED.	EMBED.	DISTANCE	THICKNESS	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°	30°≤Φ<45°	45°≤Φ<60°	60°≤Φ≤70°	"t"	"D"	"D"	
2SCRC1	3/8"	SLW-38	2"	1-5/16"	5'Y	3-1/2"	_614 〇	467	399	399	467	614	1/4"	3/8"	
2SCRC2	3/8"	SLW-38	2-1/2"	1-3/4"	6-1/4"	4"	1004	796	699	699	796	1004	1/4"	3/8"	
2SCRC3	3/8"	SLW-38	3-1/4"	2-3/8"	7-3/4"	T_5".	-1444	1206-	1100	1100	1206	1444	3/8"	3/8"	
2SCRC4	1/2"	SLW-12	2-1/2"	1-3/4"	3-3/8"	4-1/2"	943	764	681	681	764	943	3/8"	1/2"	
SCRC5	1/2"	SLW-12	3"	2-3/16"	6"	5-1/4"	1489	1193	1055	1055	1193	1489	3/8"	1/2"	
SCRC6	1/2"	SLW-12	4-1/4"	3-1/4"	8"	6-3/4"	2815	2203	1917	1917	2203	2815	1/2"	1/2"	
SCRC7	5/8"	SLW-58 ⁹	3-1/4"	2-1/4"	6-1/4"	5"	1314	997	850	850	997	1314	3/8"	5/8"	7/8"
SCRC8	5/8"	SLW-58 ⁹	4"	2-7/8"	8"	6"	1967	1402	1150	1150	1402	1967	3/8"	5/8"	7/8"
SCRC9	5/8"	SLW-58 ⁹	5"	3-3/4"	10"	7"	2739	1945	1591	1591	1945	2739	1/2"	5/8"	7/8"
SCRC10	3/4"	SLW-34 ⁹	4-1/4"	3-1/16"	11"	6"	3141	2282	1893	1893	2282	3141	1/2"	3/4"	7/8"

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3889 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.11 FOR SHLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-1 ON PAGE 4.12, USE SLW-78 ON PAGE 4.12.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: M. Tremblay California PE No. S6481

Page No.:

3.18.2

Date:

SIMPSON STRONG-TIE STRONG-BOLT 2 WEDGE ANCHOR IN 3000 PSI NORMAL WEIGHT CONCRETE SLAB/WALL/BEAM

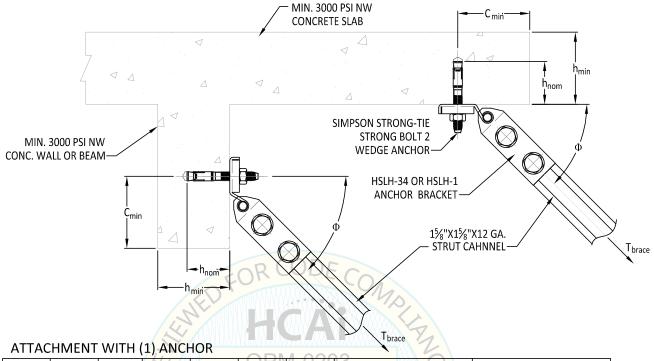
ATTACHMENT	WITH (1) ANCHOR
ALIACHIVILINI	VVIIIIVIA	ANCHOR

ATTACH- MENT TYPE ANCHOR DIA.	ANCHOR DIA.		"h _{nom} " NOMINAL	EFFECTIVE	"C _{a1} & C _{a2} " MIN. EDGE	"h _{min} " MIN. CONCRETE THICKNESS	"Tcable	ENSI <mark>ON IN</mark> e", @ ANGL HORING TO	<mark>Е "</mark> Ф" [^]	MAX TENSION IN CABLE, "T _{cable} ", @ ANGLE "Φ" ANCHORING TO WALL/BEAN			
			EMBED.	EMBED.	DISTANCE		20°≤Φ≤30°	30°<Φ <mark>≤4</mark> 5°	<mark>45</mark> °<Φ≤60°	30°≤Ф<45°	45°≤Φ<60°	60°≤Φ≤70°	
SB2RC1	3/8"	SLW-38	1-7/8"	1-1/2"	6-1/2"	3-1/4"	355	224	173	173	224	355	
SB2RC2	3/8"	SLW-38	2-7/8"	2-1/2"	67/1	94-1/2"2:	514	385	326	326	385	514	
SB2RC3	1/2"	SLW-12	2-3/4"	2-1/4"	7"	4-1/2"	716	473	372	372	473	716	
SB2RC4	1/2"	SLW-12	3-7/8"	3-3/8"	7-1/2"	6"	1094	669	506	506	669	1094	
SB2RC5	5/8"	SLW-58	3-3/8"	2-3/4"	7-1/2"	5-1/2"	1109	686	522	522	686	1109	
SB2RC6	5/8"	SLW-58	5-1/8"	4-1/2"	9"	7-7/8"	1783	1188	916	916	1188	1783	
SB2RC7	3/4"	SLW-34	4-1/8"	3-3/8"	9"	6-3/4"	1605	962	722	722	962	1605	
SB2RC8	3/4"	SLW-34	5-3/4"	5"	-8"-	8-3/4"	2096	1391	1097	1097	1391	2096	

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3037 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.19.1

Date:

SIMPSON STRONG-TIE STRONG-BOLT 2 WEDGE ANCHOR IN 3000 PSI NORMAL WEIGHT CONCRETE SLAB/WALL/BEAM

ATTACH- MENT TYPE	ANCHOR DIA.	SLW SIZE	"h _{nom} " NOMINAL EMBED.	"h _{ef} " EFFECTIVE EMBED.	DISTANCE		"T _{brac} ANCI	SION IN BR e", @ ANGL HORING TO	E "Φ" SLAB ⁷	MAX TENSION IN BRACE (lbs), "Tbrace", @ ANGLE "Ф" ANCHORING TO WALL/BEAM ⁸			
ITE			EIVIBED.	EIVIDED.	Roy		20°≤Φ≤30°	<mark>30°</mark> <Φ≤45°	<mark>45°<Φ≤6</mark> 0°	30°≤Φ<45°	45°≤Φ<60°	60°≤Φ≤70°	
SB2RCR1	3/8"	SLW-38	1-7/8"	1-1/2"	6-1/2"	3-1/4"	340	236	190	190	236	340	
SB2RCR2	3/8"	SLW-38	2-7/8"	2-1/2"	6"	4-1/2"	499	400	354	354	400	499	
SB2RCR3	1/2"	SLW-12	2-3/4"	2-1/4"	L _{7"}	4-1/2"	688	495	408	408	495	688	
SB2RCR4	1/2"	SLW-12	3-7/8"	3-3/8"	7-1/2"	6"	1044	703	559	559	703	1044	
SB2RCR5	5/8"	SLW-58	3-3/8"	2-3/4"	7-1/2"	5-1/2"	1060	721	576	576	721	1060	
SB2RCR6	5/8"	SLW-58	5-1/8"	4-1/2"	9"	7-7/8"	1794	1247	1009	1009	1247	1794	
SB2RCR7	3/4"	SLW-34	4-1/8"	3-3/8"	9"	6-3/4"	1529	1013	798	798	1013	1529	
SB2RCR8	3/4"	SLW-34	5-3/4"	5"	8"	8-3/4"	2015	1457	1205	1205	1457	2015	
SB2RCR9	1"	SLW-1	5-1/4"	4-1/2"	18"	9"	1598	1072	850	850	1072	1598	
SB2RCR10	1"	SLW-1	9-3/4"	9"	13-1/2"	13-1/2"	2080	1464	1192	1192	1464	2080	

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3037 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.11 FOR HSLH-34 DETAILS. SEE PAGE 4.12 FOR HSLH-1 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.19.2

Date:

WEIGHT CONCRETE SLAB/WALL/BEAM MIN. 3000 PSI NW CONCRETE SLAB SIMPSON STRONG-TIE STRONG BOLT 2 WEDGE ANCHOR MOUNTING PLATE CJL NELSON STUD SLH-34 ANCHOR BRACKET 7 X 19 GALVANIZED STEEL CABLE WITH MIN. 3000 PSI NW CABLE CLAMP EA. END. INSTALL HAND CONC. WALL OR BEAM- $\mathsf{T}_{\mathsf{cable}}$ TAUT WITHOUT SLACK C_{min} D"Ø CJL NELSON 11X3X"t" h_{min} STUD, 2" LONG. Ø OF HOLE IS MIN ASTM PLATE DETAIL ANCHOR Ø + 1/16". A36 STEEL **PLATE** ATTACHMENT WITH (2) ANCHORS

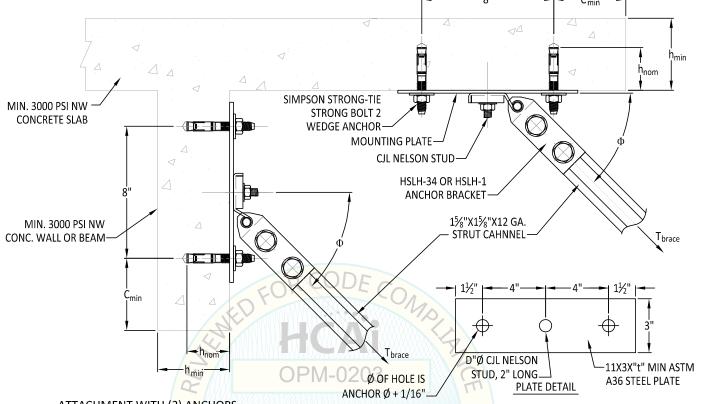
SIMPSON STRONG-TIE STRONG-BOLT 2 WEDGE ANCHOR IN 3000 PSI NORMAL

ATTACH- MENT	I ANCHOR I SIM I				"h _{ef} " "C _{a1} & C _{a2} " EFFECTIVE MIN. EDGE		71110111110 10 02 10			ENSION IN e", @ ANGL ING TO WA	MIN. PLATE THICK-	STUD DIA- METER	
TYPE			EMBED.	EMBED.	DISTANCE	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°	30°≤Φ<45°	45°≤Φ<60°	60°≤Φ≤70°	NESS "t"	"D"
2SB2RC1	3/8"	SLW-38	1-7/8"	1-1/2"	6-1/2"	914	698	598	598	698	914	3/8"	1/2"
2SB2RC2	3/8"	SLW-12	2-7/8"	2-1/2"	6"	1211	1080	1038	1038	1080	1211	3/8"	1/2"
2SB2RC3	1/2"	SLW-12	2-3/4"	2-1/4"	7"	1801	1435	1263	1263	1435	1801	3/8"	1/2"
2SB2RC4	1/2"	SLW-58	3-7/8"	3-3/8"	7-1/2"	2879	2124	1779	1779	2124	2879	1/2"	1/2"
2SB2RC5	5/8"	SLW-58	3-3/8"	2-3/4"	7-1/2"	2879	2142	1803	1803	2142	2879	1/2"	1/2"
2SB2RC6	5/8"	SLW-34	5-1/8"	4-1/2"	9"	4692	3542	3010	3010	3542	4692	5/8"	3/4"
2SB2RC7	3/4"	SLW-34	4-1/8"	3-3/8"	9"	3898	2795	2301	2301	2795	3898	5/8"	3/4"
2SB2RC8	3/4"	SLW-34	5-3/4"	5"	8"	4959	3836	3312	3312	3836	4959	5/8"	3/4"

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3037 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

3.20.1

Date:

SIMPSON STRONG-TIE STRONG-BOLT 2 WEDGE ANCHOR IN 3000 PSI NORMAL WEIGHT CONCRETE SLAB/WALL/BEAM

ATTACHMENT WITH	(2) ANCHORS
-----------------	----	-----------

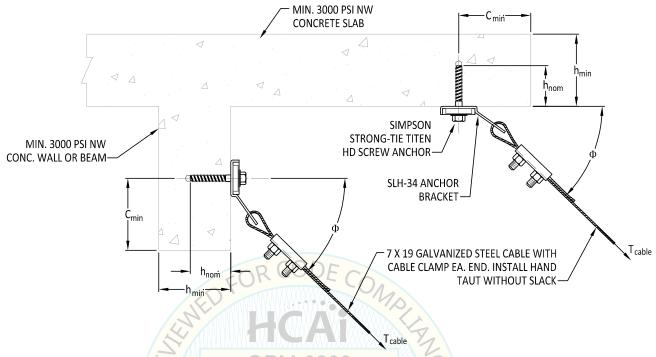
ATTACH- MENT DIA.		SLW SIZE	"hnom" NOMINAL	EFFECTIVE	"C _{a1} & C _{a2} " MIN. EDGE	"hmin" C MIN. CONCRETE				"Tbrac	ISION IN BR e", @ ANGL ING TO WA	_E "Ф"	MIN. PLATE THICK-	STUD DIA- METER	STUD DIA- METER
TYPE			EMBED.	EMBED.	DISTANCE	THICKNESS	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°	30°≤Ф<45°	45°≤Φ<60°	60°≤Φ≤70°	NESS "t"	"D" FOR HSLH-34	"D" FOR HSLH-1
2SB2RCR1	3/8"	SLW-38	1-7/8"	1-1/2"	6-1/2"	3-1/4"	782	623	549	549	623	782	3/8"	1/2"	
2SB2RCR2	3/8"	SLW-12	2-7/8"	2-1/2"	6"	4-1/2"	1097	993	968	968	993	1097	3/8"	1/2"	
2SB2RCR3	1/2"	SLW-12	2-3/4"	2-1/4"	7"	4-1/2"	1567	1290	1164	1164	1290	1567	3/8"	1/2"	
2SB2RCR4	1/2"	SLW-58	3-7/8"	3-3/8"	7-1/2"	6"	2432	1884	1628	1628	1884	2432	1/2"	1/2"	
2SB2RCR5	5/8"	SLW-58 ⁹	3-3/8"	2-3/4"	7-1/2"	5-1/2"	2440	1903	1652	1652	1903	2440	1/2"	1/2"	7/8"
2SB2RCR6	5/8"	SLW-34 ⁹	5-1/8"	4-1/2"	9"	7-7/8"	3998	3155	2760	2760	3155	3998	5/8"	3/4"	7/8"
2SB2RCR7	3/4"	SLW-34 ⁹	4-1/8"	3-3/8"	9" 5	6-3/4"	3256	2467	2102	2102	2467	3256	5/8"	3/4"	7/8"
2SB2RCR8	3/4"	SLW-34 ⁹	5-3/4"	5"	8"	8-3/4"	4266	3431	3044	3044	3431	4266	5/8"	3/4"	7/8"
2SB2RCR9	1"	SLW-1	5-1/4"	4-1/2"	18"	9"	4128	3020	2517	2517	3020	4128	5/8"	3/4"	1"
2SB2RCR10	1"	SLW-1	9-3/4"	9"	13-1/2"	13-1/2"	6006	4696	4084	4084	4696	6006	5/8"	3/4"	1"

NOTES:

- 1. OVER STRENGTH FACTOR $\Omega_0 = 2.0$ PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3037 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.
- 9. FOR HSLH-1 ON PAGE 4.12, USE SLW-78 ON PAGE 4.12.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.20.2

Date:

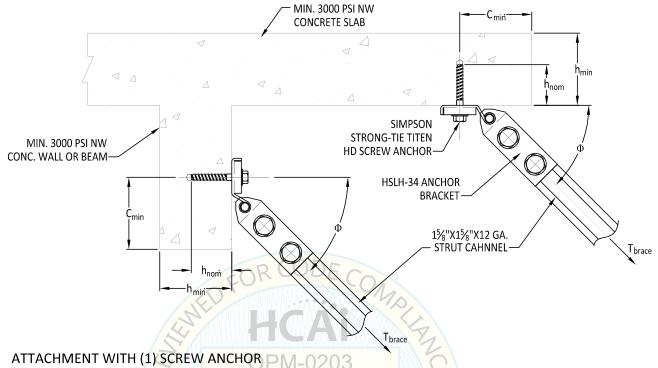
SIMPSON STRONG-TIE TITEN HD SCREW IN 3000 PSI NORMAL WEIGHT CONCRETE SLAB/WALL/BEAM

ATTACH- MENT	ANCHOR DIA.	SLW SIZE	"hnom" NOMINAL	0000 I		"hmin" MIN. CONC.	"Tcabl	ENSION IN le", @ ANGL HORING TO	Е "Ф"	MAX TENSION IN CABLE, "Tcable", @ ANGLE "Φ" ANCHORING TO WALL/BEAM ⁸			
TYPE			EMBED.	EMBED.	DISTANCE .	THICKNESS	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°	30°≤Φ<45°	45°≤Φ<60°	60°≤Φ≤70°	
THRC1	3/8"	SLW-38	2-1/2"	1-3/4"	2-11/16"	4"	365	275	234	234	275	365	
THRC2	3/8"	SLW-38	3-1/4"	2-3/8"	3-5/8")7/5,9/2	571	406	332	332	406	571	
THRC3	1/2"	SLW-12	3-1/4"	2-3/8"	3-9/16"	5"	625	450	372	372	450	625	
THRC4	1/2"	SLW-12	4"	3"	4-1/2"	6-1/4"	915	654	537	537	654	915	
THRC5	5/8"	SLW-58	4"	2-15/16"	4-1/2"	6"	798	514	400	400	514	798	
THRC6	5/8"	SLW-58	5-1/2"	4-1/4"	6-3/8"	8-1/2"	1439	935	729	729	935	1439	
THRC7	3/4"	SLW-34	5-1/2"	4-1/4"	6-3/8"	8-3/4"	1555	1014	793	793	1014	1555	
THRC8	3/4"	SLW-34	6-1/4"	4-7/8"	7-5/16"	10"	1879	1214	945	945	1214	1879	

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 =2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2713 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: 74. Tremblay
California PE No. S6481

Page No.:

3.21.1

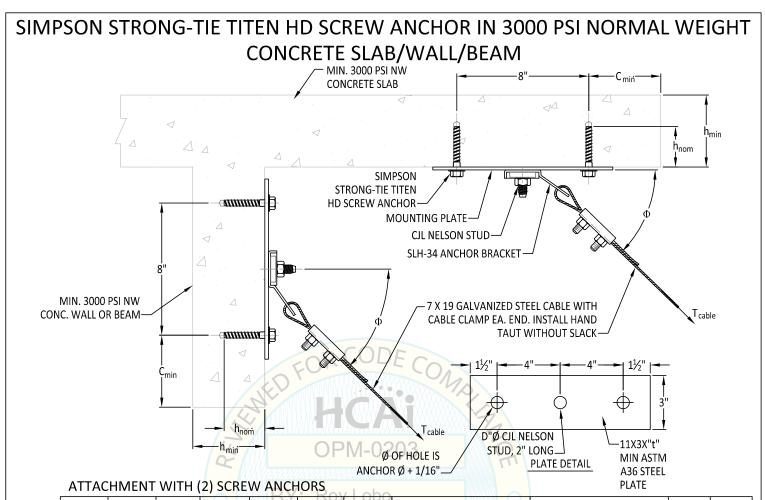
Date:

SIMPSON STRONG-TIE TITEN HD SCREW IN 3000 PSI NORMAL WEIGHT CONCRETE SLAB/WALL/BEAM

ATTACH- MENT	ANCHOR DIA.	SLW SIZE	"hnom" NOMINAL	"h _{ef} " EFFECTIVE	DICTANICE	CONC.	"Tbrac ANCI	ENSION IN e", @ ANGL HORING TO	Е "Ф"	MAX TENSION IN CABLE, "T _{brace} ", @ ANGLE "Φ" ANCHORING TO WALL/BEAM ⁸			
TYPE			EMBED.	EMBED.	DISTANCE	THICKNESS	20°≤Φ≤30°	30°<Φ≤45°	4 <mark>5°<Φ≤6</mark> 0°	30°≤Ф<45°	45°≤Φ<60°	60°≤Φ≤70°	
THRCR1	3/8"	SLW-38	2-1/2"	1-3/4"	2-11/16"	4"	417	317	271	271	317	417	
THRCR2	3/8"	SLW-38	3-1/4"	2-3/8"	3-5/8"	7/\$9/2	668	474	388	388	474	668	
THRCR3	1/2"	SLW-12	3-1/4"	2-3/8"	3-9/16"	5"	726	525	434	434	525	726	
THRCR4	1/2"	SLW-12	4"	3"	4-1/2"	6-1/4"	1066	763	628	628	763	1066	
THRCR5	5/8"	SLW-58	4"	2-15/16"	4-1/2"	6"	972	615	473	473	615	972	
THRCR6	5/8"	SLW-58	5-1/2"	4-1/4"	6-3/8"	8-1/2"	1748	1116	863	863	1116	1748	
THRCR7	3/4"	SLW-34	5-1/2"	4-1/4"	6-3/8"	8-3/4"	1884	1209	937	937	1209	1884	
THRCR8	3/4"	SLW-34	6-1/4"	4-7/8"	7-5/16"	10"	2286	1451	1118	1118	1451	2286	

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2713 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.11 FOR HSLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ Angle ofbrace "x" from section 2 details. Φ must not be greater than 70° for capacities to be valid.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

3.21.2

Date:

ATTACH- MENT	I ANCHOR I SIW			N <mark>OMINAL EFFECTIVE N</mark>		I ('Y)N(' I		TENSION IN Ie", @ ANGL HORING TO	.Ε "Φ" _	"Tcabl	ENSION IN e", @ ANGL ING TO WA	MIN. PLATE THICK-	STUD DIA- METER	
TYPE			EMBED.	EMBED.	DISTANCE	THICKNESS	20°≤Φ≤30°	30°<Φ≤45°	45°<Φ≤60°	30°≤Φ<45°	45°≤Φ<60°	60°≤Φ≤70°	NESS "t"	"D"
2THRC1	3/8"	SLW-12	2-1/2"	1-3/4"	2-3/4"	4"	889	805	784	784	805	889	3/8"	1/2"
2THRC2	3/8"	SLW-12	3-1/4"	2-3/8"	3-5/8"	5"	1446	1243	1158	1158	1243	1446	3/8"	1/2"
2THRC3	1/2"	SLW-12	3-1/4"	2-3/8"	3-11/16"	5"	1568	1365	1286	1286	1365	1568	3/8"	1/2"
2THRC4	1/2"	SLW-12	4"	3"	5-1/4"	6-1/4"	2271	1940	1800	1800	1940	2271	1/2"	1/2"
2THRC5	5/8"	SLW-58	4"	2-15/16"	4-1/2"	-6-1/4" -	2157	1689	1471	1471	1689	2157	1/2"	5/8"
2THRC6	5/8"	SLW-58	5-1/2"	4-1/4"	6-3/8"	8-1/2"	3869	3054	2673	2673	3054	3869	5/8"	5/8"
2THRC7	3/4"	SLW-34	5-1/2"	4-1/4"	6-3/8"	8-3/4"	4154	3285	2879	2879	3285	4154	5/8"	3/4"
2THRC8	3/4"	SLW-34	6-1/4"	4-7/8"	7-5/16"	10"	5034	3934	3420	3420	3934	5034	5/8"	3/4"

NOTES

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2713 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ Angle of Cable "x" from Section 2 details. Φ must not be greater than 70° for Capacities to be valid.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.22.1

Date:

SIMPSON STRONG-TIE TITEN HD SCREW ANCHOR IN 3000 PSI NORMAL WEIGHT **CONCRETE SLAB/WALL/BEAM** MIN. 3000 PSI NW CONCRETE SLAB h_{min} h_{nom} SIMPSON STRONG-TIE TITEN AIIIIIIII **HD SCREW ANCHOR** MOUNTING PLATE CJL NELSON STUD HSLH-34 OR HSLH-1 ANCHOR BRACKET 1%"X1%"X12 GA. MIN. 3000 PSI NW STRUT CAHNNEI CONC. WALL OR BEAM-411111111 c_{\min} h_{nom} D"Ø CJL NELSON 11X3X"t" MIN ASTM STUD, 2" LONG. Ø OF HOLE IS A36 STEEL PLATE PLATE DETAIL ANCHOR Ø + 1/16" ATTACHMENT WITH (2) SCREW ANCHORS MAX TENSION IN CABLE, MAX TENSION IN CABLE, STUD STUD y'hmin" "h_{ef}" "C_{a1} & C_{a2}" EFFECTIVE MIN. EDGE "hnom" ATTACH-"T_{brace}", @ ANGLE "Ф" ANCHORING TO SLAB⁷ Tbrace", @ ANGLE "Φ' DIA-DIA-ANCHOR SLW MIN. MENT NOMINAL ANCHORING TO WALL/BEAM METER METER DIA CONC EMBED. EMBED. DISTANCE "D" FOF THICKNESS 20°<Φ<30° 30°<Ф≤45° 45°<Ф≤60° 45°≤Φ<60° 60°≤Φ≤70° HSLH-34 HSLH-1 3/8" SLW-38 2-1/2" 1-3/4" 2-3/4" 4" 777 1/2" 2THRCR1 692 707 777 2THRCR2 3/8" SLW-38 3-1/4" 2-3/8" 3-5/8" 5" 1232 1072 1010 1010 1072 1232 1/2" 1/2' 3-1/4" 2THRCR3 SLW-12 2-3/8 3-11/16" 5" 1344 1183 1125 1125 1183 1344 1/2' ---6-1/4" 2THRCR4 1/2' SLW-12 Δ" 3" 5-1/4' 1929 1671 1568 1568 1671 1929 1/2" 2-15/16 2THRCR5 5/8' SI W-58 4" 4-1/2" 6-1/4" 1753 1418 1753 3/4" 7/8 1418 1262 1262 5-1/2" 4-1/4" 6-3/8" 8-1/2" 3/4" 2THRCR6 5/8' SI W-58 3158 2569 2569 3158 7/8 2296 2296 3/4" 5-1/2" 4-1/4" 6-3/8" 8-3/4" 3/4" 2THRCR7 3394 7/8' SLW-34 2764 2474 2474 2764 3394

NOTES:

1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.

4088

3300

2934

2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-2713 (2023). SEE NOTE #5 ON PAGE 3.0.1 UNDER "TESTING REQUIREMENTS FOR POST-INSTALLED ANCHORS BOLTS" FOR TESTING, SPECIAL INSPECTION & REPORTING REQUIREMENTS.

10"

- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.

4-7/8"

7-5/16"

- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 6. SEE PAGE 4.11 FOR HSLH-34 DETAILS.

2THRCR8

- 7. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 8. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.
- FOR HSLH-1 ON PAGE 4.12, USE SLW-78 ON PAGE 4.12.

SLW-34

6-1/4"

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay

California PE No. S6481

2934

3300

4088

Page No.:

3.22.2

7/8'

Date:

TEKS SCREWS TO METAL DECK 12" MAX FLUTE C.L. #12-14 ITW TEKS MIN. 1" SCREWS. (4) PLACES MIN. 20 GA. METAL DECK SEE NOTE #2 MAX TENSION IN CABLE, L2X3X3/16 (LLH), A36_ NUMBER OF ATTACH-Tcable", @ ANGLE "Φ"⁴ **SCREW** MENT 9/16" HOLE FOR TYPE (TOTAL)* 20°≤Φ≤30° 30°<Φ≤45° 45°<Φ≤60° PRE-DRILL 1/4"Ø HOLES A307 M.B., 11/4" EDGE OF THROUGH ANGLE FOR #12 BD1 4 617 547 523 STEEL DIST. **SCREWS** SLW-12 SLOTTED WASHER BD2 6 910 810 778 ½"Ø A307 MACHINE BOLT W/ 1029 1193 1068 **HEAVY NUT WITH 40 LB-FT** TIGHTENING TORQUE-*(2) SCREWS TYP. & EA. DECK CONTACT $\mathsf{T}_{\mathsf{cable}}$ SLH-34 ANCHOR BRACKET BD1 1/8" Ø 7 X 19 GALVANIZED STEEL CABLE #12-14 ITW TEKS MIN. 20 GA. SCREWS. (6) PLACES METAL DECK MIN. 1"-SEE NOTE #2 L2X3X³/₁₆ (LLH), A36 9/16" HOLE FOR A307 M.B., 11/4" EDGE OF PRE-DRILL 1/4"Ø HOLES STEEL DIST. THROUGH ANGLE FOR #12 SLW-12 SLOTTED WASHER **SCREWS** ½"Ø A307 MACHINE BOLT W/ **HEAVY NUT WITH 40 LB-FT** T_{cable} 19/2025 TIGHTENING TORQUE SLH-34 ANCHOR BRACKET-BD2 1/8" Ø 7 X 19 GALVANIZED STEEL CABLE. #12-14 ITW TEKS MIN. 20 GA. SCREWS. (8) PLACES. **METAL DECK** MIN. 1" SEE NOTE #2 L2X3X3/16 (LLH), A36 PRE-DRILL 1/4"Ø HOLES THROUGH ANGLE FOR #12 9/16" HOLE FOR **SCREWS** A307 M.B., 11/4" EDGE OF STEEL DIST. NOTES: 1. LOADS FOR ITW TEKS SCREW ATTACHMENT BASED ON THE ICC SLW-12 SLOTTED WASHER $\mathsf{T}_{\mathsf{cable}}$ ESR-1976 (2023). ½"Ø A307 MACHINE BOLT W/ 2. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY **HEAVY NUT WITH 40 LB-FT** OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD BD3 TIGHTENING TORQUE-CAPACITIES. SLH-34 ANCHOR BRACKET 3. SEE PAGE 4.4 FOR SLH-34 DETAILS. 1/8" Ø 7 X 19 GALVANIZED STEEL CABLE. 4. $\Phi = 90^{\circ}$ – ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblay

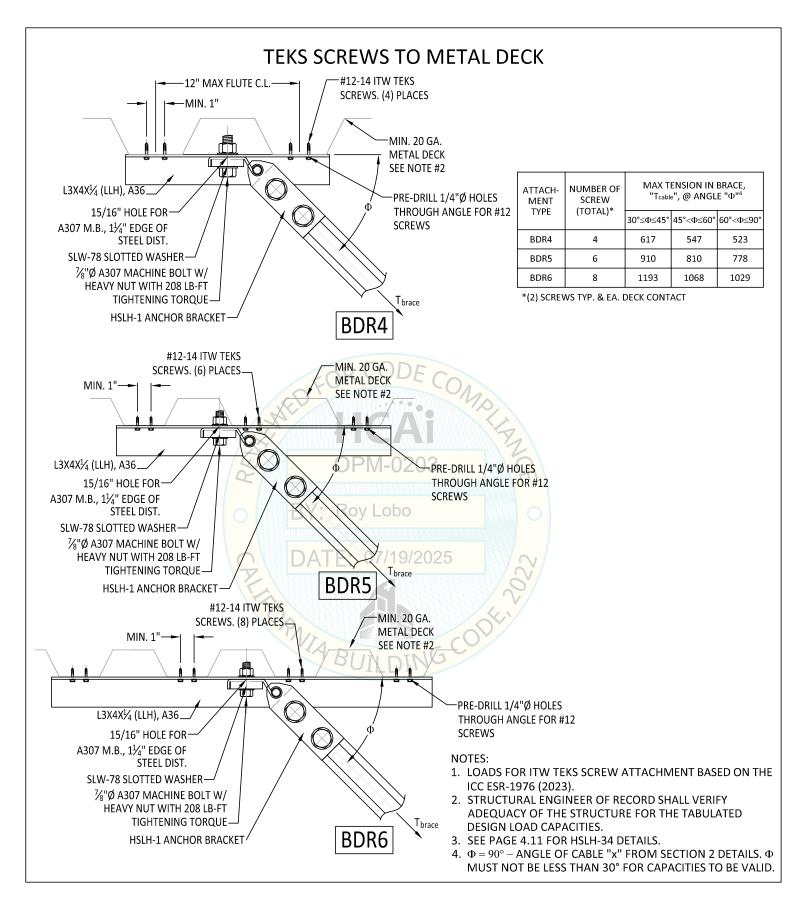
California PE No. S6481

Page No.:

3.23.1

Date:

TEKS SCREWS TO METAL DECK #12-14 ITW TEKS 12" MAX FLUTE C.L. SCREWS. (4) PLACES MIN. 1" MIN. 20 GA. METAL DECK Ó SEE NOTE #2 MAX TENSION IN BRACE, L2X3X3/16 (LLH), A36_ NUMBER OF ATTACH-"Tcable", @ ANGLE "Φ" PRE-DRILL 1/4"Ø HOLES **SCREW** MENT (TOTAL)* 9/16" HOLE FOR THROUGH ANGLE FOR #12 TYPE 30°≤Φ≤45° 45°<Φ≤60° 60°<Φ≤90° **SCREWS** A307 M.B., 11/4" EDGE OF BDR1 4 617 547 523 STEEL DIST. **SLW-12 SLOTTED WASHER** BDR2 910 810 778 ½"Ø A307 MACHINE BOLT W/ 1068 1029 BDR3 1193 **HEAVY NUT WITH 50 LB-FT TIGHTENING TORQUE** *(2) SCREWS TYP. & EA. DECK CONTACT T_{brace} HSLH-34 ANCHOR BRACKET BDR1 #12-14 ITW TEKS MIN. 20 GA. SCREWS. (6) PLACES METAL DECK MIN. 1" SEE NOTE #2 L2X3X3/16 (LLH), A36 PRE-DRILL 1/4"Ø HOLES THROUGH ANGLE FOR #12 9/16" HOLE FOR **SCREWS** A307 M.B., 11/4" EDGE OF ov Lobo STEEL DIST. SLW-12 SLOTTED WASHER ½"Ø A307 MACHINE BOLT W/ **HEAVY NUT WITH 50 LB-FT TIGHTENING TORQUE** T_{brace} BDR2 **HSLH-34 ANCHOR BRACKET** #12-14 ITW TEKS MIN. 20 GA. SCREWS. (8) PLACES **METAL DECK** MIN. 1" SEE NOTE #2 PRE-DRILL 1/4"Ø HOLES L2X3X3/16 (LLH), A36 THROUGH ANGLE FOR #12 **SCREWS** 9/16" HOLE FOR A307 M.B., 11/4" EDGE OF NOTES: STEEL DIST. 1. LOADS FOR ITW TEKS SCREW ATTACHMENT BASED ON THE **SLW-12 SLOTTED WASHER** ICC ESR-1976 (2023). ½"Ø A307 MACHINE BOLT W/ 2. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY **HEAVY NUT WITH 50 LB-FT** ADEQUACY OF THE STRUCTURE FOR THE TABULATED TIGHTENING TORQUE T_{brace} DESIGN LOAD CAPACITIES. BDR3 **HSLH-34 ANCHOR BRACKET** 3. SEE PAGE 4.11 FOR HSLH-34 DETAILS. 4. $\Phi = 90^{\circ}$ – ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 30° FOR CAPACITIES TO BE VALID.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

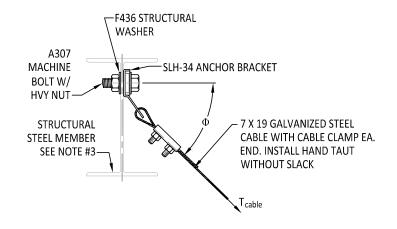
Page No.:

3.23.2

Date:

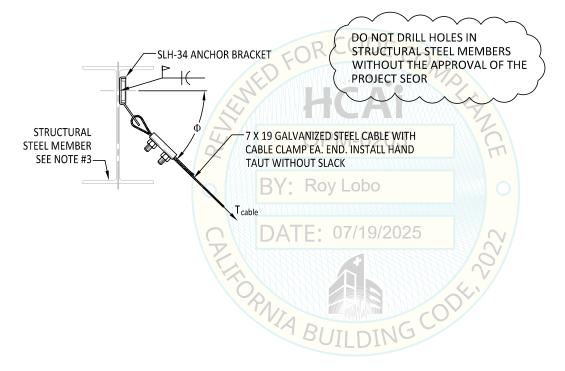
M.W. Saussé & Co., Inc.

Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: N. Tremblay

Page No.:

3,23,3


Date:

BOLT OR WELD TO STEEL

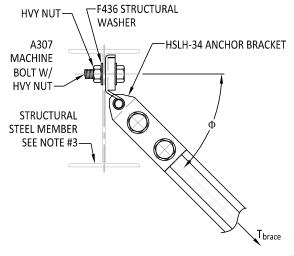
ATTACH- MENT	A307 BOLT	MIN. INSTALL	SLW SIZE	MAX TENSION IN CABLE, "Tcable", @ ANGLE "Φ" ¹¹				
TYPE	DIAMETER	TORQUE		30°≤Ф<45°	45°≤Φ<60°	60°≤Φ≤70°		
SS1	3/8"	16	SLW-38	1563	1715	2055		
SS2	1/2"	40	SLW-12	2785	3056	3663		
SS3	5/8"	79	SLW-58	4362	4787	5737		
SS4	3/4"	141	SLW-34	6281	6892	8259		

NOTE: MAXIMUM LOADS SHOWN DEVELOPED USING A307 MATERIAL STRENGTHS PER THE AISC STEEL CONSTRUCTION MANUAL, 15th EDITION *CAPACITIES ARE LRFD

NOTES:

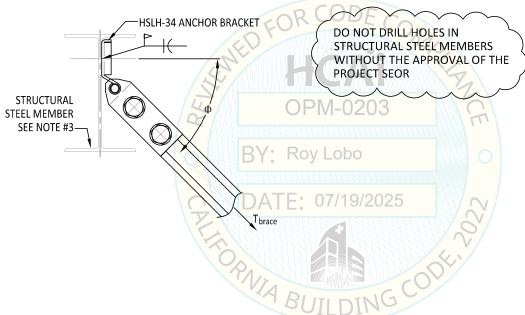
- 1. ALL STRUCTURAL STEEL SHALL BE MINIMUM A36.
- 2. INSTALL SLH-34 BRACKET WITHIN TOP 1/3 OF BEAM HEIGHT
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WELDING SHALL BE DONE BY ELECTRIC SHIELDED ARC PROCESS USING E-70XX ELECTRODES.
- 5. ALL WELDING SHALL BE PERFORMED BY A CERTIFIED WELDER.
- 6. ALL WELDING SHALL BE PERFORMED WITH SPECIAL INSPECTION.
- 7. ALL WELDING SHALL BE IN COMPLIANCE WITH 2019 CALIFORNIA BUILDING CODE.
- 8. WELDED ATTACHMENT TO STEEL BEAM SHALL NOT BE PLACED WITHIN PROTECTED ZONE AS DEFINED IN AISC 341.
- 9. SEE PAGE 4.3 FOR SLH-34 DETAILS
- 10. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE GREATER THAN 70° FOR CAPACITIES TO BE VALID.
- 11. MAX TENSION IN BRACE ELEMENT MAY BE LIMITED BY THE CAPACITIES OF THE BRACE ATTACHMENTS, BRACE (CABLE), OR ATTACHMENTS.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: 7. Tremblay
California PE No. S6481

Page No.:

3.24.1


Date:

BOLT OR WELD TO STEEL

ATTACH- MENT	A307 BOLT	MIN. INSTALL	SLW SIZE		MAX TENSION IN BRACE, "Tbrace", @ ANGLE "Φ" ¹¹			
TYPE	DIAMETER	TORQUE		30°≤Φ<45°	45°≤Φ<60°	60°≤Φ≤90°		
SSR1	3/8"	25	SLW-38	1789	1935	2275		
SSR2	1/2"	50	SLW-12	3180	3440	4045		
SSR3	5/8"	65	SLW-58	4969	5375	6322		
SSR4	3/4"	141	SLW-34	7156	7740	9103		

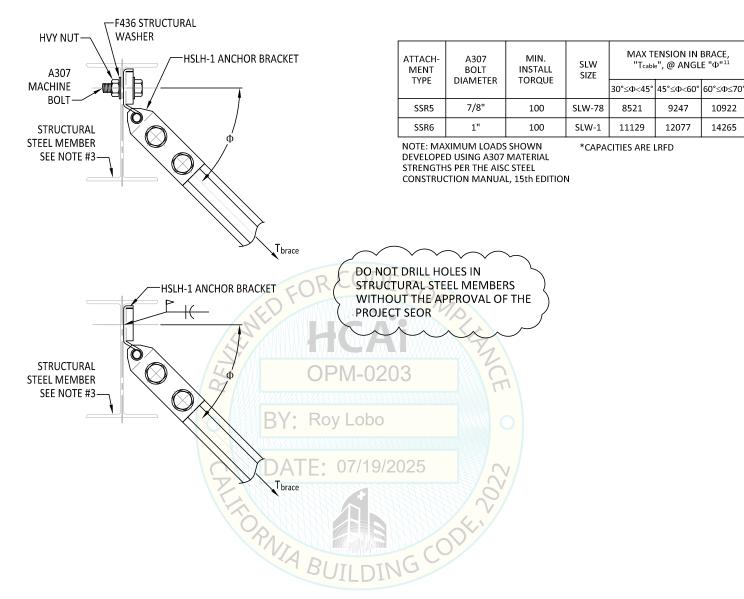
NOTE: MAXIMUM LOADS SHOWN DEVELOPED USING A307 MATERIAL STRENGTHS PER THE AISC STEEL CONSTRUCTION MANUAL, 15th EDITION *CAPACITIES ARE LRFD

NOTES:

- 1. ALL STRUCTURAL STEEL SHALL BE MINIMUM A36.
- 2. INSTALL HSLH-34 BRACKET WITHIN TOP 1/3 OF BEAM HEIGHT
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WELDING SHALL BE DONE BY ELECTRIC SHIELDED ARC PROCESS USING E-70XX ELECTRODES.
- 5. ALL WELDING SHALL BE PERFORMED BY A CERTIFIED WELDER.
- 6. ALL WELDING SHALL BE PERFORMED WITH SPECIAL INSPECTION.
- 7. ALL WELDING SHALL BE IN COMPLIANCE WITH 2019 CALIFORNIA BUILDING CODE.
- 8. WELDED ATTACHMENT TO STEEL BEAM SHALL NOT BE PLACED WITHIN PROTECTED ZONE AS DEFINED IN AISC 341.
- 9. SEE PAGE 2.15.2 FOR STRUT DETAILS.
- 10.SEE PAGE 4.10 FOR HSLH-34 DETAILS
- 11. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 30° FOR CAPACITIES TO BE VALID.
- 12. MAX TENSION IN BRACE MAY BE LIMITED BY THE CAPACITIES OF THE BRACE ATTACHMENTS, BRACE, CHANNEL NUT, OR ATTACHMENTS.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.24.2

Date:

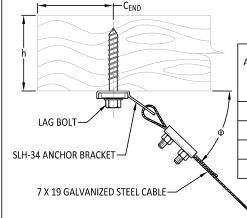
BOLT OR WELD TO STEEL

NOTES:

- 1. ALL STRUCTURAL STEEL SHALL BE MINIMUM A36.
- 2. INSTALL HSLH-34 BRACKET WITHIN TOP 1/3 OF BEAM HEIGHT
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. WELDING SHALL BE DONE BY ELECTRIC SHIELDED ARC PROCESS USING E-70XX ELECTRODES.
- 5. ALL WELDING SHALL BE PERFORMED BY A CERTIFIED WELDER.
- 6. ALL WELDING SHALL BE PERFORMED WITH SPECIAL INSPECTION.
- 7. ALL WELDING SHALL BE IN COMPLIANCE WITH 2019 CALIFORNIA BUILDING CODE.
- 8. WELDED ATTACHMENT TO STEEL BEAM SHALL NOT BE PLACED WITHIN PROTECTED ZONE AS DEFINED IN AISC 341.
- 9. SEE PAGE 2.15.1 FOR STRUT DETAILS.
- 10.SEE PAGE 4.12 FOR HSLH-1 DETAILS
- 11. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 30° FOR CAPACITIES TO BE VALID.
- 12. MAX TENSION IN RBACE MAY BE LIMITED BY THE CAPACITIES OF THE BRACE ATTACHMENTS, BRACE, CHANNEL NUT, OR ATTACHMENTS.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.24.3

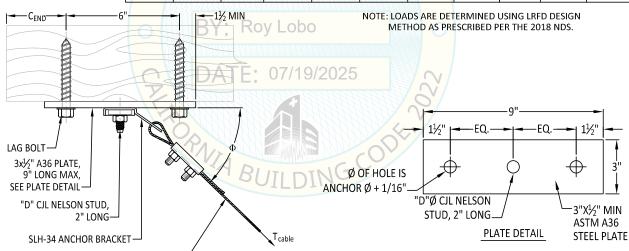
Date:

LAG BOLT TO WOOD MEMBER

·C_{EDGE}

EDGE DISTANCE DETAIL

ATTACHMENT WITH (1) LAG BOLT


ATTACH- MENT	ANCHOR DIA.	SLW SIZE	"C _{EDGE} " MIN EDGE. DISTANCE	"C _{END} " MIN. END	MIN. LAG BOLT	"h" MIN. WOOD		ENSION IN e", @ ANGL	
TYPE			DISTANCE	DISTANCE	DISTANCE LENGTH		20°≤Φ<30°	30°≤Φ≤45°	45°<Φ≤60°
LBW1	3/8"	SLW-38	1-1/2"	2-5/8"	3"	3-1/2"	332	390	473
LBW2	1/2"	SLW-12	2"	3-1/2"	4"	4-1/2"	609	698	743
LBW3	5/8"	SLW-58	2-1/2"	4-3/8"	5"	5-1/2"	854	979	1041
LBW4	3/4"	SLW-34	3"	5-1/4"	6"	7-1/2"	1179	1343	1390

NOTE: LOADS ARE DETERMINED USING LRFD DESIGN METHOD AS PRESCRIBED PER THE 2018 NDS.

 T_{cable}

ATTACH- MENT	ANCHOR DIA.			"C _{END} " MIN. END	MIN. SPACING BETWEEN	MIN. LAG BOLT	"h" MIN. WOOD	"D" SIZE STUD		ENSION IN e", @ ANGL	
TYPE	CO	M	DISTANCE	DISTANCE	BOLTS	LENGTH	THREADS		20°≤Φ<30°	30°≤Φ≤45°	45°<Φ≤60°
2LBW1	3/8"	SLW-12	1-1/2"	2-5/8"	1-1/2"	3"	3-1/2"	½"	593	655	1296
2LBW2	1/2"	SLW-12	2" /	3-1/2"	2"	4"	4-1/2"	½"	1125	1237	2219
2LBW3	5/8"	SLW-12	2-1/2"	4-3/8"	2-1/2"	5"	5-1/2"	½"	1604	1763	3138
2LBW4	3/4"	SLW-58	3"	5-1/4"	3"	6"	7-1/2"	5/8"	2238	2459	4270

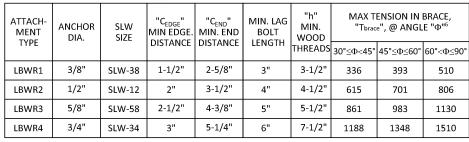
- 1. LOADS FOR LAG BOLT ATTACHMENTS ARE DERIVED FROM 2019 CBC AND 2018 NDS FOR WOOD WITH A MINIMUM SPECIFIC GRAVITY = 0.50 (I.E. DOUGLAS FIR-LARCH OR EQUAL), MIN. CONSTRUCTION GRADE. WOOD MEMBER LOADED PERPENDICULAR TO GRAIN.
- 2. MINIMUM WOOD MEMBER SIZE TO MEET THE EDGE, END, AND DEPTH REQUIREMENTS AS SPECIFIED IN THE TABLES ABOVE.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. FASTENERS SHALL BE A307 BOLTS OR BETTER.

7 X 19 GALVANIZED STEEL CABLE

- 5. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 6. $\Phi = 90^{\circ} \text{ANGLE "x"}$ OF CABLE FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.
- 7. MAX TENSION IN BRACE ELEMENT MAY BE LIMITED BY THE CAPACITIES OF THE BRACE ATTACHMENTS, BRACE (CABLE), OR ATTACHMENTS.)

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: 7. Tremblay
California PE No. S6481

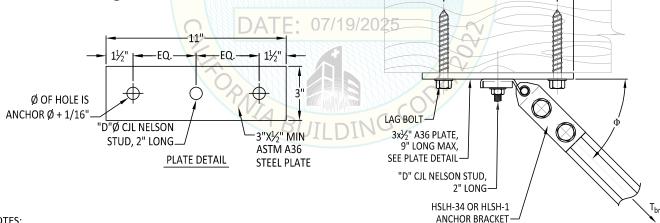

Page No.:

3.25.1

Date:

LAG BOLT TO WOOD MEMBER

ATTACHMENT WITH (1) LAG BOLT


NOTE: LOADS ARE DETERMINED USING LRFD DESIGN METHOD AS PRESCRIBED PER THE 2018 NDS.

ATTACH- MENT	ANCHOR DIA.	SLW SIZE ⁷	"C _{MIN} " MIN EDGE.	"C _{END} " MIN. END	MIN. SPACING BETWEEN	MIN. LAG BOLT	"h" MIN. WOOD	"D" SIZE STUD ⁷		ENSION IN e", @ ANGL	
TYPE	Q.J.	WW	DISTANCE	DISTANCE	BOLTS	LENGTH	THREADS		30°≤Ф<45°	45°≤Φ≤60°	60°<Φ≤90°
2LBWR1	3/8"	SLW-12	1-1/2"	2-5/8"	1-1/2"	3"	3-1/2"	½"	573	693	1222
2LBWR2	1/2"	SLW-12	2"	3-1/2"	2"	4"	4-1/2"	½"	1086	1288	2028
2LBWR3	5/8"	SLW-12	2-1/2"	4-3/8"	2-1/2"	5"	5-1/2"	½"	1548	1831	2861
2LBWR4	3/4"	SLW-58	3"	5-1/4"	3"	6"	7-1/2"	5/8"	2160	2544	3867

-C_{END}-

NOTE: LOADS ARE DETERMINED USING LRFD DESIGN METHOD AS PRESCRIBED PER THE 2018 NDS.

NOTES:

- 1. LOADS FOR LAG BOLT ATTACHMENTS ARE DERIVED FROM 2019 CBC AND 2018 NDS FOR WOOD WITH A MINIMUM SPECIFIC GRAVITY = 0.50 (I.E. DOUGLAS FIR-LARCH OR EQUAL), MIN. CONSTRUCTION GRADE. WOOD MEMBER LOADED PERPENDICULAR TO GRAIN.
- 2. MINIMUM WOOD MEMBER SIZE TO MEET THE EDGE, END, AND DEPTH REQUIREMENTS AS SPECIFIED IN THE TABLES ABOVE.
 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. FASTENERS SHALL BE A307 BOLTS OR BETTER.

 C_{END}

-C_{EDGE}

LAG BOLT

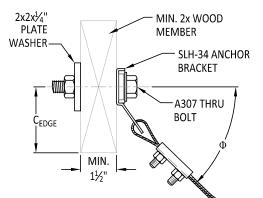
HSLH-34 ANCHOR BRACKET

- 5. SEE PAGE 4.11 FOR HSLH-34 DETAILS & 4.12 FOR HSLH-1 DETAILS.
- 6. $\Phi = 90^{\circ}$ ANGLE "x" OF BRACE FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 30° FOR CAPACITIES TO BE VALID.
- 7. FOR HSLH-1 BRACKETS USE SLW-78 AND %" CJL NELSON STUDS FOR THE ANCHOR PLATE.
- 8. MAX TENSION IN BRACE ELEMENT MAY BE LIMITED BY THE CAPACITIES OF THE BRACE ATTACHMENTS, BRACE, OR ATTACHMENTS.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:


-1½ MIN

3.25.2

Date:

THRU-BOLT PERPENDICULAR TO WOOD MEMBER

ATTACHMENT WITH (1) THRU BOLT

ATTACH- MENT	ANCHOR DIA.	"C _{EDGE} " MIN. EDGE	EDGE MIN. END TO		MAX TENSION IN CABLE, "Tcable", @ ANGLE "Φ" ⁷			
TYPE		DISTANCE	DISTANCE	(ft-lbs)	20°≤Φ<30°	30°≤Φ≤45°	45°<Φ≤60°	
TBW1	1/2"	2"	3-1/2"	50	756	618	569	
TBW2	5/8"	2-1/2"	4-3/8"	65	879	717	661	
TBW3	3/4"	3"	5-1/4"	65	1025	837	771	

NOTE: LOADS ARE DETERMINED USING LRFD DESIGN METHOD AS PRESCRIBED PER THE 2018 NDS.

7 X 19 GALVANIZED STEEL CABLE WITH CABLE CLAMP EA. END. INSTALL HAND TAUT WITHOUT SLACK-

ATTACHMENT WITH (2) THRU BOLTS

	<u> N</u>	MIN. 2x WOOD MEM	BER	ATTA	CHMEN.	T WITH	(2) THRU	J BOLTS				
2x2x½" PLATE	/ WOONTINGTEATE			ATTACH- MENT TYPE	ANCHOR DIA.	"C _{EDGE} " MIN. EDGE		MIN. SPACING BETWEEN	TIGHTENING TORQUE		ENSION IN e", @ ANGL	
WASHER—	////	/—SLH-34 ANCHOR BRACKET WITH			0201	DISTANCE	DISTANCE	BOLTS	(ft-lbs)	30°≤Φ<45°	45°≤Φ<60°	60°≤Φ≤70°
71		SLW-12 SLOTTED		2TBW1	1/2"	2"	3-1/2"	2"	50	1513	1236	1139
	/_IB_	WASHER	XXXXXXXXXXX	2TBW2	5/8"	2-1/2"	4-3/8"	<mark>2-</mark> 1/2"	65	1757	1435	1322
† ************************************			BY:	2TBW3	3/4"	3"	5-1/4"	3"	65	2050	1674	1543
C _{EDGE}		D	(2) A307 T	THRU BOLT E: 07	/19/20			RESCRIBED I	USING LRFD EPER THE 2018			
1 ¹ / ₂					11/4"-	FO	-6"-FO		1¼" 2			

7 X 19 GALVANIZED STEEL CABLE WITH CABLE CLAMP EA. END. INSTALL HAND TAUT WITHOUT SLACK-

3X81/2X1/2 MIN. A36 STEEL 11/5' **PLATE** 1/3" Ø CJL NELSON STUD, 2" LONG MTG. HOLE IS PLATE DETAIL THRU BOLT $Ø + \frac{1}{16}$ " (2) PER PLATE

NOTES:

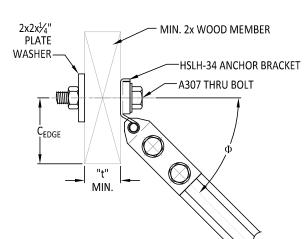
- 1. BOLT HOLES SHALL BE BORED 1/16" LARGER THAN THE NOMINAL BOLT DIAMETER.
- 2. LOADS FOR THRU-BOLT ATTACHMENTS ARE DERIVED FROM 2019 CBC AND 2018 NDS FOR WOOD WITH A MINIMUM SPECIFIC GRAVITY = 0.50 (I.E. DOUGLAS FIR-LARCH) AND GRADE NO.2. WOOD MEMBER LOADED PERPENDICULAR TO GRAIN.
- 3. MINIMUM BEAM SIZE TO MEET THE DIMENSIONAL REQUIREMENTS SHOWN IN THE FIGURES AND TABLES ABOVE.

 $\mathsf{T}_{\mathsf{cable}}$

- 4. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 5. FASTENERS SHALL BE A307 BOLTS OR BETTER.
- 6. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE EXCEED 70° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: M. Tremblay California PE No. S6481

Page No.:

3.26.1

Date:

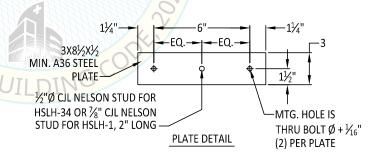
THRU-BOLT PERPENDICULAR TO WOOD MEMBER

MIN. 2x WOOD MEMBER MOUNTING PLATE

HSLH-34 ANCHOR BRACKET WITH

SLW-12 SLOTTED WASHER OR **HSLH-1 ANCHOR BRACKET WITH** SLW-78 SLOTTED WASHER

ATTACHMENT WITH (1) THRU BOLT


ATTACH- MENT	131Δ 1 1		l	"t" MIN THICK-	TIGHTENING TORQUE		ENSION IN BRACE, =", @ ANGLE "Φ" ⁷	
TYPE		DISTANCE	DISTANCE	NESS	(ft-lbs)	30°≤Φ<45°	45°≤Φ≤60°	60°<Φ≤70°
TBWR1	1/2"	2"	3-1/2"	1-1/2"	50	946	772	712
TBWR2	5/8"	2-1/2"	4-3/8"	1-1/2"	65	1099	897	827
TBWR3	3/4"	3"	5-1/4"	1-1/2"	65	1282	1047	965
TBWR2	7/8"	3-1/2"	6-1/8"	2-1/2"	100	1322	1080	995
TBWR3	1"	4"	7"	3-1/2"	100	1373	1121	1033

NOTE: LOADS ARE DETERMINED USING LRFD DESIGN METHOD AS PRESCRIBED PER THE 2018 NDS.

ATTACHMENT WITH (2) THRU BOLTS

ATTACH- MENT TYPE	ANCHOR DIA.	"C _{EDGE} " MIN EDGE.		N. END BETWEEN TORQU			AX TENSION IN BRACE, T _{brace} ", @ ANGLE "Φ" ⁷		
	0201	DISTANCE	DISTANCE	BOLTS		30°≤Φ<45°	45°≤Φ<60°	60°≤Φ≤70°	
2TBWR1	1/2"	2"	3-1/2"	2"	50	1892	1545	1424	
2TBWR2	5/8"	2-1/2"	4-3/8"	2-1/2"	65	2197	1794	1653	
2TBWR3	3/4"	3"	5-1/4"	3"	65	2564	2093	1929	

NOTE: LOADS ARE DETERMINED USING LRFD DESIGN METHOD AS PRESCRIBED PER THE 2018 NDS.

2x2x½" PLATE

WASHER

EDGE

MIN 1½'

- 1. BOLT HOLES SHALL BE BORED 1/16" LARGER THAN THE NOMINAL BOLT DIAMETER.
- 2. LOADS FOR THRU-BOLT ATTACHMENTS ARE DERIVED FROM 2019 CBC AND 2018 NDS FOR WOOD WITH A MINIMUM SPECIFIC GRAVITY = 0.50 (I.E. DOUGLAS FIR-LARCH) AND GRADE NO.2.
- 3. MINIMUM BEAM SIZE TO MEET THE DIMENSIONAL REQUIREMENTS SHOWN IN THE FIGURES AND TABLES ABOVE.

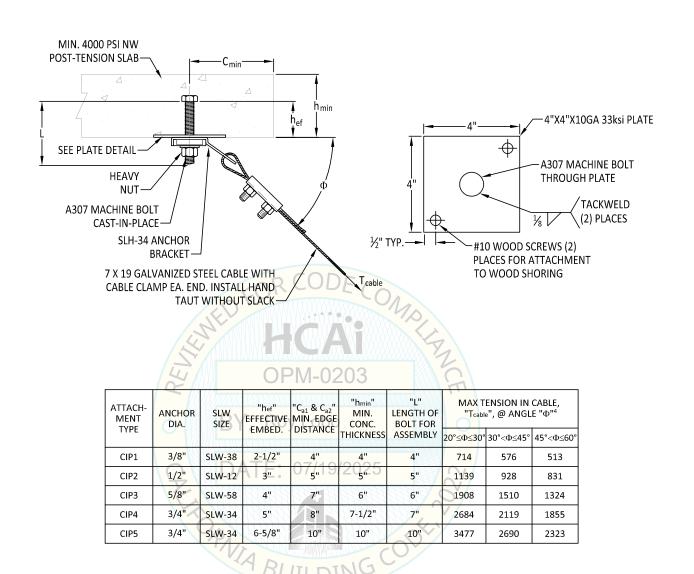
(2) A307 THRU BOLT

- 4. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 5. FASTENERS SHALL BE A307 BOLTS OR BETTER.
- 6. SEE PAGE 4.11 FOR HSLH-34 DETAILS & PAGE 4.12 FOR HSLH-1 DETAILS.
- 7. $\Phi = 90^{\circ}$ ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT LESS THAN 30° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblay


California PE No. S6481

Page No.:

3.26.2

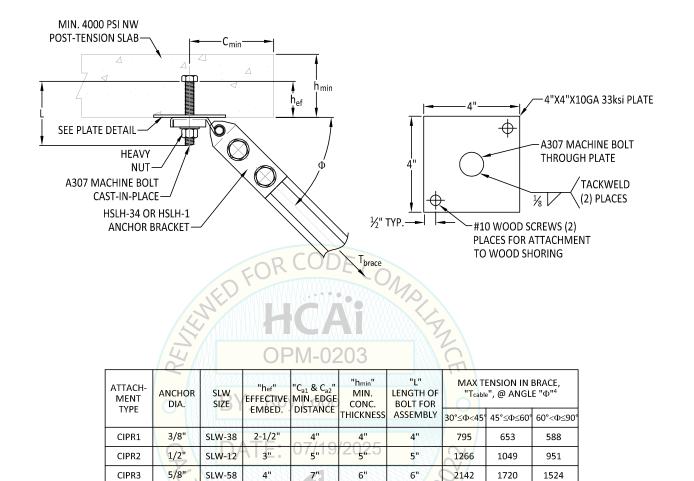
Date:

CAST-IN-PLACE BOLT IN MIN. 4000 PSI POST-TENSION CONCRETE SLAB

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN CABLE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 3. SEE PAGE 4.4 FOR SLH-34 DETAILS.
- 4. $\Phi = 90^{\circ}$ ANGLE OF CABLE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 20° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355


Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblay California PE No. S6481 Page No.:

3.27.1

Date:

CAST-IN-PLACE BOLT IN MIN. 4000 PSI POST-TENSION CONCRETE SLAB

NOTES:

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS USED IN DETERMINING THE MAXIMUM DESIGN BRACE TENSION VALUES SHOWN. TO OBTAIN LOAD ON THE ANCHORAGE MULTIPLY THE TABULATED VALUES BY 2.0.
- 2. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.

8"

10"

10"

12"

7-1/2"

10"

10"

10"

7"

10"

10"

11"

3015

3934

3873

4769

2415

3082

3211

4023

2136

2683

2912

3697

3. SEE PAGE 4.11 FOR HSLH-34 DETAILS & PAGE 4.12 FOR HSLH-1.

CIPR4

CIPR5

CIPR6

CIPR7

3/4"

3/4"

7/8"

SLW-34

SLW-34

SLW-78

SLW-1

5"

6-5/8"

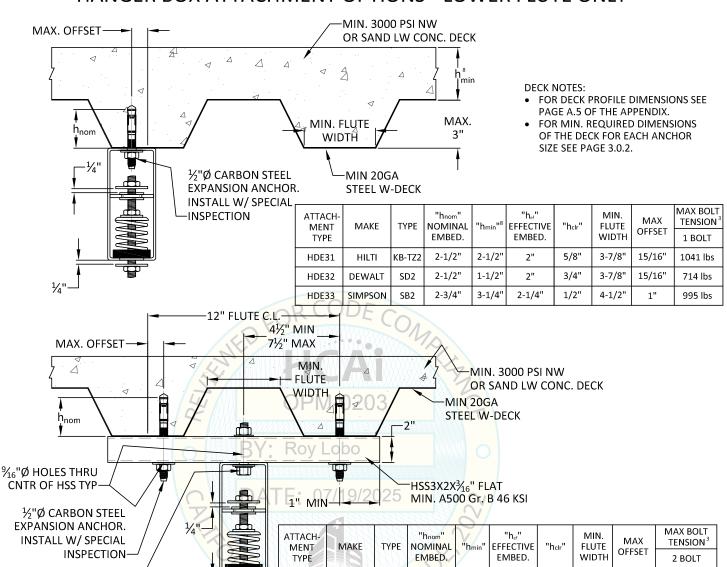
7"

8"

4. $\Phi = 90^{\circ}$ – ANGLE OF BRACE "x" FROM SECTION 2 DETAILS. Φ MUST NOT BE LESS THAN 30° FOR CAPACITIES TO BE VALID.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355

Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

3.27.2

Date:

HANGER BOX ATTACHMENT OPTIONS - LOWER FLUTE ONLY

NOTE(S):

1. OVER STRENGTH FACTOR Ω_0 =2.0 PER ASCE 7-16, TABLE 13.6-1 IS INCLUDED FOR ANCHORAGE TO CONCRETE. WHEN DESIGNING ANCHORAGE AS SHOWN Ω_0 MUST BE TAKEN INTO ACCOUNT IN DETERMINING THE FINAL DESIGN SPRING HANGER AND/OR ROD TENSION (TYPICALLY FOR OVERTURNING ACTION OF SUSPENDED EQUIPMENT OR DUCT.)

HILTI

DEWALT

SIMPSON

2-1/2"

2-1/2"

2-3/4"

1-1/2

1-1/2'

3-1/4"

2"

2-1/4"

KB-TZ2

SD2

SB2

2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023), ESR-2502 (2023), OR ESR-3037 (2023).

2HDE31

2HDE32

2HDE33

- 3. MAX. DESIGN RATING IS THE LESSER OF THE LOAD CAPACITY SHOWN OR THE SEISMIC LOAD RATING OF HANGER BOX (1,200 LBS).
- 4. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 5. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.

1/4"

- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.1 FOR HANGER BOX DETAILS.

40 LB-FT

½"Ø A307 MACHINE BOLT W/ HVY NUT

TIGHTENED TO MIN.

- 8. FILL THICKNESS MUST NOT BE LESS THAN THE VALUE OF h_{nin} LISTED AND MUST BE THICK ENOUGH TO ACCOMMODATE THE ANCHOR EMBEDMENT PLUS THE VALUE OF h_{cir} .
- 9. DESIGN IS CONTROLLED BY SEISMIC FORCES. NON-SEISMIC FORCES SUCH AS GRAVITY ARE OUTSIDE THE SCOPE OF THIS OPM.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

3.28

Date:

5/8"

3/4"

1/2"

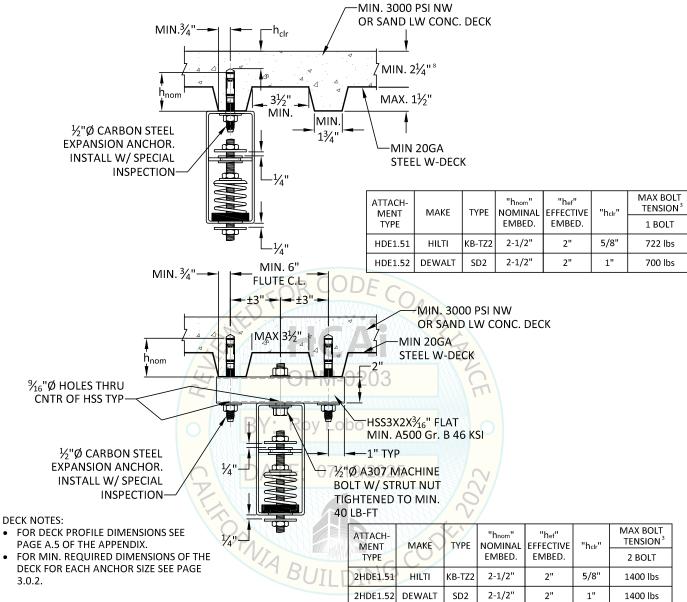
3-7/8"

3-7/8"

4-1/2"

15/16'

15/16'


1"

1666 lbs

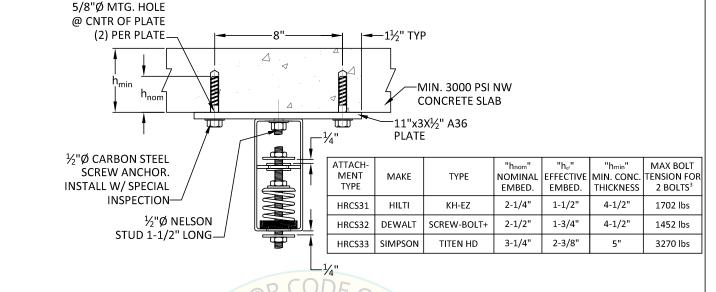
1142 lbs

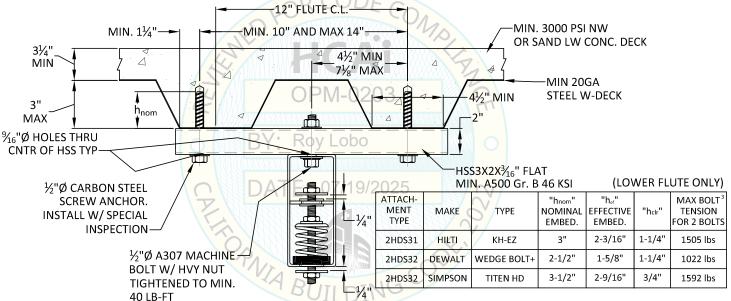
1592 lbs

HANGER BOX ATTACHMENT OPTIONS - LOWER FLUTE ONLY

NOTE(S):

- 1. OVER STRENGTH FACTOR Ω_0 =2.0 PER ASCE 7-16, TABLE 13.6-1 IS INCLUDED FOR ANCHORAGE TO CONCRETE. WHEN DESIGNING ANCHORAGE AS SHOWN Ω_0 MUST BE TAKEN INTO ACCOUNT IN DETERMINING THE FINAL DESIGN SPRING HANGER AND/OR ROD TENSION (TYPICALLY FOR OVERTURNING ACTION OF SUSPENDED EQUIPMENT OR DUCT.)
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023), OR ESR-2502 (2023).
- 3. MAX. DESIGN RATING IS THE LESSER OF THE LOAD CAPACITY SHOWN OR THE SEISMIC LOAD RATING OF HANGER BOX (1,200 LBS).
- 4. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- $5. \ \ WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.$
- 6. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 7. SEE PAGE 4.1 FOR HANGER BOX DETAILS.
- 8. FILL THICKNESS MUST NOT BE LESS THAN THE VALUE LISTED AND MUST BE THICK ENOUGH TO ACCOMMODATE THE ANCHOR EMBEDMENT PLUS THE VALUE OF h_{clr}.
- 9. DESIGN IS CONTROLLED BY SEISMIC FORCES. NON-SEISMIC FORCES SUCH AS GRAVITY ARE OUTSIDE THE SCOPE OF THIS OPM.


M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

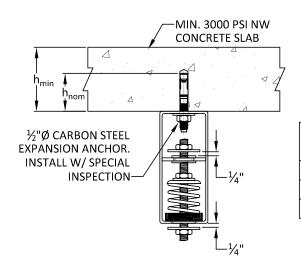
3.29

Date:

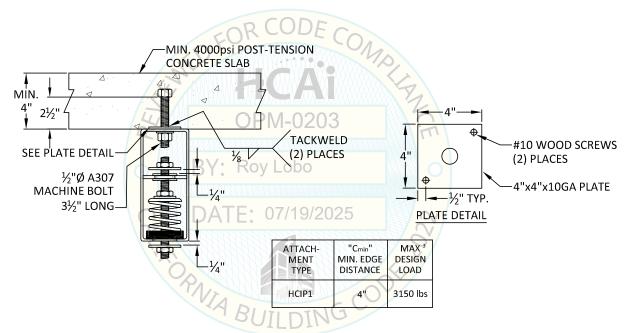
NOTE(S):

- 1. OVER STRENGTH FACTOR Ω_0 =2.0 PER ASCE 7-16, TABLE 13.6-1 IS INCLUDED FOR ANCHORAGE TO CONCRETE. WHEN DESIGNING ANCHORAGE AS SHOWN Ω_0 MUST BE TAKEN INTO ACCOUNT IN DETERMINING THE FINAL DESIGN SPRING HANGER AND/OR ROD TENSION (TYPICALLY FOR OVERTURNING ACTION OF SUSPENDED EQUIPMENT OR DUCT.)
- 2. INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3027 (2023), ESR-2526 (2023), OR ESR-2713 (2023).
- 3. MAX. DESIGN RATING IS THE LESSER OF THE LOAD CAPACITY SHOWN OR THE SEISMIC LOAD RATING OF HANGER BOX (1,200 LBS.)
- 4. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 5. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 6. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 7. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS ARE ALONG THE FLUTE LENGTH.
- 8. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 9. SEE PAGE 4.1 FOR HANGER BOX DETAILS.
- 10.DESIGN IS CONTROLLED BY SEISMIC FORCES. NON-SEISMIC FORCES SUCH AS GRAVITY ARE OUTSIDE THE SCOPE OF THIS OPM.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblay
California PE No. S6481


Page No.:

3.30

Date:

ATTACH- MENT TYPE	MAKE	TYPE	"h _{nom} " NOMINAL EMBED.	"h _{ef} " EFFECTIVE EMBED.	"h _{min} " MIN. CONC. THICKNESS	"C _{min} " MIN. EDGE DISTANCE	MAX ³ DESIGN LOAD
HRCE31	HILTI	KB-TZ2	2-1/2"	2"	4"	5-1/2"	1586 lbs
HRCE32	DEWALT	SD2	2-1/2"	2"	4-1/2"	8"	1284 lbs
HRCE32	SIMPSON	SB2	2-3/4"	2-1/4"	4-1/2"	7"	1532 lbs

NOTE(S):

- 1. OVER STRENGTH FACTOR Ω_0 =2.0 PER ASCE 7-16, TABLE 13.6-1 IS INCLUDED FOR ANCHORAGE TO CONCRETE. WHEN DESIGNING ANCHORAGE AS SHOWN Ω_0 MUST BE TAKEN INTO ACCOUNT IN DETERMINING THE FINAL DESIGN SPRING HANGER AND/OR ROD TENSION (TYPICALLY FOR OVERTURNING ACTION OF SUSPENDED EQUIPMENT OR DUCT.)
- 2. INSTALL ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023), ESR-2502 (2023), OR ESR-3037 (2023)
- 3. MAX. DESIGN RATING IS THE LESSER OF THE LOAD CAPACITY SHOWN OR THE SEISMIC LOAD RATING OF HANGER BOX (1,200 LBS).
- 4. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 5. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 6. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 7. SEE PAGE 4.1 FOR HANGER BOX DETAILS.
- 8. DESIGN IS CONTROLLED BY SEISMIC FORCES. NON-SEISMIC FORCES SUCH AS GRAVITY ARE OUTSIDE THE SCOPE OF THIS OPM.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

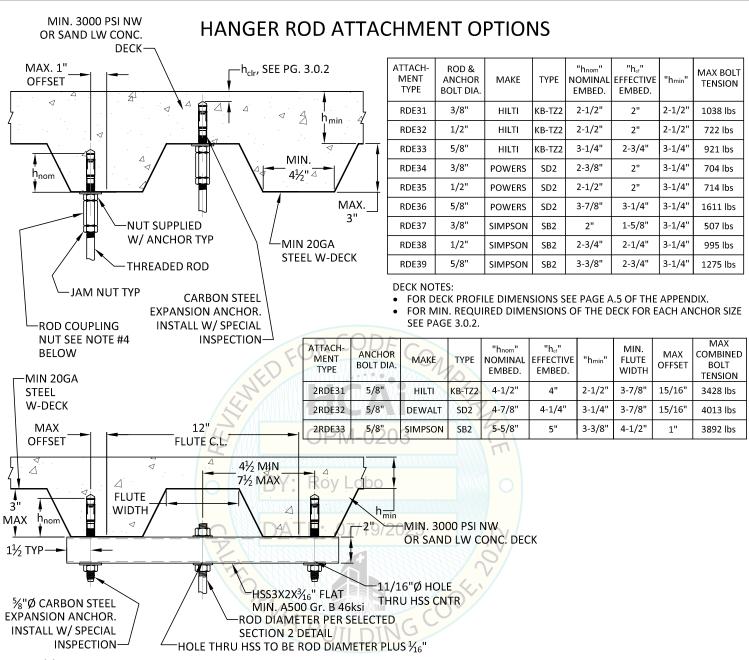
Structural Engineer: Mr. Tremblay
California PE No. S6481

Page No.:

3.31

Date:

HANGER BOX ATTACHMENT OPTIONS #12-14 ITW TEKS SCREWS (4) PLACES MIN 20GA MIN. 1" ±EO. BARE METAL DECK MIN. 4x WOOD ½"Ø LAG BOLT **MEMBER** MIN. 3" LONG ATTACH-HSW1 MENT (LRFD) HSS3X2X3/16" FLAT TYPE MIN MIN. A500 Gr. B 46ksi MAX TENSION TYP 1101 lbs ⅓"Ø A307 MACHINE FOR 1 BOLT¹ **BOLT W/ HVY NUT** 1/4" ¾"Ø ACCESS HOLE ATTACH-HBD1 -6" MIN. @ CNTR OF HSS MENT (LRFD) -EQ---EQ-**TYPE** FOR SCREWS MAX TENSION 594 lbs **FOR 4 SCREWS** ПП MIN. 3" LONG 9x3x1/2" A36 PLATE A307 HEAVY HUT ½"Ø WELDED STUD STRUCTURAL STEEL 11/16"O.D. X1/16"I.D. 11/4" LONG ATTACH-HSW/2 F436 WASHER TYP. MENT (LRFD) TYPE MAX TENSION ½"Ø A307 2202 lbs FOR 2 BOLTS¹ MACHINE BOLT MIN. 11/2 ATTACH-HSS1 MENT A307 HEAVY NUT (LRFD) TYPF 2x2x1/4" ½"Ø A307 MAX BOLT1 6620 lbs PLATE **MACHINE BOLT** TENSION WASHER A307 HEAVY HUT 1½6"O.D. X¾6"I.D. NOTE(S): F436 WASHER TYP. MAX. DESIGN RATING IS THE LESSER OF THE LOAD CAPACITY MIÑ. 2" SHOWN OR THE SEISMIC LOAD RATING OF HANGER BOX (1,200 ∠3x3x¼' LBS). SEE PG. 4.1. MIN. 3" LONG STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF ½"Ø A307 THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES. MACHINE BOLT BOLT HOLES FOR THRU BOLT SHALL BE BORED 1/16" LARGER THAN ATTACH-HTW1 THE NOMINAL BOLT DIAMETER. MENT (LRFD) TYPE LOADS FOR LAG BOLT ATTACHMENTS AND THRU-BOLT ATTACHMENTS ARE DERIVED FROM CBC 2019 AND NDS 2018 FOR MAX 535 lbs WOOD WITH A MINIMUM SPECIFIC GRAVITY = 0.50 (I.E. DOUGLAS **TENSION** FIR-LARCH OR EQUAL), MIN. CONSTRUCTION GRADE. SEE PAGE 4.1 FOR HANGER BOX DETAILS. DESIGN IS CONTROLLED BY SEISMIC FORCES. NON-SEISMIC FORCES SUCH AS GRAVITY ARE OUTSIDE THE SCOPE OF THIS OPM.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

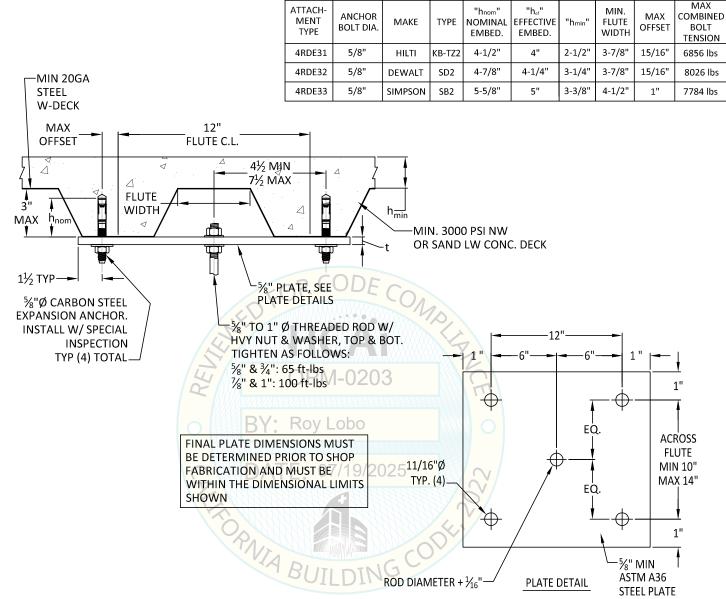
3.32

Date:

- 1. OVER STRENGTH FACTOR Ω_0 =2.0 PER ASCE 7-16, TABLE 13.6-1 IS INCLUDED FOR ANCHORAGE TO CONCRETE. WHEN DESIGNING ANCHORAGE AS SHOWN Ω₀ MUST BE TAKEN INTO ACCOUNT IN DETERMINING THE FINAL DESIGN SPRING HANGER AND/OR ROD TENSION (TYPICALLY FOR OVERTURNING ACTION OF SUSPENDED EQUIPMENT OR DUCT.)
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023), ESR-2502 (2023), OR ESR-3037 (2023).
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. ROD COUPLING NUT MUST BE MIN. ASTM A194-2H HEAVY HEX OR A563-DH HEAVY HEX NUTS. ROD AND ANCHOR MUST HAVE A MIN. THREAD ENGAGEMENT INTO THE COUPLING NUT EQUAL TO THE DIAMETER OF THE ROD/ANCHOR. ROD AND ANCHOR MUST BE IN CONTACT W/ EACH OTHER WITHIN THE COUPLING NUT AND TIGHTENED ACCORDINGLY.
- 5. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 6. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS ARE ALONG THE FLUTE LENGTH.
- 7. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/2" PER ICC-ESR.
- 8. DESIGN IS CONTROLLED BY SEISMIC FORCES. NON-SEISMIC FORCES SUCH AS GRAVITY ARE OUTSIDE THE SCOPE OF THIS OPM.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: M. Tremblay

California PE No. S6481

Page No.:

3.33

Date:

NOTE(S):

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS INCLUDED FOR ANCHORAGE TO CONCRETE. WHEN DESIGNING ANCHORAGE AS SHOWN Ω_0 MUST BE TAKEN INTO ACCOUNT IN DETERMINING THE FINAL DESIGN SPRING HANGER AND/OR ROD TENSION (TYPICALLY FOR OVERTURNING ACTION OF SUSPENDED EQUIPMENT OR DUCT.)
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023), ESR-2502 (2023), OR ESR-3037 (2023).
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. ROD COUPLING NUT MUST BE MIN. ASTM A194-2H HEAVY HEX OR A563-DH HEAVY HEX NUTS. ROD AND ANCHOR MUST HAVE A MIN. THREAD ENGAGEMENT INTO THE COUPLING NUT EQUAL TO THE DIAMETER OF THE ROD/ANCHOR. ROD AND ANCHOR MUST BE IN CONTACT W/ EACH OTHER WITHIN THE COUPLING NUT AND TIGHTENED ACCORDINGLY.
- 5. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 6. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS ARE ALONG THE FLUTE LENGTH.
- 7. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/8" PER ICC-ESR.
- 8. DESIGN IS CONTROLLED BY SEISMIC FORCES. NON-SEISMIC FORCES SUCH AS GRAVITY ARE OUTSIDE THE SCOPE OF THIS OPM.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

3.33.1

Date:

HANGER ROD ATTACHMENT OPTIONS **CARBON STEEL** MIN. 3000 PSI NW **EXPANSION ANCHOR.** OR SAND LW CONC. DECK **INSTALL W/ SPECIAL** INSPECTION ATTACH-ROD & "hnom" MAX BOLT MIN. 3/4"-MENT **ANCHOR** MAKE TYPE NOMINAL EFFECTIVE TENSION TYPE **BOLT DIA EMBED** EMBED. 5/8" 3/8" 2-1/2" MIN. **RDE1.51** HILTI KB-TZ2 2" 1038 lbs 21/4' RDE1.52 1/2" HILTI KB-TZ2 2-1/2" 2" 5/8" 722 lbs 5/8' 3-1/4 2-3/4" 5/8" RDE1.53 HILTI KB-T72 1285 lbs h_{nom} MAX MIN. 31/5" 3/8" 2-3/8" 2" 3/4" RDE1.54 **DEWALT** SD2 609 lbs 11/5" RDF1 55 1/2" SD2 2-1/2" ייכ 3/4" DEWALT 700 lbs MIN. 13/4" MIN 20GA **NUT SUPPLIED** STEEL W-DECK W/ ANCHOR TYP THREADED ROD FOR DECK PROFILE DIMENSIONS SEE PAGE A.5 OF THE APPENDIX. FOR MIN. REQUIRED DIMENSIONS OF THE DECK FOR EACH ANCHOR SIZE JAM NUT TYP SEE PAGE 3.0.2. ROD COUPLING **NUT SEE NOTE #4 BELOW** MIN. 3000 PSI NW OR SAND LW CONC. DECK MIN. 3/4"-6" FLUTE C.L ATTACH-ROD & "hnom" "h_{of}" MAX BOLT SEE MENT ANCHOR MAKE TYPE NOMINAL **EFFECTIVE** "hdr TENSION **±EQ TYPE** BOLT DIA DECK EMBED. EMBED. **NOTES** -MÎAX 5/8" 3-1/4" 2RDF1.51 HILTI KB-TZ2 2-3/4' 5/8" 2570 lbs h_{nom} MIN 20GA 2

1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS INCLUDED FOR ANCHORAGE TO CONCRETE. WHEN DESIGNING ANCHORAGE AS SHOWN Ω_0 MUST BE TAKEN INTO ACCOUNT IN DETERMINING THE FINAL DESIGN SPRING HANGER AND/OR ROD TENSION (TYPICALLY FOR OVERTURNING ACTION OF SUSPENDED EQUIPMENT OR DUCT.)

STEEL W-DECK

11/16"Ø HOLE

HSS3X2X3/16" FLAT

MIN. A500 Gr. B 46ksi

THRU HSS CNTR

2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023) OR ESR-2502 (2023).

15/16"Ø HOLE FOR 7/8" ROD THRU HSS CNTR

- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. ROD COUPLING NUT MUST BE MIN. ASTM A194-2H HEAVY HEX OR A563-DH HEAVY HEX NUTS. ROD AND ANCHOR MUST HAVE A MIN. THREAD ENGAGEMENT INTO THE COUPLING NUT EQUAL TO THE DIAMETER OF THE ROD/ANCHOR. ROD AND ANCHOR MUST BE IN CONTACT W/ EACH OTHER WITHIN THE COUPLING NUT AND TIGHTENED ACCORDINGLY.
- 5. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL..

¹³/₁₆"Ø HOLE FOR ¾" ROD &

- 6. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS ARE ALONG THE FLUTE LENGTH.
- 7. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT $\frac{1}{6}$ " PER ICC-ESR.
- 8. DESIGN IS CONTROLLED BY SEISMIC FORCES. NON-SEISMIC FORCES SUCH AS GRAVITY ARE OUTSIDE THE SCOPE OF THIS OPM.

 \Box

%"Ø CARBON STEEL

EXPANSION ANCHOR.

INSTALL W/SPECIAL

INSPECTION-

WII.

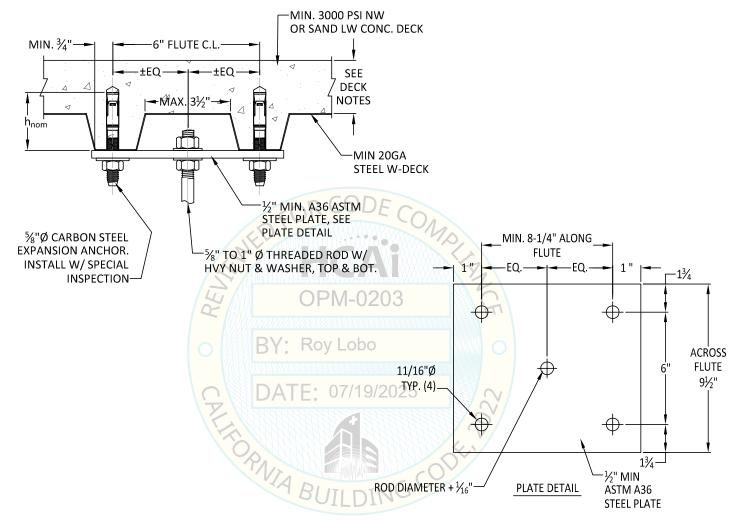
M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

⁻¾"ø or <mark>%</mark>"ø threaded rod w/

HVY NUT & WASHER, TOP & BOT.

TIGHTEN 3/4" NUTS TO 141 LB-FT


TIGHTEN 1/2" NUTS TO 208 LB-FT

Page No.:

3.34

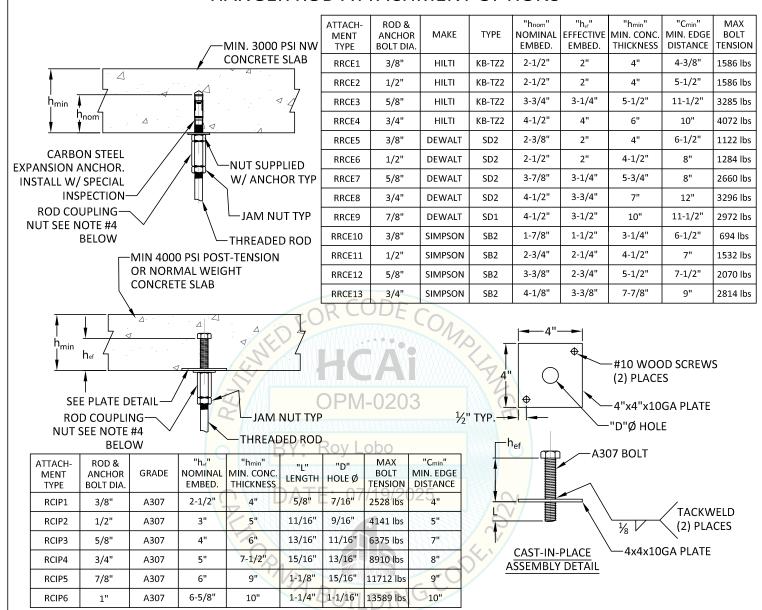
Date:

ATTACH- MENT TYPE	ROD & ANCHOR BOLT DIA.	MAKE	TYPE	"h _{nom} " NOMINAL EMBED.	"h _{ef} " EFFECTIVE EMBED.	"hclr"	MAX BOLT TENSION
4RDE1.51	5/8"	HILTI	KB-TZ2	3-1/4"	2-3/4"	5/8"	5140 lbs
4RDE1.52	1/2"	DEWALT	SD2	2-1/2"	2"	3/4"	2800 lbs

- 1. OVER STRENGTH FACTOR Ω_0 =2.0 PER ASCE 7-16, TABLE 13.6-1 IS INCLUDED FOR ANCHORAGE TO CONCRETE. WHEN DESIGNING ANCHORAGE AS SHOWN Ω ₀ MUST BE TAKEN INTO ACCOUNT IN DETERMINING THE FINAL DESIGN SPRING HANGER AND/OR ROD TENSION (TYPICALLY FOR OVERTURNING ACTION OF SUSPENDED EQUIPMENT OR DUCT.)
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023) OR ESR-2502 (2023).
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOAD CAPACITIES.
- 4. ROD COUPLING NUT MUST BE MIN. ASTM A194-2H HEAVY HEX OR A563-DH HEAVY HEX NUTS. ROD AND ANCHOR MUST HAVE A MIN. THREAD ENGAGEMENT INTO THE COUPLING NUT EQUAL TO THE DIAMETER OF THE ROD/ANCHOR. ROD AND ANCHOR MUST BE IN CONTACT W/ EACH OTHER WITHIN THE COUPLING NUT AND TIGHTENED ACCORDINGLY.
- 5. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL..
- 6. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS ARE ALONG THE FLUTE LENGTH.
- 7. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT $\frac{1}{2}$ " PER ICC-ESR.
- 8. DESIGN IS CONTROLLED BY SEISMIC FORCES. NON-SEISMIC FORCES SUCH AS GRAVITY ARE OUTSIDE THE SCOPE OF THIS OPM.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: M. Tremblay

California PE No. S6481

Page No.:

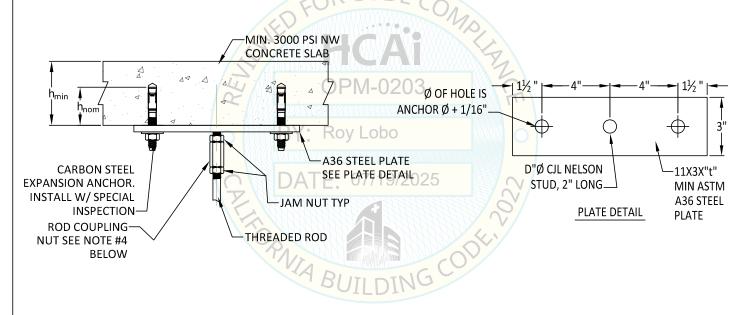
3.34.1

Date:

NOTE(S):

- 1. OVER STRENGTH FACTOR Ω_0 =2.0 PER ASCE 7-16, TABLE 13.6-1 IS INCLUDED FOR ANCHORAGE TO CONCRETE. WHEN DESIGNING ANCHORAGE AS SHOWN Ω_0 MUST BE TAKEN INTO ACCOUNT IN DETERMINING THE FINAL DESIGN SPRING HANGER AND/OR ROD TENSION (TYPICALLY FOR OVERTURNING ACTION OF SUSPENDED EQUIPMENT OR DUCT.)
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023), ESR-2502 (2023), ESR-2818 (2023), OR ESR-3037 (2023).
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED LRFD DESIGN LOADS.
- 4. ROD COUPLING NUT MUST BE MIN. ASTM A194-2H HEAVY HEX OR A563-DH HEAVY HEX NUTS. ROD AND ANCHOR MUST HAVE A MIN. THREAD ENGAGEMENT INTO THE COUPLING NUT EQUAL TO THE DIAMETER OF THE ROD/ANCHOR. ROD AND ANCHOR MUST BE IN CONTACT W/ EACH OTHER WITHIN THE COUPLING NUT AND TIGHTENED ACCORDINGLY.
- 5. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 6. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 7. DESIGN IS CONTROLLED BY SEISMIC FORCES. NON-SEISMIC FORCES SUCH AS GRAVITY ARE OUTSIDE THE SCOPE OF THIS OPM.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

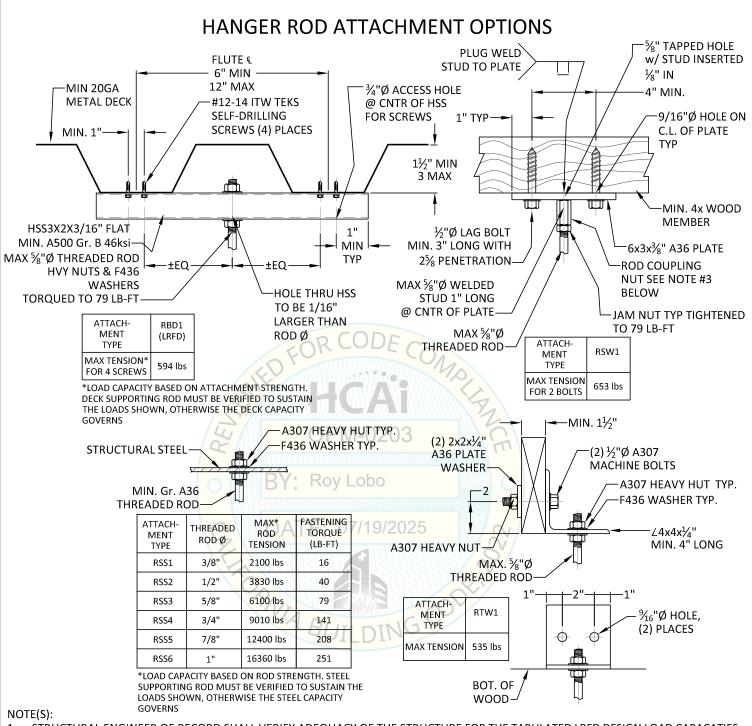
3.35

Date:

ATTACH- MENT TYPE	ROD & ANCHOR BOLT DIA.	MAKE	TYPE	"h _{nom} " NOMINAL EMBED.	"h _{ef} " EFFECTIVE EMBED.	"h _{min} " MIN. CONC. THICKNESS	"C _{min} " MIN. EDGE DISTANCE	MAX BOLT TENSION	"D" STUD DIA.	"t" PLATE THICKNESS
2RRCE1	1/2"	HILTI	KB-TZ2	2-1/2"	2"	4"	5-1/2"	3172 lbs	3/8" to 1/2"	1/2"
2RRCE2	5/8"	HILTI	KB-TZ2	3-3/4"	3-1/4"	5-1/2"	11-1/2"	6052 lbs	3/8" to 3/4"	1/2"
2RRCE3	3/4"	HILTI	KB-TZ2	4-1/2"	4"	6"	10"	6968 lbs	3/4" to 1"	1/2"
2RRCE4	3/4"	HILTI	KB-TZ2	5-1/2"	4-3/4"	8"	9"	8944 lbs	3/4" to 1"	5/8"
2RRCE5	1/2"	DEWALT	SD2	2-1/2"	2"	4-1/2"	8"	2568 lbs	3/8" to 1/2"	1/2"
2RRCE6	5/8"	DEWALT	SD2	3-7/8"	3-1/4"	5-3/4"	8"	4842 lbs	3/8" to 3/4"	1/2"
2RRCE7	3/4"	DEWALT	SD2	4-1/2"	3-3/4"	7"	12"	5640 lbs	3/4" to 1"	1/2"
2RRCE8	3/4"	DEWALT	SD2	5-3/4"	5"	10"	12"	7782 lbs	3/4" to 1"	5/8"
2RRCE9	3/8"	SIMPSON	SB2	1-7/8"	1-1/2"	3-1/4"	6-1/2"	1388 lbs	3/8" to 1/2"	3/8"
2RRCE10	1/2"	SIMPSON	SB2	2-3/4"	2-1/4"	4-1/2"	7"	3064 lbs	3/8" to 1/2"	1/2"
2RRCE11	5/8"	SIMPSON	SB2	3-3/8"	2-3/4"	5-1/2"	7-1/2"	2070 lbs	3/8" to 3/4"	1/2"
2RRCE12	3/4"	SIMPSON	SB2	5-3/4"	5"	8-3/4"	8"	7782 lbs	3/4" to 1"	5/8"
2RRCE13	3/4"	SIMPSON	SB2	9-3/4"	9"	13-1/2"	13-1/2"	10108 lbs	3/4" to 1"	3/4"

NOTE(S):

- 1. OVER STRENGTH FACTOR Ω_0 =2.0 PER ASCE 7-16, TABLE 13.6-1 IS INCLUDED FOR ANCHORAGE TO CONCRETE. WHEN DESIGNING ANCHORAGE AS SHOWN Ω_0 MUST BE TAKEN INTO ACCOUNT IN DETERMINING THE FINAL DESIGN SPRING HANGER AND/OR ROD TENSION (TYPICALLY FOR OVERTURNING ACTION OF SUSPENDED EQUIPMENT OR DUCT.)
- 2. INSTALL WEDGE ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-4266 (2023), ESR-2502 (2023), OR ESR-3037 (2023).
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED ALLOWABLE LOADS.
- 4. ROD COUPLING NUT MUST BE MIN. ASTM A194-2H HEAVY HEX OR A563-DH HEAVY HEX NUTS. ROD AND ANCHOR MUST HAVE A MIN. THREAD ENGAGEMENT INTO THE COUPLING NUT EQUAL TO THE DIAMETER OF THE ROD/ANCHOR. ROD AND ANCHOR MUST BE IN CONTACT W/ EACH OTHER WITHIN THE COUPLING NUT AND TIGHTENED ACCORDINGLY.
- 5. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 6. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 7. DESIGN IS CONTROLLED BY SEISMIC FORCES. NON-SEISMIC FORCES SUCH AS GRAVITY ARE OUTSIDE THE SCOPE OF THIS OPM.


M.W. Saussé & Co., Inc.

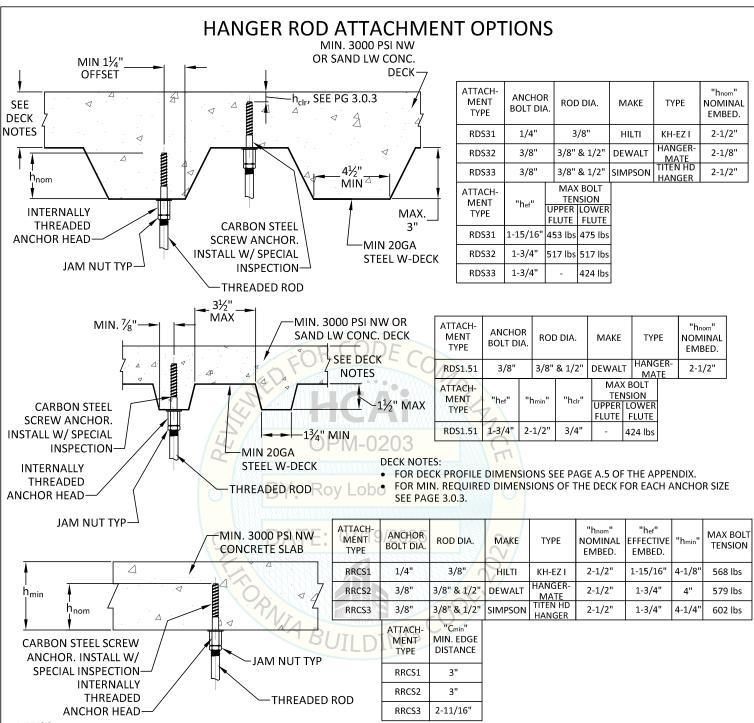
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.35.1

Date:

- 1. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED LRFD DESIGN LOAD CAPACATIES.
- 2. BOLT HOLES FOR THRU BOLT SHALL BE BORED 1/16" LARGER THAN THE NOMINAL BOLT DIAMETER.
- 3. ROD COUPLING NUT MUST BE MIN. ASTM A194-2H HEAVY HEX OR A563-DH HEAVY HEX NUTS. ROD AND ANCHOR MUST HAVE A MIN. THREAD ENGAGEMENT INTO THE COUPLING NUT EQUAL TO THE DIAMETER OF THE ROD/ANCHOR. ROD AND ANCHOR MUST BE IN CONTACT W/ EACH OTHER WITHIN THE COUPLING NUT AND TIGHTENED ACCORDINGLY.
- 4. LOADS FOR LAG BOLT ATTACHMENTS AND THRU-BOLT ATTACHMENTS ARE DERIVED FROM CBC 2019 AND NDS 2018 FOR WOOD WITH A MINIMUM SPECIFIC GRAVITY = 0.50 (I.E. DOUGLAS FIR-LARCH OR EQUAL), ANY GRADE.
- 5. DESIGN IS CONTROLLED BY SEISMIC FORCES. NON-SEISMIC FORCES SUCH AS GRAVITY ARE OUTSIDE THE SCOPE OF THIS OPM.
- 6. MAX TENSION ALLOWED FOR HANGER ROD MAY BE LIMITED BY THE CAPACITIES OF THE ATTACHMENTS TO THE SUBSTRATE.


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

3.36

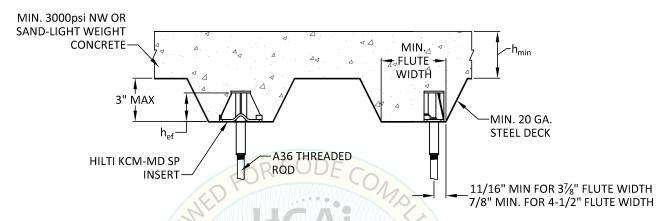
Date:

NOTE(S):

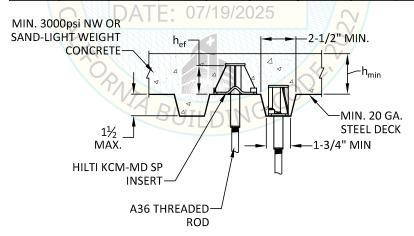
- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS INCLUDED FOR ANCHORAGE TO CONCRETE. WHEN DESIGNING ANCHORAGE AS SHOWN Ω_0 MUST BE TAKEN INTO ACCOUNT IN DETERMINING THE FINAL DESIGN ROD TENSION (TYPICALLY FOR OVERTURNING ACTION OF SUSPENDED EQUIPMENT OR DUCT.)
- INSTALL SCREW ANCHORS WITH SPECIAL INSPECTION PER THE ICC ESR-3027 (2023), ESR-3889 (2023), OR ESR-2713 (2023).
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOADS (LRFD).
- WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS ARE ALONG THE FLUTE 5. LENGTH.
- WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE, COORDINATE ALL WORK WITH STRUCTURAL ENGINEER OF RECORD AND X-RAY SLAB PRIOR TO INSTALLATION TO AVOID DAMAGING POST TENSION CABLES AND REINFORCING STEEL.
- 7. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIMENSION BY MORE THAT 1/6" PER ICC-ESR.
- 8. DESIGN IS CONTROLLED BY SEISMIC FORCES. NON-SEISMIC FORCES SUCH AS GRAVITY ARE OUTSIDE THE SCOPE OF THIS OPM.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: M. Tremblay

California PE No. S6481


Page No.:

Date:

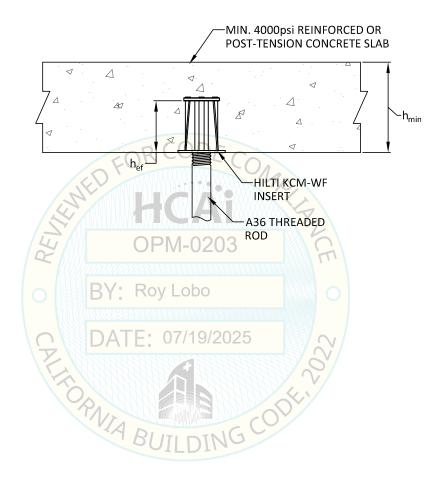
ATTACH- MENT TYPE	ROD DIA.	ANCHOR DIA.	MAKE	INSERT COLOR	"h _{ef} " EFFECTIVE EMBED.	"h _{min} " MIN. CONC. THICKNESS	MIN. FLUTE WIDTH	MAX ROD TENSION (UPPER FLUTE)	MAX ROD TENSION (LOWER FLUTE)
RKCM31	3/8"	0.51"	HILTI	GREEN	1.76"	2-1/2"	37/8"	1746 lbs	840 lbs
RKCM32	1/2"	0.67"	HILTI	ORANGE	2"	2-1/2"	37/8"	2168 lbs	1110 lbs
RKCM33	5/8"	0.87"	HILTI	RED	2.5"	3-1/4"	4½"	2746 lbs	1273 lbs
RKCM34	3/4"	1.00"	HILTI	GREY	2.5"	3-1/4"	4½"	2746 lbs	1273 lbs

ATTACH- MENT TYPE	ROD DIA.	ANCHOR DIA.	MAKE /	INSERT COLOR	"h _{ef} " EFFECTIVE EMBED.	"h _{min} " MIN. CONC. THICKNESS	MAX ROD TENSION (UPPER FLUTE)	MAX ROD TENSION (LOWER FLUTE)
RKCM1.51	3/8"	0.51"	HILTI	GREEN	1.76"	2-1/2"	1746 lbs	362 lbs
RKCM1. <mark>52</mark>	1/2"	0.67"	K HILTI L	ORANGE	2"	2-1/2"	2 <mark>16</mark> 8 lbs	381 lbs
RKCM1.53	5/8"	0.87"	HILTI	RED	2.5"	3-1/4"	2746 lbs	415 lbs

NOTE(S):

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS INCLUDED FOR ANCHORAGE TO CONCRETE. WHEN DESIGNING ANCHORAGE AS SHOWN Ω_0 MUST BE TAKEN INTO ACCOUNT IN DETERMINING THE FINAL DESIGN ROD TENSION (TYPICALLY FOR OVERTURNING ACTION OF SUSPENDED EQUIPMENT OR DUCT.)
- 2. INSTALL ANCHOR INSERTS PER THE ICC ESR-4145 (2023). NO ANCHOR INSTALLS OVER FLUTE INCLINE.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOADS.
- 4. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS ARE ALONG THE FLUTE LENGTH.
- 5. DESIGN IS CONTROLLED BY SEISMIC FORCES. NON-SEISMIC FORCES SUCH AS GRAVITY ARE OUTSIDE THE SCOPE OF THIS OPM.

M.W. Saussé & Co., Inc.


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

3.38

Date:

ATTACH- MENT TYPE	ROD DIA.	ANCHOR DIA.	MAKE	INSERT COLOR	"h _{ef} " EFFECTIVE EMBED.	"h _{min} " MIN. CONC. THICKNESS	"C _{min} " MIN. EDGE DISTANCE	MAX ROD TENSION
RKCMRC1	3/8"	0.51"	HILTI	GREEN	1.12"	2-1/2"	4"	945 lbs
RKCMRC2	1/2"	0.67"	HILTI	ORANGE	1.63"	2-1/2"	5"	1658 lbs
RKCMRC3	5/8"	0.87"	HILTI	RED	2.04"	3"	6"	2322 lbs
RKCMRC4	3/4"	1.00"	HILTI	GREY	3.0"	4"	8"	4141 lbs

NOTE(S):

- 1. OVER STRENGTH FACTOR Ω_0 = 2.0 PER ASCE 7-16, TABLE 13.6-1 IS INCLUDED FOR ANCHORAGE TO CONCRETE. WHEN DESIGNING ANCHORAGE AS SHOWN Ω_0 MUST BE TAKEN INTO ACCOUNT IN DETERMINING THE FINAL DESIGN ROD TENSION (TYPICALLY FOR OVERTURNING ACTION OF SUSPENDED EQUIPMENT OR DUCT.)
- 2. INSTALL ANCHOR INSERTS PER THE ICC ESR-4145 (2023).
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED DESIGN LOADS.
- 4. WHEN CONCRETE ANCHORS ARE INSTALLED IN THE SOFFIT OF CONCRETE FILLED DECK, MINIMUM END DISTANCE AND SPACING REQUIREMENTS ARE ALONG THE FLUTE LENGTH.
- 5. DESIGN IS CONTROLLED BY SEISMIC FORCES. NON-SEISMIC FORCES SUCH AS GRAVITY ARE OUTSIDE THE SCOPE OF THIS OPM.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

3.38.1

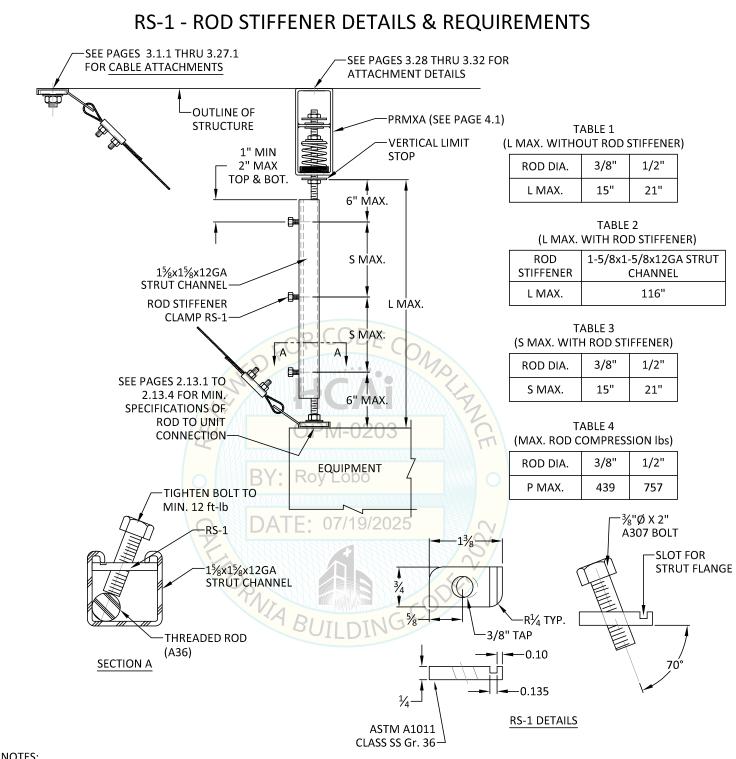
Date:

PRMXA-1C HANGER BOX DETAIL $%_{16}$ % HOLE FOR ATTACHMENT TO **STRUCTURE** JAM NUT TO LOCK LIMIT STOP IN PLACE HSS 7x3x3/16" **TOP & BOTTOM** A500, GRADE "B" 46ksi SEE NOTE #4 10 GA. ZINC PLATED LIMIT STOP (A36) 2" O.D. W/ TAPPED HOLE FOR ROD TYP $\frac{1}{4}$ " MAX. 11/4"Ø HOLE. 25/8x21/2x3/16" PLATE SEE NOTE #1 ASTM A36 2" O.D. SPRING NEOPRENE SPRING CUP 10 GA. ZINC PLATED LIMIT STOP (A36) 2" O.<mark>D</mark>. W/ TAPPED HOLE FOR 1½"Ø HOLE FOR THREADED ROD 20° TOTAL ROD ⅓" MAX. **ANGULARITY** Roy Lobo 3/8"Ø OR 1/2"Ø A36 ALL THREADED ROD MAX MAX 10° 10° PRMXA-1C IS THE ONLY SPRING HANGER THAT MAY BE USED WITH OPM-0203-22. LIMIT STOP LOAD @ DEFL ASTM DESIGN! **SPRING** COLOR WIREØ TOTAL COILS FREE HT. SOLID HT. OD **DEFL** 2220 YELLOW 2" 1" **20 LBS** A229-17 0.125" 4.75 2.25 0.594 2235 **PURPLE** 2" 1" **35 LBS** A229-17 0.135" 4.10 2.25 0.560 2250 RED 2" 1" 50 LBS A229-17 0.156" 4.75 2.25 0.741 MAX 1/2"Ø 1" 75 LBS 2.25 2275 **GREEN** 2" A229-17 0.156" 3.8 0.593 ROD 22100 PINK 2" 1" 100 LBS A229-17 0.177" 4.25 2.25 0.752 **SPRING** 22150 WHITE 2" 1" 150 LBS A229-17 0.207" 5 2.5 1.035 4.75 22225 **ORANGE** 2" 1" 225 LBS A229-17 0.225" 2.5 1.069 1/4" LIMIT NOTE(S): STOP 1. MAX. LOAD CAPACITY (DEAD): 225 LBS 10° 2. MAX. SEISMIC LOAD RATING: 1,200 LBS (SEISMIC LRFD CAPACITY) SPRING HANGER WITH MAX 3. WELDING WILL BE DONE USING ER 70XX ELECTRODES. 10° ROD ANGULARITY 4. THE LIMIT STOPS ARE TO BE ADJUSTED ONCE THE SPRING IS SET AT THE OPERATING DEFLECTION SO THE 1/4" GAP IS ACHIEVED. 5. W/ DESIGN DEFL. @ 1", THE LOAD @ DEFL. IS ALSO THE SPRING RATE IN LBS/IN.

6. A229-17 WIRE USED IS MIN CLASS I (MIN. TENSILE STRENGTH IS 188ksi).

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050


Structural Engineer: M. Tremblay

California PE No. S6481

Page No.:

4.1

Date:

NOTES:

- 1. SEE TABLE 1 FOR MAXIMUM LENGTH OF $\frac{3}{8}$ " AND $\frac{1}{2}$ " \emptyset RODS WITHOUT ROD STIFFENER.
- 2. SEE TABLE 2 FOR MAXIMUM LENGTH OF $\frac{3}{8}$ " AND $\frac{1}{2}$ " \emptyset RODS WITH ROD STIFFENER.
- 3. SEE TABLE 3 TO DETERMINE NUMBER OF ROD STIFFENER CLIPS REQUIRED.
- 4. PROVIDE ROD STIFFENING ONLY WHERE SEISMIC BRACKETS ARE ATTACHED TO THE ROD.
- 5. SEE SECTION 3 FOR STRUCTURAL ATTACHMENTS FOR HANGER BOX AND CABLE BRACING

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: 1. Tremblay

California PE No. S6481

Page No.:

4.2

Date:

RS-1 - ROD STIFFENER DETAILS & REQUIREMENTS SEE PAGES 3.1.1 THRU 3.27.1 SEE PAGES 3.33 THRU 3.38.1 FOR FOR CABLE ATTACHMENTS ATTACHMENT DETAILS TABLE 1 **OUTLINE OF** 6" MAX. (L MAX. WITHOUT ROD STIFFENER) **STRUCTURE** 7/8"^a ROD DIA. 3/8" 1/2" 5/8" 3/4" 1" MIN 2" MAX 21" 32" 38" 15" 26" L MAX. TOP & BOT. **CLEARANCE MUST** ALLOW FOR NUT, S MAX. TABLE 2 WASHER, AND ROD COUPLER (IF REQ'D) (L MAX. WITH ROD STIFFENER) 1%x1%x12GA WHERE APPLICABLE STRUT CHANNEL 1-5/8x1-5/8x12GA STRUT L MAX. **STIFFENER CHANNEL** L MAX. 116" **ROD STIFFENER** CLAMP RS-1 TABLE 3 S MAX. (S MAX. WITH ROD STIFFENER) 7/8"^a 3/8" ROD DIA. 1/2" 5/8" 3/4" Α S MAX. 15" 21" 32" 38" 26" SEE PAGES 2.13.1 a. %"Ø ROD ONLY USED FOR HEAVY PIPE. SEE PAGES TO 2.13.6 FOR MIN. 6" MAX. 2.1.31 THROUGH 2.1.36 FOR APPLICATIONS. SPECIFICATIONS OF **ROD TO UNIT** TABLE 4 CONNECTION-(MAX. ROD COMPRESSION lbs) ROD DIA. 3/8" 1/2" 5/8" 3/4" 7/8" EQUIPMENT TIGHTEN BOLT TO P MAX. 439 757 1265 1836 2266 MIN. 12 ft-lb ¾"Ø X 2" RS-1 A307 BOLT SLOT FOR 15/8×15/8×12GA STRUT FLANGE STRUT CHANNEL 3/8" TAP THREADED ROD (A36)-0.10SECTION A 0.135 **RS-1 DETAILS ASTM A1011** CLASS SS Gr. 36-NOTES:

- 1. SEE TABLE 1 FOR MAXIMUM LENGTH OF 3/8" THRU 7/8" Ø RODS WITHOUT ROD STIFFENER.
- 2. SEE TABLE 2 FOR MAXIMUM LENGTH OF $\frac{3}{8}$ " THRU $\frac{7}{8}$ " Ø RODS WITH ROD STIFFENER. 3. SEE TABLE 3 TO DETERMINE NUMBER OF ROD STIFFENER CLIPS REQUIRED.
- 4. PROVIDE ROD STIFFENING ONLY WHERE SEISMIC BRACKETS ARE ATTACHED TO THE ROD.
- 5. SEE SECTION 3 FOR STRUCTURAL ATTACHMENTS FOR HANGER ROD AND CABLE BRACING

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: 1. Tremblay

California PE No. S6481

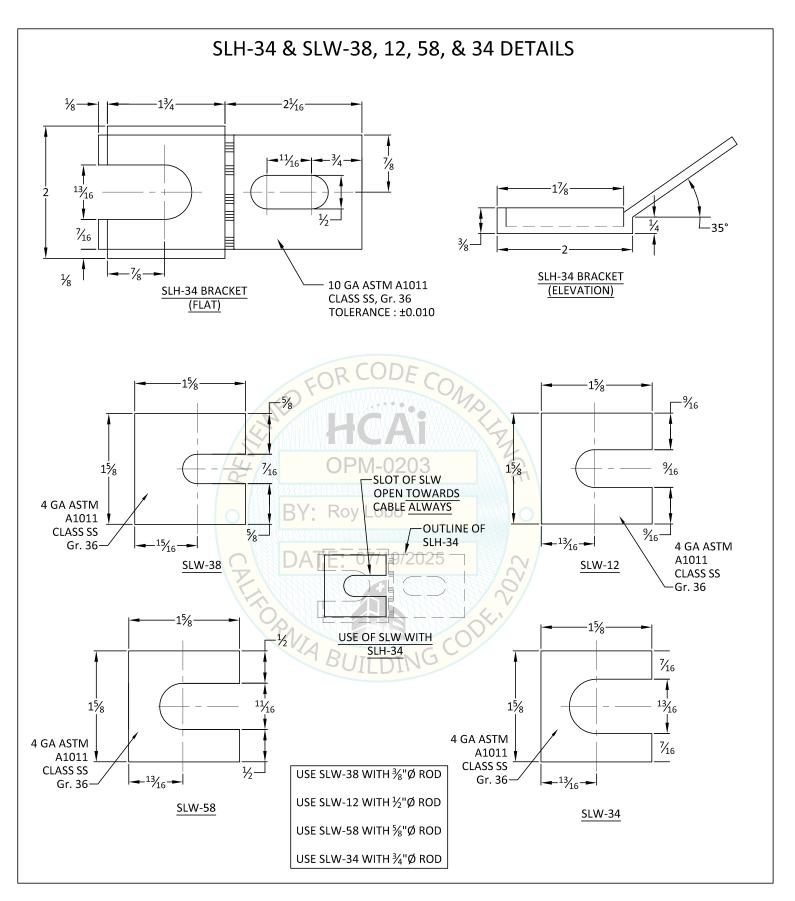
Page No.:

4.3.1

Date:

RS-1 - ROD STIFFENER DETAILS & REQUIREMENTS SEE PAGES 3.1.1 THRU 3.26.2 FOR SEE PAGES 3.33 THRU 3.38.1 FOR RIGID BRACE ATTACHMENTS ATTACHMENT DETAILS TABLE 1 (L MAX. WITHOUT ROD STIFFENER) **OUTLINE OF** 6" MAX. **STRUCTURE** 7/8"^a ROD DIA. 3/8" 1/2" 5/8" 3/4" 1" MIN L MAX. 15" 21" 26" 32" 38" 2" MAX TOP & BOT. **CLEARANCE MUST** ALLOW FOR NUT, TABLE 2 S MAX. WASHER, AND ROD (L MAX. WITH ROD STIFFENER) COUPLER (IF REQ'D) 1%x1%x12GA ROD 1-5/8x1-5/8x12GA STRUT WHERE APPLICABLE STRUT CHANNEL L MAX. STIFFENER **CHANNEL** 116" L MAX. **ROD STIFFENER** TABLE 3 **CLAMP RS-1** (S MAX. WITH ROD STIFFENER) S MAX. 1%x1%x12GA STRUT CHANNEL 7/8"^a 5/8" ROD DIA. 3/8" 1/2" 3/4" PER PG. 2.15.2 A Α 15" 38" S MAX. 21" 26" 32" a. 7/8" OROD ONLY USED FOR HEAVY PIPE. SEE PAGES SEE PAGES 2.14.1 TO 2.10 THROUGH 2.15 FOR APPLICATIONS. 2.14.3 FOR MIN. 6" MAX. SPECIFICATIONS OF TABLE 4 **ROD TO UNIT** (MAX. ROD COMPRESSION lbs) CONNECTION-7/8" 3/8" 1/2" 5/8" 3/4" ROD DIA. EQUIPMENT P MAX. 439 757 1265 1836 2266 TIGHTEN BOLT TO MIN. 12 ft-lb %"Ø X 2" RS-1 A307 BOLT SLOT FOR 15/8×15/8×12GA STRUT FLANGE STRUT CHANNEL 3/8" TAP THREADED ROD (A36)-0.10SECTION A 0.135 **RS-1 DETAILS ASTM A1011** CLASS SS Gr. 36-NOTES:

- 1. SEE TABLE 1 FOR MAXIMUM LENGTH OF $\frac{3}{2}$ " THRU $\frac{7}{2}$ " Ø RODS WITHOUT ROD STIFFENER.
- SEE TABLE 2 FOR MAXIMUM LENGTH OF ¾" THRU ½"Ø RODS WITH ROD STIFFENER.
 SEE TABLE 3 TO DETERMINE NUMBER OF ROD STIFFENER CLIPS REQUIRED.
- 4. PROVIDE ROD STIFFENING ONLY WHERE SEISMIC BRACKETS ARE ATTACHED TO THE ROD.
- 5. SEE SECTION 3 FOR STRUCTURAL ATTACHMENTS FOR RIGID BRACING.

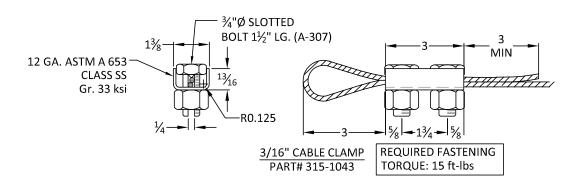

M.W. Saussé & Co., Inc.

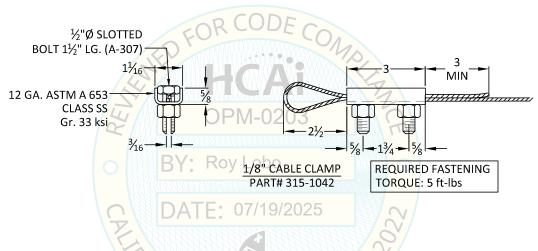
28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: 1. Tremblay California PE No. S6481 Page No.:

4.3.2

Date:


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481


Page No.:

4.4

Date:

CABLE CLAMP DETAILS

CABLE INFORMATION

CABLE Ø	CLASSIFICATION/ CONSTRUCTION	MIN. BREAKING STRENGTH
1/8"	7X19	2,000 LBS
³ / ₁₆ "	7X19	4,200 LBS

CABLE IS SMALL DIA. (GALVANIZED) SPECIALTY CORD & MEETS ASTM A1023/A1023M STANDARDS & FEDERAL U.S. SPECIFICATION RR-W-410G, TYPE VI, CLASS 3.

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

4.5

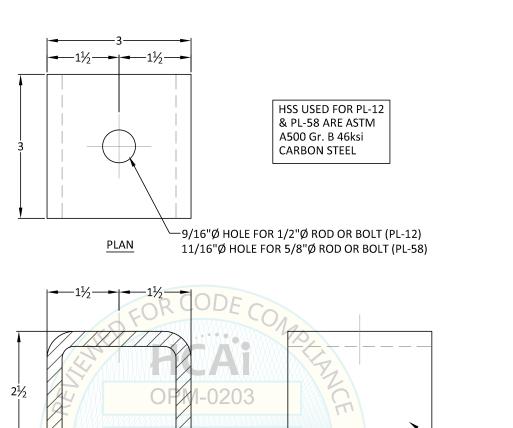
Date:

PIPE LUG PL-38 DETAILS **HSS USED FOR** PL-38 IS ASTM A500 Gr. B 46ksi **CARBON STEEL** 7/16"Ø HOLE FOR PLAN 3/8"Ø ROD OR BOLT TYP. $1\frac{1}{2}$ ·HSS2X3X1/4", 2" LONG, TRIMMED **FRONT** TO 1½" HEIGHT PL-38 FOR 1-1/4"Ø TO 2"Ø PIPE BY: Roy Lobo 07/19/2025 REQUIRED FASTENING TORQUE FOR 3/8" Ø ROD: 16 ft-lbs 3/8"Ø ATR 3/8"Ø ATR ¾" HVY NUT W/ WASHERS. 3/4" HVY NUT W/ F436 WASHERS-SLH-34 SLH-34 SEE DWGS 2.1.3 TO SEE DWGS 2.1.1, 2.1.2, 2.1.6 & 2.2.3 TO 2.2.6 2.2.1, & 2.2.2 FOR WELD FOR WELD **REQUIREMENTS TO PIPE** REQUIREMENTS TO PIPE 1-1/4"Ø PIPE 2"Ø PIPE MAX 1-1/4"Ø PIPE ASSEMBLY DETAIL 1-1/2"Ø & 2"Ø PIPE ASSEMBLY DETAIL

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay


California PE No. S6481

Page No.:

4.6

Date:

PIPE LUG PL-12 & 58 DETAILS

PL-12 FOR 2-1/2"Ø TO 3-1/2"Ø PIPE PL-58 FOR 4"Ø & 5"Ø PIPE

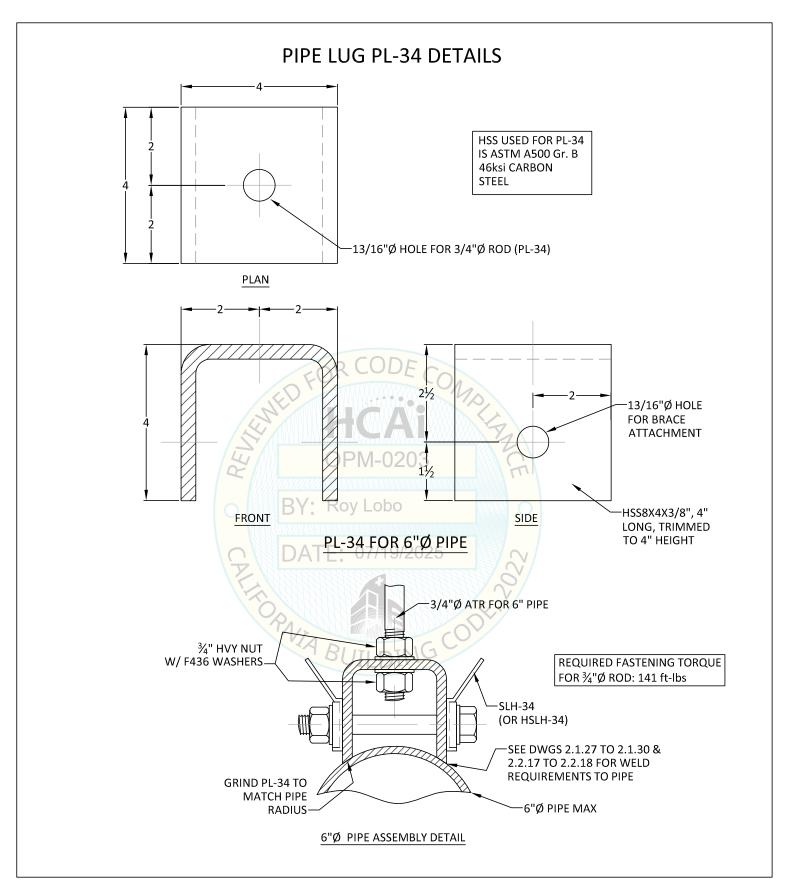
FRONT

2-1/2"Ø TO 5"Ø PIPE ASSEMBLY DETAIL

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

SIDE

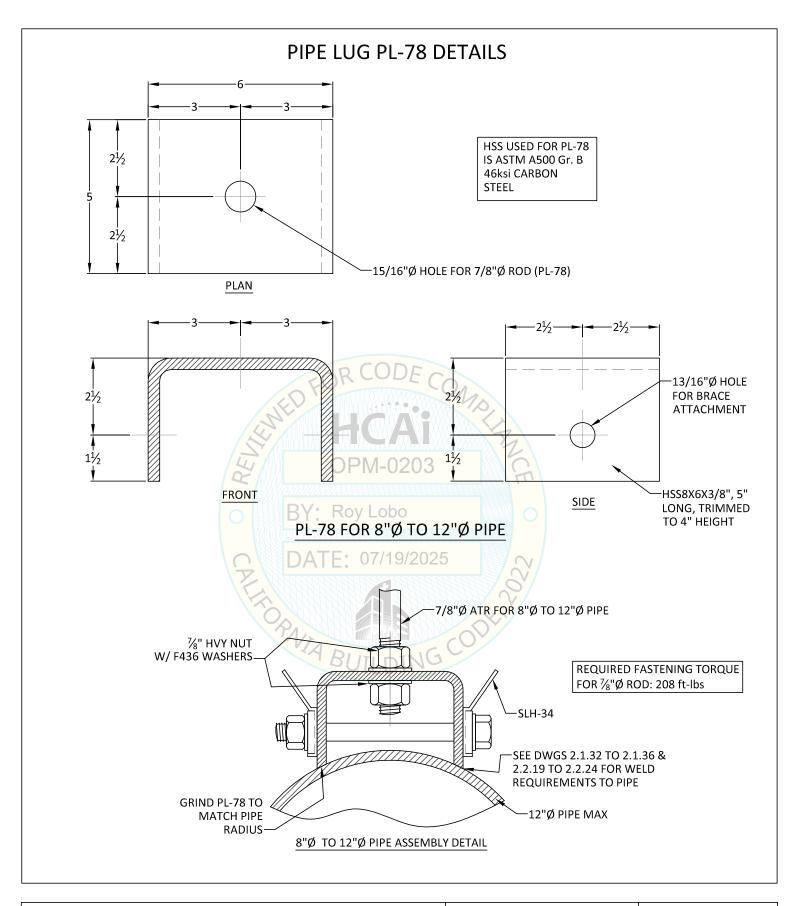

Page No.:

HSS3X5X5/16", 3" LONG, TRIMMED

TO 2½" HEIGHT

4.7

Date:

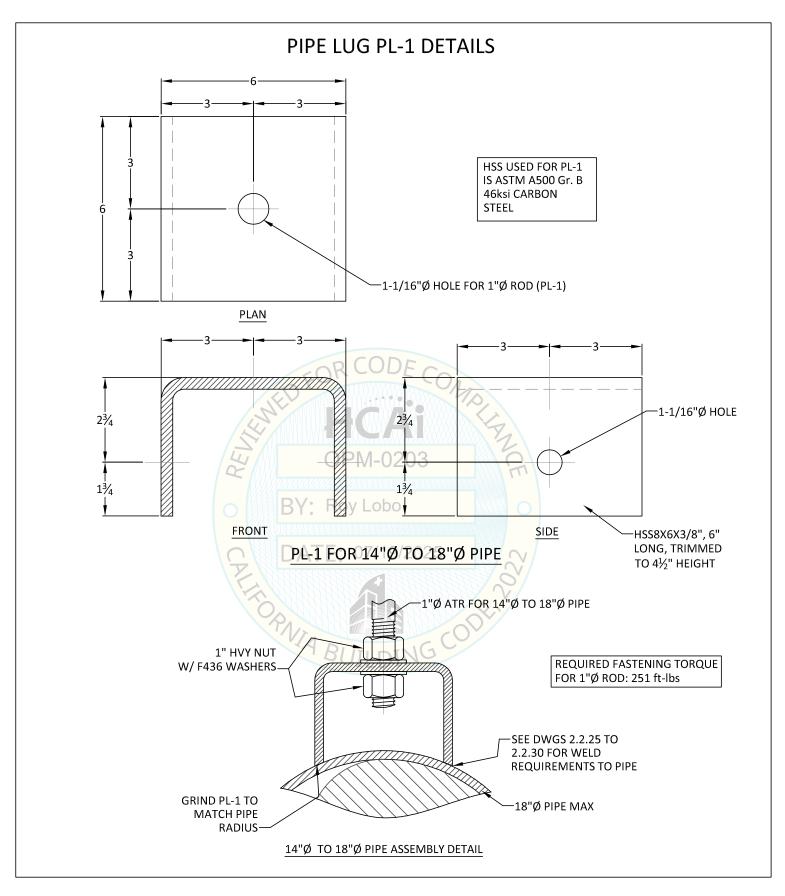


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

4.8

Date:

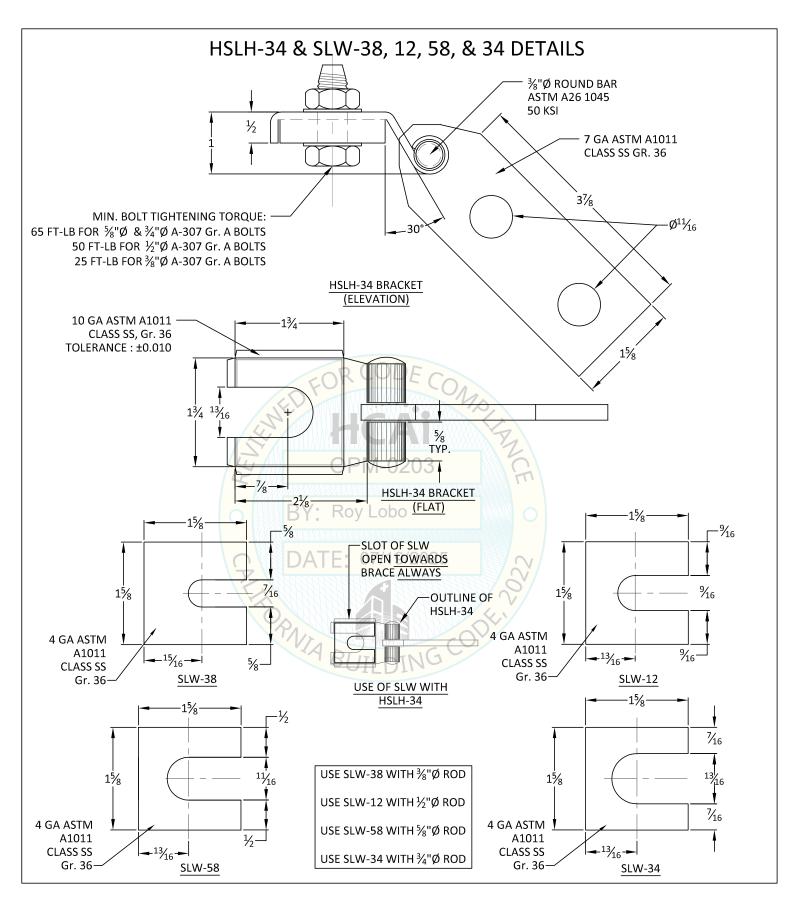


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

4.9

Date:

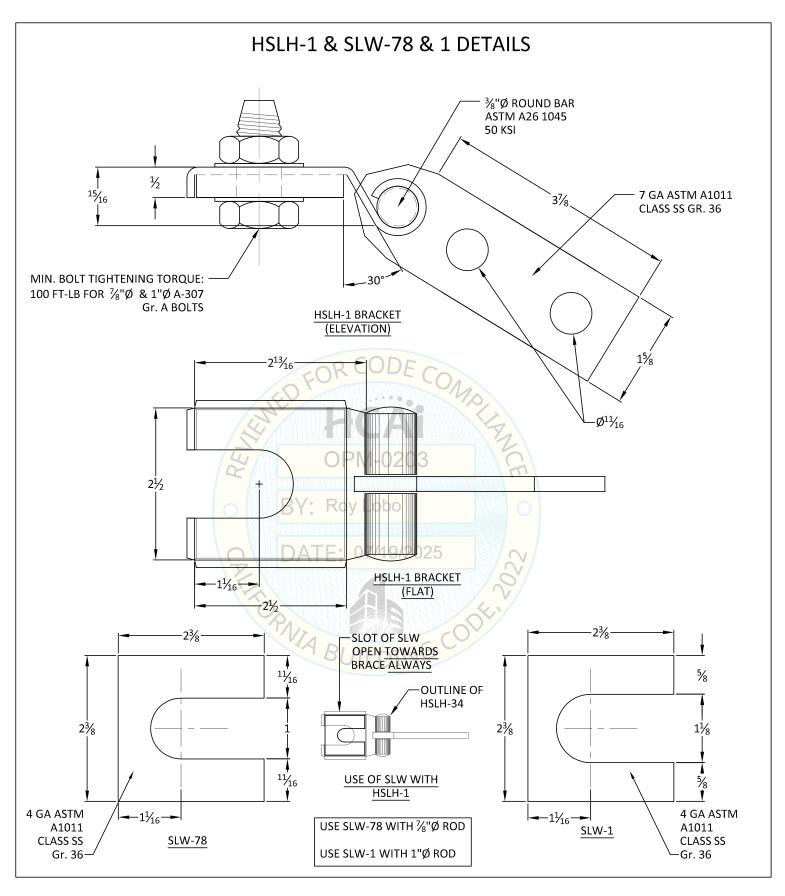


28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

4.10

Date:



28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

4.11

Date:

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

4.12

Date:

DSSN STRUT NUT DETAILS ASTM A1011 CLASS SS Gr. 36 NOTE: THE NEAREST BOLT TO THE END OF THE STRUT BRACE ARM MUST **DSSN ISOMETRIC** BE MIN. ¾" FROM THE END OF THE STRUT BRACE ARM. VIEW ⅓-¹³/₁₆ $1\frac{3}{8}$ 11/16 %"Ø-11 UNC **DSSN PLAN VIEW** TAPPED HOLE 3½ 1/4 DSSN ELEVATION VIEW

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355

44 Witherspoon Parkway | Valencia, CA 91355
Ph: (661) 257-3311 | Fax: (661) 257-6050
Structural Engil

Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

4.13

Date:

CABLE BRACING KIT DETAIL SELECTION SCH. 40 STEEL PIPE W/ INSULATION & WATER

CABLE BRACING ANGLE "x" AT 45° to 60° (1:1 to 1.7:1) SLOPE (ANGLE FROM VERTICAL AXIS)

PIPE DIAMETER	LINEAR WT.	STD. ¹ SUPPORT SPACING		Т	RANSVE	ERSE BR		KIT DET/ ALUE O		E No. B	ASED ON	J	
(in)	(PLF)	(FT)	0.25	0.50	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
1.25	3.6	7	2.1.1	2.1.1	2.1.1	2.1.1	2.1.1	2.1.1	2.1.1	2.1.1	2.1.1	2.1.1	2.1.1
1.50	4.3	9	2.1.3	2.1.3	2.1.3	2.1.3	2.1.3	2.1.3	2.1.3	2.1.3	2.1.3	2.1.3	2.1.3
2.0	6.0	10	2.1.5	2.1.5	2.1.5	2.1.5	2.1.5	2.1.5	2.1.5	2.1.5	2.1.5	2.1.5	2.1.5
2.5	8.8	11	2.1.7	2.1.7	2.1.7	2.1.7	2.1.7	2.1.9	2.1.9	2.1.9	2.1.9	2.1.9	2.1.9
3.0	11.9	12	2.1.11	2.1.11	2.1.11	2.1.13	2.1.13	2.1.13	2.1.13	2.1.13	2.1.13	2.1.13	2.1.13
3.5	14.6	13	2.1.15	2.1.15	2.1.17	2.1.17	2.1.17	2.1.17	2.1.17	2.1.17	2.1.17	2.1.17	2.1.17
4.0	17.6	14	2.1.19	2.1.21	2.1.21	2.1.21	2.1.21	2.1.21	2.1.21	2.1.21	2.1.21	2.1.21	2.1.21
5.0	24.8	16	2.1.25	2.1.25	2.1.25	2.1.25	2.1.25	2.1.25	2.1.25	2.1.25	2.1.25	n/a	n/a
6.0	33.3	17	2.1.27	2.1.29	2.1.29	2.1.29	2.1.29	2.1.29	2.1.29	2.1.29	2.1.29	n/a	n/a
8.0	52.5	19	2.1.31	2.1.31	2.1.31	2.1.31	2.1.31	2.1.31	2.1.31	n/a	n/a	n/a	n/a
10.0	77.4	22	2.1.33	2.1.33	2.1.33	2.1.33	2.1.33	n/a	n/a	n/a	n/a	n/a	n/a
12.0	101.7	23	2.1.35	2.1.35	2.1.35	2.1.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a

		CTD1	(//// 		$\mathcal{F} \mathcal{W}$	-UZ (J 	XXX		\			
PIPE DIAMETER	LINEAR WT.	STD. ¹ SUPPORT SPACING	VXXX	TRAN	ISVERSE	& LON BA		VAL BRA			IL PAGE	No.	
(in)	(PLF)	(FT)	0.25	0.50	0.75	01.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
1.25	3.6	7	2.1.2	2.1.2	2.1.2	2.1.2	2.1.2	2.1.2	2.1.2	2.1.2	2.1.2	2.1.2	2.1.2
1.50	4.3	9	2.1.4	2.1.4	2.1.4	2.1,4	2.1.4	2.1.4	2.1.4	2.1.4	2.1.4	2.1.4	2.1.4
2.0	6.0	10	2.1.6	2.1.6	2.1.6	2.1.6	2.1.6	2.1.6	2.1.6	2.1.6	2.1.6	2.1.6	2.1.6
2.5	8.8	11	2.1.8	2.1.8	2.1.8	2.1.8	2.1.10	2.1.10	2.1.10	2.1.10	2.1.10	2.1.10	2.1.10
3.0	11.9	12	2.1.12	2.1.12	2.1.12	2.1.14	2.1.14	2.1.14	2.1.14	2.1.14	2.1.14	2.1.14	2.1.14
3.5	14.6	13	2.1.16	2.1.16	2.1.18	2.1.18	2.1.18	2.1.18	2.1.18	2.1.18	2.1.18	2.1.18	2.1.18
4.0	17.6	14	2.1.20	2.1.22	2.1.22	2.1.22	2.1.22	2.1.22	2.1.22	2.1.22	2.1.22	2.1.22	2.1.22
5.0	24.8	16	2.1.26	2.1.26	2.1.26	2.1.26	2.1.26	2.1.26	2.1.26	2.1.26	2.1.26	n/a	n/a
6.0	33.3	17	2.1.28	2.1.30	2.1.30	2.1.30	2.1.30	2.1.30	2.1.30	2.1.30	2.1.30	n/a	n/a
8.0	52.5	19	2.1.32	2.1.32	2.1.32	2.1.32	2.1.32	2.1.32	2.1.32	n/a	n/a	n/a	n/a
10.0	77.4	22	2.1.34	2.1.34	2.1.34	2.1.34	2.1.34	n/a	n/a	n/a	n/a	n/a	n/a
12.0	101.7	23	2.1.36	2.1.36	2.1.36	2.1.36	n/a	n/a	n/a	n/a	n/a	n/a	n/a

NOTES:

- 1. SUPPORT SPACING MUST NOT EXCEED THE MAXIMUM BRACE SPACING SPECIFIED ON PAGES D.2.1 & D.3.1.
- 2. SEE PAGES D.2.1 & D.3.1 FOR BRACE AND HANGER/ROD ATTACHMENT DETAIL TABLES.
- 3. DETAILS LISTED ABOVE APPLY FOR PIPES WITH WELDED, BOLTED, COUPLED, OR THREADED CONNECTIONS.
- 4. DENOTES CABLE KITS WITH $\frac{3}{16}$ " Ø CABLE.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay
California PE No. S6481

Page No.: **D.1.1**

Date:

RIGID BRACING KIT DETAIL SELECTION SCH. 40 STEEL PIPE W/ INSULATION & WATER

RIGID BRACING ANGLE "x" AT 45° to 60° (1:1 to 1.7:1) SLOPE (ANGLE FROM VERTICAL AXIS)

PIPE DIAMETER	LINEAR WT.	STD.1 SUPPORT SPACING	TRAN		BRACIN No. BAS /ALUE C	ED ON	ETAIL	BRA	CING K	IT DETA	NGITUD IL PAGE LUE OF	No.
(in)	(PLF)	(FT)	0.25	0.50	0.75	1.0	1.5	0.25	0.50	0.75	1.0	1.5
1.25	3.6	7	2.2.1	2.2.1	2.2.1	2.2.1	2.2.1	2.2.2	2.2.2	2.2.2	2.2.2	2.2.2
1.50	4.3	9	2.2.3	2.2.3	2.2.3	2.2.3	2.2.3	2.2.4	2.2.4	2.2.4	2.2.4	2.2.4
2.0	6.0	10	2.2.5	2.2.5	2.2.5	2.2.5	2.2.5	2.2.6	2.2.6	2.2.6	2.2.6	2.2.6
2.5	8.8	11	2.2.7	2.2.7	2.2.7	2.2.7	2.2.7	2.2.8	2.2.8	2.2.8	2.2.8	2.2.8
3.0	11.9	12	2.2.9	2.2.9	2.2.9	2.2.9	2.2.9	2.2.10	2.2.10	2.2.10	2.2.10	2.2.10
3.5	14.6	13	2.2.11	2.2.11	2.2.11	2.2.11	2.2.11	2.2.12	2.2.12	2.2.12	2.2.12	2.2.12
4.0	17.6	14	2.2.13	2.2.13	2.2.13	2.2.13	2.2.13	2.2.14	2.2.14	2.2.14	2.2.14	2.2.14
5.0	24.8	16	2.2.15	2.2.15	2.2.15	2.2.15	2.2.15	2.2.16	2.2.16	2.2.16	2.2.16	2.2.16
6.0	33.3	17	2.2.17	2.2.17	2.2.17	2.2.17	2.2.17	2.2.18	2.2.18	2.2.18	2.2.18	2.2.18
8.0	52.5	19	2.2.19	2.2.19	2.2.19	2.2.19	2.2.19	2.2.20	2.2.20	2.2.20	2.2.20	2.2.20
10.0	77.4	22	2.2.21	2.2.21	2.2.21	2.2.21	2.2.21	2.2.22	2.2.22	2.2.22	2.2.22	2.2.22
12.0	101.7	23	2.2.23	2.2.23	2.2.23	2.2.23	2.2.23	2.2.24	2.2.24	2.2.24	2.2.24	2.2.24
14.0	116.6	25	2.2.25	2.2.25	2.2.25	2.2.25	2.2.25	2.2.26	2.2.26	2.2.26	2.2.26	2.2.26
16.0	144.2	27	2.2.27	2.2.27	2.2.27	2.2.27	2.2.27	2.2.28	2.2.28	2.2.28	2.2.28	2.2.28
18.0	174.5	28	2.2.29	2.2.29	2.2.29	2.2.29	2.2.29	2.2.30	2.2.30	2.2.30	2.2.30	2.2.30

NOTES:

- 1. SUPPORT SPACING MUST NOT EXCEED THE MAXIMUM BRACE SPACING SPECIFIED ON PAGES D.2.2 & D.3.2.
- 2. SEE PAGES D.2.2 & D.3.2 FOR BRACE AND HANGER/ROD ATTACHMENT DETAIL TABLES.
- 3. DETAILS LISTED ABOVE APPLY FOR PIPES WITH WELDED, BOLTED, COUPLED, OR THREADED CONNECTIONS.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: 7. Tremblay
California PE No. S6481

Page No.: **D.1.2**

Date:

TRANSVERSE CABLE BRACING & HANGER/ROD ATTACHMENT DESIGNATION SELECTION FOR SCH. 40 STEEL PIPE W/ INSULATION & WATER

CABLE BRACING ANGLE "x" AT 45° to 60° (1:1 to 1.7:1) SLOPE (ANGLE FROM VERTICAL AXIS)

PIPE DIAMETER					G ATTA				J			HANGER/ROD DESIGNATION 2
(in)	0.25	0.50	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	ALL "g" VALUES [*]
1.25	B1	B1	B2	B2	B2	В3	В3	В3	В3	В3	В3	H1/R1
1.50	B1	B2	B2	В2	В3	В3	В3	В4	B4	В4	В4	H1/R1
2.0	В2	B2	В3	В3	В4	В4	B5	B5	В6	В6	В6	H1/R1
2.5	B2	В3	В4	B5	В6	В7	В7	В7	В7	В7	В7	H1/R1
3.0	В3	B5	В6	В7	В7	В7	В7	В7	В7	В7	В7	H1/R1
3.5	В4	В6	В7	В7	В7	В7	В7	В7	В7	В7	В7	H1/R1
4.0	В7	В7	В7	В7	В7	В7	В7	В7	В7	В7	В7	R2
5.0	В7	В7	В7	В7	В7	В7	В7	В7	В7	В7	В7	R2
6.0	В7	В7	В7	В7	В7	В7	В7	В7	В7	В7	В7	R3
8.0	В7	В7	В7	В7	В7	В7	B7	В7	В7	В7	В7	R4
10.0	В7	В7	В7	B7	В7	В7	B7 (В7	В7	В7	В7	R6
12.0	В7	В7	В7	В7	B7	B7.	В7	В7	B7	В7	В7	R7

HCAI

PIPE DIAMETER	La	Ŷ()	MAXI				ACE SPA		V FEET		
(in)	0.25	0.50	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
1.25	1 <mark>9.</mark> 6	19.0	18.4	17. 7y	16.4	15.3	14.3	13.5	12.7	12.1	11.5
1.50	21.6	21.0	20.4	19.7	18.3	17.1	16.0	15.1	14.3	13.6	13.1
2.0	25.2	24.7	23.9	23.2	21.3	19.8	_18.6	17.6	16.7	15.9	15.0
2.5	29.5	28.8	27.6	26.3	24.2	22.5	20.8	17.3	14.8	13.0	11.5
3.0	32.5	31.9	30.3	28.8	23.2	17.4	13.9	11.6	9.9	8.7	7.7
3.5	34.7	33.9	32.1	26.5	17.7	13.3	10.6	8.8	7.6	6.6	5.9
4.0	36.7	35.7	27.6	20.7	13.8	10.4	8.3	8.5	7.1	8.5	7.1
5.0	40	33.0	22.0	16.5	11.0	8.2	5.3	4.4	3.8	n/a	n/a
6.0	40	30.3	20.2	15.1	10.1	7.6	6.1	5.0	4.3	n/a	n/a
8.0	40	21.0	14.0	10.5	7.0	5.2	4.2	n/a	n/a	n/a	n/a
10.0	24.9	12.4	8.3	6.2	4.1	n/a	n/a	n/a	n/a	n/a	n/a
12.0	16.6	8.3	5.5	4.1	n/a	n/a	n/a	n/a	n/a	n/a	n/a

NOTES

- 1. SEE PAGES D.9.1 THRU D.12.2 FOR SELECTION OF SPECIFIC BRACING ATTACHMENT DETAILS BASED ON THE SPECIFIED BRACING ATTACHMENT DESIGNATION ABOVE.
- SEE PAGES D.13.1 THRU D.16.1 FOR SELECTION OF SPECIFIC HANGER/ROD ATTACHMENT DETAILS BASED ON THE SPECIFIED HANGER/ROD ATTACHMENT DESIGNATION ABOVE.
- 3. DETAILS AND SPACING VALUES LISTED ABOVE APPLY FOR WELDED, BOLTED, COUPLED OR THREADED CONNECTIONS.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: A. Tremblay
California PE No. S6481

Page No.: **D.2.1**

Date:

TRANSVERSE RIGID BRACING & HANGER/ROD ATTACHMENT DESIGNATION SELECTION FOR SCH. 40 STEEL PIPE W/ INSULATION & WATER

RIGID BRACING ANGLE "x" AT 45° to 60° (1:1 to 1.7:1) SLOPE (ANGLE FROM VERTICAL AXIS)

PIPE DIAMETER (in)		BRACING DES SED ON	SIGNATI	ON		ALL"	g" VALL	ROD DES JES ^{2,3} FC NT ONL	R CON	CRETE		"g" VAL	ROD DES .UES ^{2,3} F .ATTACI	OR STE	
(111)	0.25	0.50	0.75	1.0	1.5	0.25	0.50	0.75	1.0	1.5	0.25	0.50	0.75	1.0	1.5
1.25	B1	В2	В2	В2	B2	R1	R1	R1	R1	R1	R1	R1	R1	R1	R1
1.50	B1	В2	В2	В2	В3	R1	R1	R1	R1	R2	R1	R1	R1	R1	R1
2.0	В2	В2	В3	В3	В4	R1	R1	R2	R2	R2	R1	R1	R1	R1	R1
2.5	В2	В3	В4	B5	В6	R1	R2	R2	R3	R3	R1	R1	R2	R2	R2
3.0	В3	В4	В6	В7	В8	R2	R3	R3	R3	R4	R2	R2	R2	R2	R3
3.5	В4	В6	В7	В8	В8	R2	R3	R4	R4	R4	R2	R2	R3	R3	R3
4.0	В2	В3	В4	В4	B5	R3	R4	R4	R5	R5	R2	R3	R3	R3	R3
5.0	В3	В4	B5	В6	В7	R4	R5	R6	R6	R8	R3	R4	R4	R4	R5
6.0	В3	B5	В6	В7	В8	R5	R6	R7	R8	R8	R4	R5	R5	R6	R7
8.0	В4	В6	В8	В8	В9	R7	R8	R8	R8	R8	R6	R7	R8	R8	R8
10.0	В5	В8	В9	В9	В9	R8	R8	R8	R9	R9	R8	R8	R8	R8	R8
12.0	В6	В8	В9	B9	В9	R8	R9	R9	R9	R9	R8	R8	R8	R8	R8
14.0	В7	В8	В9	B9	В9	R8	R9	R9	R9	R9	R8	R8	R9	R9	R8
16.0	В8	В9	В9	B9	В9	R9	R9	R10	R9	R9	R9	R9	R9	R9	R8
18.0	B8	В9	B9 /	B9	В9) R9	R10	R10	R9	R9	R9	R9	R9	R9	R8

N	\cap	ΓF	ς.

- SEE PAGES D.9.1 THRU D.12.2 FOR SELECTION OF SPECIFIC BRACING ATTACHMENT DETAILS BASED ON THE SPECIFIED BRACING ATTACHMENT DESIGNATION ABOVE.
- 2. SEE PAGES D.13.1 THRU D.16.1 FOR SELECTION OF SPECIFIC HANGER/ROD ATTACHMENT DETAILS BASED ON THE SPECIFIED HANGER/ROD ATTACHMENT DESIGNATION ABOVE.
- ROD DESIGNATION BASED ON LESSER OF STANDARD ROD SPACING OR BRACE SPACING.
- 4. DETAILS AND SPACING VALUES LISTED APPLY FOR WELDED, BOLTED, COUPLED OR THREADED CONNECTIONS.

00					
PIPE DIAMETER 9/2(in) 5		IMUM SPAC SED ON	ING IN	FEET	
1012(040	0.25	0.50	0.75	1.0	1.5
1.25	19.6	19.0	18.4	17.7	16.4
1.50	21.6	21.0	20.4	19.7	18.3
2.0	25.2	24.7	23.9	23.2	21.3
2.5	29.5	28.8	27.6	26.3	24.2
3.0	32.5	31.9	30.3	28.8	26.5
3.5	34.7	33.9	32.1	30.6	24.3
4.0	36.7	35.7	33.9	32.3	29.6
5.0	40	39.2	37.1	35.4	32.5
6.0	40	40	40	38.1	35
8.0	40	40	40	40	34.3
10.0	40	40	40	34.9	23.3
12.0	40	40	35.4	26.6	17.7
14.0	40	40	36.1	27.1	18.1
16.0	40	40	39.2	21.9	14.6
18.0	40	40	24.2	18.1	12.1

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

D.2.2

Date:

TRANSVERSE & LONGITUDINAL CABLE BRACING & HANGER/ROD ATTACHMENT DESIGNATION SELECTION

FOR SCH. 40 STEEL PIPE W/ INSULATION & WATER

CABLE BRACING ANGLE "x" AT 45° to 60° (1:1 to 1.7:1) SLOPE (ANGLE FROM VERTICAL AXIS)

PIPE DIAMETER					G ATTA				J			HANGER/ROD DESIGNATION
(in)	0.25	0.50	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	ALL "g" VALUES [*]
1.25	B2	B2	В3	В3	В4	B5	В6	В6	В6	В6	В6	H1/R1
1.50	В2	В3	В3	В4	B5	В6	В6	В6	В6	В6	В6	H1/R1
2.0	В2	В3	В4	B5	В6	В6	В6	В6	В6	В6	В6	H1/R1
2.5	В3	В4	B5	B5	В6	В7	В7	В7	В7	В7	В7	H1/R1
3.0	В3	B5	В6	В7	В7	В7	В7	В7	В7	В7	В7	H1/R1
3.5	В3	В6	В7	В7	В7	В7	В7	В7	В7	В7	В7	H1/R1
4.0	В4	В7	В7	В7	В7	В7	В7	В7	В7	В7	В7	R2
5.0	В7	В7	В7	В7	В7	В7	В7	В7	В7	n/a	n/a	R2
6.0	В6	В7	В7	В7	В7	В7	В7	В7	В7	n/a	n/a	R3
8.0	В7	В7	В7	В7	В7	В7	В7	n/a	n/a	n/a	n/a	R4
10.0	В7	В7	В7	B7	В7	n/a	n/a	n/a	n/a	n/a	n/a	R6
12.0	В7	В7	В7	В7	n/a	n/a	n/a	n/a	n/a	n/a	n/a	R7

PIPE DIAMETER	I Q	MAXIN	IUM TR		SE & LC	7115		VXXXXX	PACING	IN FEET	
(in)	0.25	0.50	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
1.25	80	80	80	8 0 y	L80b	80	78.2	65.1	55.8	48.9	43.4
1.50	80	80	80	80	80	80	65	54.2	46.4	40.6	36.1
2.0	80	80	80	80	79	59.3	47.4	39.5	33.9	29.6	26.3
2.5	80	80	80	80	75.1	56.3	45.1	37.6	32.2	28.2	25
3.0	80	80	80	80	55.8	41.9	33.5	27.9	23.9	20.9	18.6
3.5	80	80	80	68.1	45.4	34.1	27.3	22.7	19.5	17.0	15.1
4.0	80	80	75.2	56.4	37.6	28.2	22.6	18.8	16.1	14.1	12.5
5.0	80	80	53.4	40	26.7	20	16	13.3	11.4	n/a	n/a
6.0	80	59.8	39.8	29.9	19.9	14.9	12	10	4.3	n/a	n/a
8.0	75.8	37.9	25.3	19	12.6	9.5	4.2	n/a	n/a	n/a	n/a
10.0	51.4	25.7	17.1	12.9	8.6	n/a	n/a	n/a	n/a	n/a	n/a
12.0	39.1	19.5	13	9.8	n/a	n/a	n/a	n/a	n/a	n/a	n/a

HCAI

NOTES:

- 1. SEE PAGES D.9.1 THRU D.12.2 FOR SELECTION OF SPECIFIC BRACING ATTACHMENT DETAILS BASED ON THE SPECIFIED BRACING ATTACHMENT DESIGNATION ABOVE.
- 2. SEE PAGES D.13.1 THRU D.16.1 FOR SELECTION OF SPECIFIC HANGER/ROD ATTACHMENT DETAILS BASED ON THE SPECIFIED HANGER/ROD ATTACHMENT DESIGNATION ABOVE.
- 3. DETAILS AND SPACING VALUES LISTED ABOVE APPLY FOR WELDED, BOLTED, COUPLED OR THREADED CONNECTIONS.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: A. Tremblay
California PE No. S6481

Page No.: **D.3.1**

Date:

TRANSVERSE & LONGITUDINAL RIGID BRACING & HANGER/ROD ATTACHMENT DESIGNATION SELECTION

FOR SCH. 40 STEEL PIPE W/ INSULATION & WATER

RIGID BRACING ANGLE "x" AT 45° to 60° (1:1 to 1.7:1) SLOPE (ANGLE FROM VERTICAL AXIS)

PIPE DIAMETER (in)		DES	G ATTAC SIGNATI I "g" VA	ON		ALL "	g" VALL	ROD DES JES ^{2,3} FC NT ONL	R CON	CRETE	WOOD ATTACHMENT				
(111)	0.25	0.50	0.75	1.0	1.5	0.25	0.50	0.75	1.0	1.5	0.25	0.50	0.75	1.0	1.5
1.25	В2	В2	В3	В3	В4	R1	R2	R2	R3	R3	R1	R1	R1	R2	R2
1.50	В2	В2	В3	В3	В4	R1	R2	R2	R3	R4	R1	R1	R2	R2	R2
2.0	В2	В3	В3	В4	B5	R2	R2	R3	R4	R5	R1	R2	R2	R2	R3
2.5	В2	В3	В4	B5	В6	R2	R3	R4	R5	R6	R2	R2	R3	R3	R4
3.0	В3	В4	B5	В6	В8	R3	R4	R5	R6	R8	R2	R3	R3	R4	R5
3.5	В3	В4	В6	В7	В8	R3	R4	R6	R7	R8	R2	R3	R4	R4	R6
4.0	В3	B5	В6	В7	В8	R4	R5	R7	R8	R8	R3	R4	R4	R5	R6
5.0	В4	В6	В8	В8	В9	R5	R7	R8	R8	R8	R4	R5	R6	R6	R7
6.0	B5	В7	В8	В9	В9	R6	R8	R8	R8	R8	R5	R6	R6	R7	R7
8.0	В6	В8	В8	В8	B8	R8	R8 /	R8	R8	R8	R6	R7	R7	R7	R7
10.0	В8	В8	В8	B8	В8	R8	R9	R9	R9	R9	R7	R7	R7	R7	R7
12.0	В8	В8	В8	В8	B8	R9	R9	R9	R9	R8	R8	R8	R8	R8	R7
14.0	В9	В9	В9	B9	В9	R9	R9	R9	R9	R9	R8	R9	R9	R9	R8
16.0	В9	В9	B9	B9	В9	R9	R10	R10	R9	R9	R9	R9	R9	R9	R8
18.0	В9	В9	B9/	В9	в9 🤇	R10/	R10	R10	R9	R9	R9	R9	R9	R9	R8

N	0	т	F	ς	

- SEE PAGES D.9.1 THRU D.12.2 FOR SELECTION OF SPECIFIC BRACING ATTACHMENT DETAILS BASED ON THE SPECIFIED BRACING ATTACHMENT DESIGNATION ABOVE.
- SEE PAGES D.13.1 THRU D.16.1 FOR SELECTION OF SPECIFIC HANGER/ROD ATTACHMENT DETAILS BASED ON THE SPECIFIED HANGER/ROD ATTACHMENT DESIGNATION ABOVE.
- ROD DESIGNATION BASED ON LESSER OF STANDARD ROD SPACING OR BRACE SPACING.
- DETAILS AND SPACING VALUES LISTED ABOVE APPLY FOR WELDED, BOLTED, COUPLED OR THREADED CONNECTIONS.

111111	PIPE DIAMETER	LONGI	TUDINAL	BRACE S	SVERSE & PACING I LUE OF F	N FEET
7	/19/ ⁱ² 025	0.25	0.50	0.75	1.0	1.5
N/4	1.25	80	80	80	80	80
	1.50	80	80/	80	80	80
Z	2.0	80	80	80	80	80
N	2.5	80	80	80	80	80
	T3.0 G	80	80	80	80	80
4	3.5	80	80	80	80	80
	4.0	80	80	80	80	80
	5.0	80	80	80	80	64
	6.0	80	80	80	71.6	47.8
	8.0	80	80	56.1	42.1	28
	10.0	80	57	38	28.5	19
	12.0	80	43.4	28.9	21.7	14.5
	14.0	80	54.2	36.1	27.1	18.1
	16.0	80	43.8	29.2	21.9	14.6
	18.0	72.5	36.2	24.2	18.1	12.1

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

D.3.2

Date:

TRANSVERSE BRACE SPACING LIMITS FOR SCH. 40 STEEL PIPE BASED ON DEFLECTION AND PIPE STRESSES & η VALUES FOR MANUAL DESIGN APPROACH

PIPE DIAMETER			MAXI		RANSVE ASED ON				N FEET		
(in)	0.25	0.50	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
1.25	19.6	19.0	18.4	17.7	16.4	15.3	14.3	13.5	12.7	12.1	11.5
1.50	21.6	21.0	20.4	19.7	18.3	17.1	16.0	15.1	14.3	13.6	13.1
2.0	25.2	24.7	23.9	23.2	21.3	19.8	18.6	17.6	16.7	15.9	15.3
2.5	29.5	28.8	27.6	26.3	24.2	22.5	21.1	19.9	19.0	18.1	17.4
3.0	32.5	31.9	30.3	28.8	26.5	24.6	23.1	21.8	20.8	19.8	19.0
3.5	34.7	33.9	32.1	30.6	28.1	26.1	24.5	23.2	22.1	21.1	20.2
4.0	36.7	35.7	33.9	32.3	29.6	27.6	25.9	24.4	23.2	22.2	21.3
5.0	40	39.2	37.1	35.4	32.5	30.2	28.4	26.8	25.5	24.4	23.4
6.0	40	40	40	38.1	35.0	32.6	30.6	28.9	27.5	26.2	26.2
8.0	40	40	40	40	39.2	36.5	34.2	32.4	30.8	29.4	28.2
10.0	40	40	40	40	40	40	37.6	35.5	33.8	32.3	30.9
12.0	40	40	40	40	40	40	39.6	37.4	35.6	34.0	32.6
14.0 ⁴	40	40	40	40	40		0-1	-	-		
16.0 ⁴	40	40	40	40	40		//	0,			
18.0 ⁴	40	40	40	40	40	V / 1 - //					

η VAL CALCU	UE FOR MAN LATIONS - T <mark>R</mark>	UAL CABLE TE ANSVERSE KIT	ENSION FS ONLY ^{2,3}							
PIPE DIAMETER	m / m / m / m / m / m / m / m / m / m /									
(in)	30°≤ x <4 5°	4 5°≤ x≤ 60°	60°< x≤70°							
1.25	2.60	2.82	3.51							
1.50	2.91	3.27	4.16							
2.0	3.09	3.52	4.53							
2.5	3.67	4.34	5.73							
3.0	4.00	4.81	6.41							
3.5	4.23	5.13	6.88							
4.0	4.45	5.44	7.34							
5.0	4.87	6.04	8.21							
6.0	3.39	3.95	5.15							
8.0	3.15	3.61	4.66							
10.0	3.60	4.25	5.59							
12.0	4.00	4.81	6.41							

NOTES:

- SPACING LIMITS ARE BASED 70% OF THE YIELD STRESS CAPACITY OF THE PIPE (INCLUDES THREADED, BONDED, WELDED, AND BOLTED PIPING), A MAXIMUM DEFLECTION OF L/60, AND 6", WHICHEVER YIELDS THE LEAST DISTANCE.
- 2. THE CABLE DEMAND TENSION IS CALCULATED AS $T_{cable} = F_p \eta$.
- THE VALUE OF η ACCOUNTS FOR THE LOAD ECCENTRICITIES OF THE BRACE POINT ABOVE THE PIPE CENTER OF GRAVITY.
- SINCE 14", 16", AND 18" NOT ISOLATED WITHIN THE SCOPE OF THIS OPM, MAXIMUM "g" VALUE IS 1.5.

	F <mark>OR MA</mark> NUAI LATI <mark>ONS -</mark> TR							
PIPE DIAMETER	η							
(in)	30°≤×<45°	45°≤ x≤60°	60°< x ≤70°					
1.25	3.23	2.93	3.29					
025.50	3.57	3.33	3.87					
2.0	3.75	3.56	4.19					
2.5	4.36	4.30	5.24					
3.0	4.70	4.73	5.84					
3.5	4.94	5.02	6.25					
4.0	2.00	1.41	1.15					
5.0	2.00	1.41	1.15					
6.0	2.00	1.41	1.15					
8.0	2.00	1.41	1.15					
10.0	2.00	1.41	1.15					
12.0	2.00	1.41	1.15					
12.0	2.00	1.41	1.15					
12.0	2.00	1.41	1.15					
12.0	2.00	1.41	1.15					
14.0	2.00	1.41	1.15					
16.0	2.00	1.41	1.15					
18.0	2.00	1.41	1.15					

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

D.3.3

Date:

January 19, 2024

CABLE BRACING KIT DETAIL SELECTION RECTANGULAR SHEET METAL DUCTWORK W/ INSULATION

CABLE BRACING ANGLE "x" AT 45° to 60° (1:1 to 1.7:1) SLOPE (ANGLE FROM VERTICAL AXIS)

LINEAR DUCT WT. (PLF), SUPPORT	TRANSVERSE BRACING KIT DETAIL PAGE No. BASED ON "g" VALUE OF Fp										
SPACING 10'-0" O.C.	0.25	0.50	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
10	2.7.1	2.7.1	2.7.1	2.7.1	2.7.1	2.7.1	2.7.1	2.7.1	2.7.3	2.7.3	2.7.3
20	2.7.1	2.7.1	2.7.1	2.7.1	2.7.1	2.7.3	2.7.3	2.7.3	2.7.3	2.7.3	2.7.3
30	2.7.1	2.7.1	2.7.1	2.7.1	2.7.3	2.7.3	2.7.3	2.7.3	2.7.3	2.7.3	2.7.3
40	2.7.5	2.7.5	2.7.5	2.7.7	2.7.7	2.7.7	2.7.7	2.7.7	2.7.7	2.7.7	2.7.7
50	2.7.5	2.7.5	2.7.7	2.7.7	2.7.7	2.7.7	2.7.7	2.7.7	2.7.7	2.7.7	2.7.7
60	2.7.5	2.7.5	2.7.7	2.7.7	2.7.7	2.7.7	2.7.7	2.7.7	2.7.7	2.7.7	2.7.7
70	2.7.9	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11
80	2.7.9	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11
90	2.7.9	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	n/a
100	2.7.9	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	2.7.11	n/a	n/a

LINEAR DUCT WT. (PLF), STD. SUPPORT											
SPACING 10'-0" O.C.	0.25	0.50	0.75	1.0	U <u>1.5</u> U	5 _{2.0}	2.5	3.0	3.5	4.0	4.5
10	2.7.2	2.7.2	2.7.2	2.7.2	2.7.2	2.7.2	2.7.2	2.7.2	2.7.4	2.7.4	
20	2.7.2	2.7.2	2.7.2	2,7.20	2.7.2	2.7.4	2.7.4	2.7.4	2.7.4	2.7.4	2.7.4
30	2.7.2	2.7.2	2.7.2	2.7.2	2.7.4	2.7.4	2.7.4	2.7.4	2.7.4	2.7.4	2.7.4
40	2.7.6	2.7.6	2.7.6	2.7.8	2.7.8	2.7.8	2.7.8	2.7.8	2.7.8	2.7.8	2.7.8
50	2.7.6	2.7.6	2.7.8	2.7.8	2.7.8	2.7.8	2.7.8	2.7.8	2.7.8	2.7.8	2.7.8
60	2.7.6	2.7.6	2.7.8	2.7.8	2.7.8	2.7.8	2.7.8	2.7.8	2.7.8	2.7.8	2.7.8
70	2.7.10	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12
80	2.7.10	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12
90	2.7.10	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	n/a
100	2.7.10	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	2.7.12	n/a	n/a

NOTES:

- 1. SUPPORT SPACING MUST NOT EXCEED THE MAXIMUM BRACE SPACING SPECIFIED ON PAGE D.6.1.
- 2. SEE PAGE D.6.1 FOR BRACE AND HANGER/ROD ATTACHMENT DETAIL TABLES.
- 3. DENOTES CABLE KITS WITH $\frac{3}{16}$ " Ø CABLE.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.: **D.4.1**

Date:

RIGID BRACING KIT DETAIL SELECTION RECTANGULAR SHEET METAL DUCTWORK W/ INSULATION

RIGID BRACING ANGLE "x" AT 45° to 60° (1:1 to 1.7:1) SLOPE (ANGLE FROM VERTICAL AXIS)

LINEAR DUCT WT. (PLF), SUPPORT SPACING 10'-0" O.C.	TRAN	PAGE	BRACIN No. BAS /ALUE C	ED ON	ETAIL
SPACING 10-0 O.C.	0.25	0.50	0.75	1.0	1.5
10	2.8.1	2.8.1	2.8.1	2.8.1	2.8.1
20	2.8.1	2.8.1	2.8.1	2.8.1	2.8.1
30	2.8.1	2.8.1	2.8.1	2.8.1	2.8.1
40	2.8.3	2.8.3	2.8.3	2.8.3	2.8.3
50	2.8.3	2.8.3	2.8.3	2.8.3	2.8.3
60	2.8.3	2.8.3	2.8.3	2.8.3	2.8.3
70	2.8.5	2.8.5	2.8.5	2.8.5	2.8.5
80	2.8.5	2.8.5	2.8.5	2.8.5	2.8.5
90	2.8.5	2.8.5	2.8.5	2.8.5	2.8.5
100	2.8.5	2.8.5	2.8.5	2.8.5	2.8.5

LINEAR DUCT WT. (PLF), STD. SUPPORT SPACING 10'-0" O.C.	BRA	CING K	IT DETA	NGITUDI IL PAGE LUE OF	No.
SPACING 10-0 U.C.	0.25	0.50	0.75	1.0	1.5
10	2.8.2	2.8.2	2.8.2	2.8.2	2.8.2
20	2.8.2	2.8.2	2.8.2	2.8.2	2.8.2
30	2.8.2	2.8.2	2.8.2	2.8.2	2.8.2
40	2.8.4	2.8.4	2.8.4	2.8.4	2.8.4
50	2.8.4	2.8.4	2.8.4	2.8.4	2.8.4
60	2.8.4	2.8.4	2.8.4	2.8.4	2.8.4
70	2.8.6	2.8.6	2.8.6	2.8.6	2.8.6
80	2.8.6	2.8.6	2.8.6	2.8.6	2.8.6
90	2.8.6	2.8.6	2.8.6	2.8.6	2.8.6
100	2.8.6	2.8.6	2.8.6	2.8.6	2.8.6

NOTES:

- 1. SUPPORT SPACING MUST NOT EXCEED THE MAXIMUM BRACE SPACING SPECIFIED ON PAGE D.6.2.
- 2. SEE PAGE D.6.2 FOR BRACE AND HANGER/ROD ATTACHMENT DETAIL TABLES.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

D.4.2

Date:

CABLE BRACING KIT DETAIL SELECTION ROUND SHEET METAL DUCTWORK W/ INSULATION

CABLE BRACING ANGLE "x" AT 45° to 60° (1:1 to 1.7:1) SLOPE (ANGLE FROM VERTICAL AXIS)

LINEAR DUCT WT. (PLF) STD. SUPPORT		TRANSVERSE BRACING KIT DETAIL PAGE No. BASED ON "g" VALUE OF Fp										
SPACING 10'-0" O.C.	0.25	0.50	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	
10	2.9.1	2.9.1	2.9.1	2.9.1	2.9.1	2.9.1	2.9.1	2.9.1	2.9.3	2.9.3	2.9.3	
20	2.9.1	2.9.1	2.9.1	2.9.1	2.9.1	2.9.3	2.9.3	2.9.3	2.9.3	2.9.3	2.9.3	
30	2.9.1	2.9.1	2.9.1	2.9.1	2.9.3	2.9.3	2.9.3	2.9.3	2.9.3	2.9.3	2.9.3	
40	2.9.5	2.9.5	2.9.5	2.9.7	2.9.7	2.9.7	2.9.7	2.9.7	2.9.7	2.9.7	2.9.7	
50	2.9.5	2.9.5	2.9.7	2.9.7	2.9.7	2.9.7	2.9.7	2.9.7	2.9.7	2.9.7	2.9.7	
60	2.9.5	2.9.5	2.9.7	2.9.7	2.9.7	2.9.7	2.9.7	2.9.7	2.9.7	2.9.7	2.9.7	
70	2.9.9	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	
80	2.9.9	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	
90	2.9.9	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	n/a	
100	2.9.9	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	2.9.11	n/a	n/a	

LINEAR DUCT WT. (PLF) STD. SUPPORT	TRANSVERSE & LONGITUDINAL BRACING KIT DETAIL PAGE No. BASED ON "g" VALUE OF Fp											
SPACING 10'-0" O.C.	0.25	0.50	0.75	1.0	U <u>1.5</u> U	J _{2.0}	2.5	3.0	3.5	4.0	4.5	
10	2.9.2	2.9.2	2.9.2	2.9.2	2.9.2	2.9.2	2.9.2	2.9.2	2.9.4	2.9.4	2.9.4	
20	2.9.2	2.9.2	2.9.2	2,9.2	2.9.2	2.9.4	2.9.4	2.9.4	2.9.4	2.9.4	2.9.4	
30	2.9.2	2.9.2	2.9.2	2.9.2	2.9.4	2.9.4	2.9.4	2.9.4	2.9.4	2.9.4	2.9.4	
40	2.9.6	2.9.6	2.9.6	2.9.8	2.9.8	2.9.8	2.9.8	2.9.8	2.9.8	2.9.8	2.9.8	
50	2.9.6	2.9.6	2.9.8	2.9.8	2.9.8	2.9.8	2.9.8	2.9.8	2.9.8	2.9.8	2.9.8	
60	2.9.6	2.9.6	2.9.8	2.9.8	2.9.8	2.9.8	2.9.8	2.9.8	2.9.8	2.9.8	2.9.8	
70	2.9.10	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	
80	2.9.10	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	
90	2.9.10	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	n/a	
100	2.9.10	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	2.9.12	n/a	n/a	

NOTES:

- 1. BRACE SPACING MUST NOT EXCEED THE MAXIMUM BRACE SPACING SPECIFIED ON PAGE D.6.1.
- 2. SEE PAGE D.6.1 FOR BRACE AND HANGER/ROD ATTACHMENT DETAIL TABLES.
- 3. DENOTES CABLE KITS WITH $\frac{3}{16}$ " Ø CABLE.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: M. Tremblay
California PE No. S6481

Page No.: **D.5.1**

Date:

RIGID BRACING KIT DETAIL SELECTION ROUND SHEET METAL DUCTWORK W/ INSULATION

RIGID BRACING ANGLE "x" AT 45° to 60° (1:1 to 1.7:1) SLOPE (ANGLE FROM VERTICAL AXIS)

LINEAR DUCT WT. (PLF), SUPPORT SPACING 10'-0" O.C.	TRAN		BRACIN No. BAS /ALUE C	ED ON	ETAIL
SPACING 10-0 U.C.	0.25	0.50	0.75	1.0	1.5
10	2.10.1	2.10.1	2.10.1	2.10.1	2.10.1
20	2.10.1	2.10.1	2.10.1	2.10.1	2.10.1
30	2.10.1	2.10.1	2.10.1	2.10.1	2.10.1
40	2.10.3	2.10.3	2.10.3	2.10.3	2.10.3
50	2.10.3	2.10.3	2.10.3	2.10.3	2.10.3
60	2.10.3	2.10.3	2.10.3	2.10.3	2.10.3
70	2.10.5	2.10.5	2.10.5	2.10.5	2.10.5
80	2.10.5	2.10.5	2.10.5	2.10.5	2.10.5
90	2.10.5	2.10.5	2.10.5	2.10.5	2.10.5
100	2.10.5	2.10.5	2.10.5	2.10.5	2.10.5

LINEAR DUCT WT. (PLF), STD. SUPPORT SPACING 10'-0" O.C.	BRA	CING K	E & LON IT DETA I "g" VA	IL PAGE	No.
SPACING 10-0 U.C.	0.25	0.50	0.75	1.0	1.5
10	2.10.2	2.10.2	2.10.2	2.10.2	2.10.2
20	2.10.2	2.10.2	2.10.2	2.10.2	2.10.2
30	2.10.2	2.10.2	2.10.2	2.10.2	2.10.2
40	2.10.4	2.10.4	2.10.4	2.10.4	2.10.4
50	2.10.4	2.10.4	2.10.4	2.10.4	2.10.4
60	2.10.4	2.10.4	2.10.4	2.10.4	2.10.4
70	2.10.6	2.10.6	2.10.6	2.10.6	2.10.6
80	2.10.6	2.10.6	2.10.6	2.10.6	2.10.6
90	2.10.6	2.10.6	2.10.6	2.10.6	2.10.6
100	2.10.6	2.10.6	2.10.6	2.10.6	2.10.6

NOTES:

- 1. SUPPORT SPACING MUST NOT EXCEED THE MAXIMUM BRACE SPACING SPECIFIED ON PAGE D.6.2.
- 2. SEE PAGE D.6.2 FOR BRACE AND HANGER/ROD ATTACHMENT DETAIL TABLES.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: 7. Tremblay
California PE No. S6481

Page No.:

D.5.2

Date:

CABLE BRACING & HANGER/ROD ATTACHMENT DESIGNATION SELECTION FOR SHEET METAL DUCTWORK W/ INSULATION

CABLE BRACING ANGLE "x" AT 45° to 60° (1:1 to 1.7:1) SLOPE (ANGLE FROM VERTICAL AXIS)

LINEAR DUCT WT.				HANGER DESIGNATION								
(PLF)	0.25	0.50	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	ALL "g" VALUES
10	B2	B2	В3	В3	В4	B4	B5	В6	В6	В7	В7	H1/R1
20	B2	В3	В4	В4	В6	В7	В7	В7	В7	В7	В7	H1/R1
30	В3	В4	B5	В6	В7	H1/R1						
40	В3	В4	В6	В7	В7	В7	В7	В7	В7	В7	В7	H1/R1
50	В3	B5	В7	В7	В7	В7	В7	В7	В7	В7	В7	R1
60	В4	В6	В7	В7	В7	В7	В7	В7	В7	В7	В7	R2
70	В4	В6	В7	В7	В7	В7	В7	В7	В7	В7	В7	R2
80	В4	В7	В7	В7	В7	В7	В7	В7	В7	В7	В7	R3
90	B5	В7	В7	В7	В7	В7	В7	В7	В7	В7	В7	R3
100	B5	В7	В7	В7	В7	В7	В7	В7	В7	В7	В7	R4

	OR CODE C												
LINEAR DUCT WT.			MAXIN				CING SF		IN FEET				
(PLF)	0.25	0.50	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5		
10	30	30	30	30	30	30	30	30	30	30	30		
20	30	30	30	30	30	30 /	28.2	23.5	20.2	17.6	15.7		
30	30	30	30	30	30	23.5	18.8	15.7	13.4	11.8	10.5		
40	30	30	30	30	23.5	17.6	14.1	11.8	10.1	8.8	7.8		
50	30	30	30	28.2	18.8	14.1	11.3	9.4	8.1	7.1	6.3		
60	30	30	30	23.5	15.7	11.8	9.4	7.8	6.7	5.9	5 .2		
70	30	30	26.9	20.2	13.4	10.1	8.1	6.35	5.8	5.0	4.5		
80	30	30	23.5	17.6	11.8	8.8	7.1	5.9	5.0	4.4	3.9		
90	30	30	20.9	15.7	10.5	7.8	6.3	5.2	4.5	3.9	n/a		
100	30	28.2	18.8	14.1	9.4	7.1	5.6	4.7	4.0	n/a	n/a		

LINEAR DUCT WT.		MAX	IMUM ⁻	TRANSV IN FEE	· J Z	LONGIT ON "g			NG SPA	CING	
(PLF)	0.25	0.50	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
10	60	60	60	60	60	60	60	60	60	60	60
20	60	60	60	60	60	60	56.4	47	40.3	35.3	31.4
30	60	60	60	60	60	47	37.6	31.4	26.9	23.5	20.9
40	60	60	60	60	47	35.3	28.2	23.5	20.2	17.6	15.7
50	60	60	60	56.4	37.6	28.2	22.6	18.8	16.1	14.1	12.5
60	60	60	60	47	31.4	23.5	18.8	15.7	13.4	11.8	10.5
70	60	60	53.8	40.3	26.9	20.2	16.1	13.4	11.5	10.1	9.0
80	60	60	47	35.3	23.5	17.6	14.1	11.8	10.1	8.8	7.8
90	60	60	41.8	31.4	20.9	15.7	12.5	10.5	9.0	7.8	n/a
100	60	56.4	37.6	28.2	18.8	14.1	11.3	9.4	8.1	n/a	n/a

NOTES:

- 1. SEE PAGES D.9.1 THRU D.12.2 FOR SELECTION OF SPECIFIC BRACING ATTACHMENT DETAILS BASED ON THE SPECIFIED BRACING ATTACHMENT DESIGNATION ABOVE.
- 2. SEE PAGES D.13.1 THRU
 D.16.1 FOR SELECTION OF
 SPECIFIC HANGER/ROD
 ATTACHMENT DETAILS
 BASED ON THE SPECIFIED
 HANGER/ROD
 ATTACHMENT DESIGNATION
 ABOVE.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

D.6.1

Date:

RIGID BRACING & HANGER/ROD ATTACHMENT DESIGNATION SELECTION FOR SHEET METAL DUCTWORK W/ INSULATION

RIGID BRACING ANGLE "x" AT 45° to 60° (1:1 to 1.7:1) SLOPE (ANGLE FROM VERTICAL AXIS)

LINEAR DUCT WT.		BRACING DES SED ON	SIGNATI	ON		ALL "	NGER/F g" VALU ACHME	JES ^{2,3} FC	R CON	CRETE	HANGER/ROD DESIGNATION ALL "g" VALUES ^{2,3} FOR STEEL & WOOD ATTACHMENT					
(PLF)	0.25	0.50	0.75	1.0	1.5	0.25	0.50	0.75	1.0	1.5	0.25	0.50	0.75	1.0	1.5	
10	B2	B2	В3	В3	В4	R1	R2	R2	R3	R3	R1	R1	R1	R2	R2	
20	B2	В3	В4	В4	В6	R2	R3	R4	R4	R5	R1	R2	R2	R3	R4	
30	В3	В4	B5	В6	В7	R3	R4	R5	R6	R6	R2	R3	R3	R4	R4	
40	В3	В4	В6	В7	В8	R3	R4	R6	R6	R7	R2	R3	R4	R4	R6	
50	В3	B5	В7	B8	В8	R4	R5	R6	R7	R7	R3	R4	R4	R5	R6	
60	B4	В6	В7	В8	В9	R4	R6	R7	R7	R8	R3	R4	R5	R6	R6	
70	B4	В6	В8	В8	В9	R5	R6	R7	R7	R8	R4	R5	R6	R6	R6	
80	B4	В7	B8	В9	В9	R5	R6	R7	R8	R8	R4	R5	R6	R6	R6	
90	B5	В7	В8	В9	В9	R5	R7	R7	R8	R8	R4	R5	R6	R7	R7	
100	B5	В8	В8	В9	В9	R6	R7	R8	R8	R8	R4	R6	R6	R7	R7	

LINEAR DUCT WT. (PLF)		MAXIMUM TRANSVERSE BRACING SPACING IN FEET BASED ON "g" VALUE OF Fp											
(PLF)	0.25	0.25 0.50 0.75 1.0 1.5											
10	30	30 30 30 30 30											
20	30	30	30	30	30								
30	30	30	30	30	30								
40	30	30	30 B	30	RC30 L								
50	30	30	30	30	30								
60	30	30	30	30_	30								
70	30	30	30	30	30								
80	30	30	30	30	30								
90	30	30	30	30	30								
100	30 30 30 30 30												

LINEAR DUCT WT.	LONG	ITUDIN	M TRAN AL BRAC D ON "g	ING SP	ACING				
(PLF)	0.25	0.50	0.75	1.0	1.5				
O 2 ¹⁰	60	60	60	60	60				
20	60	60	60	60	60				
30	60 60 60 60								
40	60	60	60	60					
50	60	60	60	60	60				
60.	60	60	60	60	60				
70	60	60	60	60	60				
80	60	60	60	60	60				
90	60 60 60 60								
100	60 60 60 60 60								

NOTES:

- 1. SEE PAGES D.9.1 THRU D.12.2 FOR SELECTION OF SPECIFIC BRACING ATTACHMENT DETAILS BASED ON THE SPECIFIED BRACING ATTACHMENT DESIGNATION ABOVE.
- 2. SEE PAGES D.13.1 THRU D.16.1 FOR SELECTION OF SPECIFIC HANGER/ROD ATTACHMENT DETAILS BASED ON THE SPECIFIED HANGER/ROD ATTACHMENT DESIGNATION ABOVE.
- 3. ROD DESIGNATION BASED ON LESSER OF STANDARD ROD SPACING OR BRACE SPACING.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

D.6.2

Date:

CABLE BRACING KIT DETAIL SELECTION FOR CABLE TRAY/RACEWAY

CABLE BRACING ANGLE "x" AT 45° to 60° (1:1 to 1.7:1) SLOPE (ANGLE FROM VERTICAL AXIS)

ELECTRICAL TRAY LINEAR WEIGHT (PLF), STD. SUPPORT		TRANSVERSE BRACING KIT DETAIL PAGE No. BASED ON "g" VALUE OF Fp									
SPACING 10'-0" O.C.	0.25	0.25 0.50 0.75 1.0 1.5 2.0 2.5 3.0 3.5 4.0									
10	2.11.1	2.11.1	2.11.1	2.11.1	2.11.1	2.11.1	2.11.1	2.11.1	2.11.3	2.11.3	2.11.3
20	2.11.1	2.11.1	2.11.1	2.11.1	2.11.1	2.11.3	2.11.3	2.11.3	2.11.3	2.11.3	2.11.3
30	2.11.5	2.11.5	2.11.5	2.11.5	2.11.7	2.11.7	2.11.7	2.11.7	2.11.7	2.11.7	2.11.7
40	2.11.5	2.11.5	2.11.5	2.11.7	2.11.7	2.11.7	2.11.7	2.11.7	2.11.7	2.11.7	2.11.7
45	2.11.5	2.11.5	2.11.7	2.11.7	2.11.7	2.11.7	2.11.7	2.11.7	2.11.7	2.11.7	2.11.7
50	2.11.9	2.11.9	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11
60	2.11.9	2.11.9	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11
70	2.11.9	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11
80	2.11.9	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11
85	2.11.9	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11	2.11.11
	N. C.	NE.	I								

ELECTRICAL TRAY LINEAR WEIGHT (PLF), STD. SUPPORT	J. J	TRANSVERSE & LONGITUDINAL BRACING KIT DETAIL PAGE No. BASED ON g" VALUE OF Fp											
SPACING 10'-0" O.C.	0.25	0.50	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5		
10	2.11.2	2.11.2	2.11.2	2,11.2	2.11.2	2.11.2	2.11.2	2.11.2	2.11.4	2.11.4	2.11.4		
20	2.11.2	2.11.2	2.11.2	2.11.2	2.11.2	2.11.4	2.11.4	2.11.4	2.11.4	2.11.4	2.11.4		
30	2.11.6	2.11.6	2.11.6	2.11.8	2.11.8	2.11.8	2.11.8	2.11.8	2.11.8	2.11.8	2.11.8		
40	2.11.6	2.11.6	2.11.6	2.11.8	2.11.8	2.11.8	2.11.8	2.11.8	2.11.8	2.11.8	2.11.8		
45	2.11.6	2.11.6	2.11.8	2.11.8	2.11.8	2.11.8	2.11.8	2.11.8	2.11.8	2.11.8	2.11.8		
50	2.11.10	<mark>2.1</mark> 1.10	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12		
60	2.11. <mark>10</mark>	2.11.10	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12		
70	2.11.10	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12		
80	2.11.10	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12		
85	2.11.10	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12	2.11.12		

NOTES:

- 1. SUPPORT SPACING MUST NOT EXCEED THE MAXIMUM BRACE SPACING SPECIFIED ON PAGE D.8.1.
- 2. SEE PAGE D.8.1 FOR BRACE AND HANGER/ROD ATTACHMENT DETAIL TABLES.
- 3. DENOTES CABLE KITS WITH $\frac{3}{16}$ " Ø CABLE.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

D.7.1

Date:

RIGID BRACING KIT DETAIL SELECTION FOR CABLE TRAY/RACEWAY

RIGID BRACING ANGLE "x" AT 45° to 60° (1:1 to 1.7:1) SLOPE (ANGLE FROM VERTICAL AXIS)

ELECTRICAL TRAY LINEAR WEIGHT	TRAN	SVERSE PAGE	BRACIN No. BAS		ETAIL
(PLF), STD. SUPPORT SPACING 10'-0" O.C.	0.25	"g" \ 0.50	0.75	0F Fp 1.0	1.5
10	2.12.1	2.12.1	2.12.1	2.12.1	2.12.1
20	2.12.1	2.12.1	2.12.1	2.12.1	2.12.1
30	2.12.3	2.12.3	2.12.3	2.12.3	2.12.3
40	2.12.3	2.12.3	2.12.3	2.12.3	2.12.3
45	2.12.3	2.12.3	2.12.3	2.12.3	2.12.3
50	2.12.5	2.12.5	2.12.5	2.12.5	2.12.5
60	2.12.5	2.12.5	2.12.5	2.12.5	2.12.5
70	2.12.5	2.12.5	2.12.5	2.12.5	2.12.5
80	2.12.5	2.12.5	2.12.5	2.12.5	2.12.5
85	2.12.5	2.12.5	2.12.5	2.12.5	2.12.5

ELECTRICAL TRAY LINEAR WEIGHT (PLF), STD. SUPPORT	BRA	CING KI	T DETA	NGITUDI IL PAGE LUE OF	No.				
SPACING 10'-0" O.C.	0.25 0.50 0.75 1.0 1.5								
10	2.12.2	2.12.2	2.12.2	2.12.2	2.12.2				
20	2.12.2	2.12.2	2.12.2	2.12.2	2.12.2				
30	2.12.4	2.12.4	2.12.4	2.12.4	2.12.4				
40	2.12.4	2.12.4	2.12.4	2.12.4	2.12.4				
45	2.12.4	2.12.4	2.12.4	2.12.4	2.12.4				
50	2.12.6	2.12.6	2.12.6	2.12.6	2.12.6				
60	2.12.6	2.12.6	2.12.6	2.12.6	2.12.6				
70	2.12.6	2.12.6	2.12.6	2.12.6	2.12.6				
F 80	2.12.6	2.12.6	2.12.6	2.12.6	2.12.6				
85	2.12.6	2.12.6	2.12.6	2.12.6	2.12.6				

NOTES:

- 1. SUPPORT SPACING MUST NOT EXCEED THE MAXIMUM BRACE SPACING SPECIFIED ON PAGE D.8.2.
- 2. SEE PAGE D.8.2 FOR BRACE AND HANGER/ROD ATTACHMENT DETAIL TABLES.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblay
California PE No. S6481

Page No.:

D.7.2

Date:

CABLE BRACING & HANGER/ROD ATTACHMENT DESIGNATION SELECTION CABLE TRAY/RACEWAY

CABLE BRACING ANGLE "x" AT 45° to 60° (1:1 to 1.7:1) SLOPE (ANGLE FROM VERTICAL AXIS)

ELECTRICAL TRAY LINEAR WEIGHT ³			HANGER DESIGNATION									
(PLF)	0.25	0.50	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	ALL "g" VALUES
10	B2	B2	В3	В3	В4	В4	B5	В6	В7	В7	В7	R1
20	В2	В3	В4	В4	В6	В7	В7	В7	В7	В7	В7	R1
30	В3	В4	B5	В6	В7	R1						
40	В3	В4	В6	В7	R1							
45	В3	B5	В6	В7	R1							
50	В3	B5	В7	В7	В7	В7	В7	В7	В7	В7	В7	R2
60	В4	В6	В7	В7	В7	В7	В7	В7	В7	В7	В7	R2
70	В4	В6	В7	В7	В7	В7	В7	В7	В7	В7	В7	R3
80	В4	В7	В7	В7	В7	В7	В7	В7	В7	В7	В7	R3
85	B5	В7	В7	В7	В7	В7	В7	В7	В7	В7	В7	R4

						/.0	RC	OD	FC		
LINEAR TRAY WT.		MAXIMUM TRANSVERSE BRACING SPACING IN FEET BASED ON "g" VALUE OF FP									
(PLF)	0.25	0.50	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
10	30	30	30	30	30	30	30	30	30	30	30
20	30	30	30	30	30	30	28.2	23.5	20.2	17.6	15.7
30	30	30	30	30	30	23.5	18.8	15.7	13.4	11.8	10.5
40	30	30	30	30	23.5	17.6	14.1	11.8	10.1	8.8	7.8
45	30	30	30	30	20.9	15.7	R12\5	10.5	9.0	7.8	7.0
50	30	30	30	28.2	18.8	14.1	11.3	9.4	8.1	7.1	6.3
60	30	30	30	23.5	15.7	11.8	9.4	7 / 7.8 /	6.75	5.9	5.2
70	30	30	26.9	20.2	13.4	10.1	8.1	6.7	5.8	5.0	4.5
80	30	30	23.5	17.6	11.8	8.8	7.1	5.9	5.0	4.4	3.9
85	30	30	22.1	16.6	11,1	8.3	6.6	5.5	4.7	4.2	3.7

LINEAR TRAY WT.		MAXIMUM TRANSVERSE & LONGITUDINAL BRACING SPACING IN FEET BASED ON "g" VALUE OF Fp									
(PLF)	0.25	0.50	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
10	60	60	60	60	60	60	60	60	60	60	60
20	60	60	60	60	60	60	56.4	47	40.3	35.3	31.4
30	60	60	60	60	60	47	37.6	31.4	26.9	23.5	20.9
40	60	60	60	60	47	35.3	28.2	23.5	20.2	17.6	15.7
45	60	60	60	60	41.8	31.4	25.1	20.9	17.9	15.7	13.9
50	60	60	60	56.4	37.6	28.2	22.6	18.8	16.1	14.1	12.5
60	60	60	60	47	31.4	23.5	18.8	15.7	13.4	11.8	10.5
70	60	60	53.8	40.3	26.9	20.2	16.1	13.4	11.5	10.1	9.0
80	60	60	47	35.3	23.5	17.6	14.1	11.8	10.1	8.8	7.8
85	60	60	44.3	33.2	22.1	16.6	13.3	11.1	9.5	8.3	7.4

CRITICAL SPACING NOTE
CABLE TRAY MUST BE
APPROVED ON A PROJECT
SPECIFIC BASIS OR
PREAPPROVED BY OSHPD. DO
NOT EXCEED MAXIMUM
SPACING LIMITS OF THE
CABLE TRAY SPECIFIED BY ITS
MANUFACTURER. THE
SPACING LIMITS SHOWN ARE
BASED SOLELY ON THE
STRENGTH OF THE CABLE KITS
AS SHOWN IN SECTION 2.

NOTES:

- 1. SEE PAGES D.9.1 THRU D.12.2 FOR SELECTION OF SPECIFIC BRACING ATTACHMENT DETAILS BASED ON THE SPECIFIED BRACING ATTACHMENT DESIGNATION ABOVE.
- 2. SEE PAGES D.13.1 THRU D.16.1 FOR SELECTION OF SPECIFIC HANGER/ROD ATTACHMENT DETAILS BASED ON THE SPECIFIED HANGER/ROD ATTACHMENT DESIGNATION ABOVE.
- 3. LINEAR WEIGHT SHOWN INCLUDES CONTENT WEIGHT (WIRE, CABLE, ETC.).

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

D.8.1

Date:

RIGID BRACING & HANGER/ROD ATTACHMENT DESIGNATION SELECTION CABLE TRAY/RACEWAY

RIGID BRACING ANGLE "x" AT 45° to 60° (1:1 to 1.7:1) SLOPE (ANGLE FROM VERTICAL AXIS)

ELECTRICAL TRAY LINEAR WEIGHT ³		DE:	G ATTAC SIGNATI I "g" VA	ON	-	ALL "	NGER/R g" VALU ACHMEI	ES ^{2,3} FC	R CON	CRETE		"g" VAL	ROD DES .UES ^{2,3} F ATTACI	OR STE	
(PLF)	0.25	0.50	0.75	1.0	1.5	0.25	0.50	0.75	1.0	1.5	0.25	0.50	0.75	1.0	1.5
10	B2	B2	В3	В3	В4	R1	R2	R2	R3	R3	R1	R1	R1	R2	R2
20	B2	В3	B4	B4	В6	R2	R3	R4	R4	R5	R1	R2	R2	R3	R4
30	В3	В4	B5	В6	В7	R3	R4	R5	R6	R6	R2	R3	R3	R4	R5
40	В3	В4	В6	В7	В8	R3	R4	R6	R6	R7	R2	R3	R4	R4	R6
45	В3	B5	В6	В7	В8	R3	R5	R6	R7	R7	R3	R3	R4	R5	R6
50	В3	B5	В7	В8	В8	R4	R5	R6	R7	R7	R3	R4	R4	R5	R6
60	В4	В6	В7	В8	В9	R4	R6	R7	R7	R8	R3	R4	R5	R6	R7
70	В4	В6	В8	В8	В9	R5	R6	R7	R7	R8	R4	R5	R6	R6	R7
80	В4	В7	В8	В9	В9	R5	R6	R7	R8	R8	R4	R5	R6	R6	R7
85	B5	В7	В8	В9	В9	R5	R7 _	R7	R8	R8	R4	R5	R6	R7	R7

	VVV						
LINEAR TRAY WT. (PLF)	MAXIMUM TRANSVERSE BRACIN SPACING IN FEET BASED ON "g" VALUE OF Fp						
(PLF)	0.25	0.50	0.75	1.0	1.5		
10	30	30	30	30	30 \		
20	30	30	30	30	30		
30	30	30	30	30	30		
40	30	30	30	30	23.5		
45	30	30	30	30	20.9		
50	30	30	30	28.2	18.8		
60	30	30	30	23.5	15.7		
70	30	30	26.9	20.2	13.4		
80	30	30	23.5	17.6	11.8		
85	30	30	22.1	16.6	11.1		

LINEAR TRAY WT. (PLF)	LONG	AXIMUI ITUDINA T BASEI	AL BRAC	ING SP	ACING
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.25	0.50	0.75	1.0	1.5
J3 10	60	60	60	60	60
20	60	60	60	60	60
30	60	60	60	60	60
40	60	60	60	60	47
45	60	60	60	60	41.8
0250	60	<mark>√ 6</mark> 0	60	56.4	37.6
60	60	60	60	47	31.4
70	60/	60	53.8	40.3	26.9
80	60	60	47	35.3	23.5
85	60	60	44.3	33.2	22.1

NOTES:

- 1. SEE PAGES D.9.1 THRU D.12.2 FOR SELECTION OF SPECIFIC BRACING ATTACHMENT DETAILS BASED ON THE SPECIFIED BRACING ATTACHMENT DESIGNATION ABOVE.
- SEE PAGES D.13.1 THRU D.16.1 FOR SELECTION OF SPECIFIC HANGER/ROD ATTACHMENT DETAILS BASED ON THE SPECIFIED HANGER/ROD ATTACHMENT DESIGNATION ABOVE.
- 3. LINEAR WEIGHT SHOWN INCLUDES CONTENT WEIGHT (WIRE, CABLE, ETC.).

CRITICAL SPACING NOTE
CABLE TRAY MUST BE
APPROVED ON A PROJECT
SPECIFIC BASIS OR
PREAPPROVED BY OSHPD. DO
NOT EXCEED MAXIMUM
SPACING LIMITS OF THE
CABLE TRAY SPECIFIED BY ITS
MANUFACTURER. THE
SPACING LIMITS SHOWN ARE
BASED SOLELY ON THE
STRENGTH OF THE CABLE KITS
AS SHOWN IN SECTION 2.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

D.8.2

Date:

CABLE BRACE ATTACHMENT INDEX FOR 3" STEEL DECK WITH 3000psi SAND LW CONCRETE FILL

TYPE PAGE # TZ2D31 3.1.1 KHD31 3.3.1 KHD32 3.3.1 KHD34 3.3.1 KHD35 3.3.1 SD2D31 3.4.1 SD2D32 3.4.1 SD2D32 3.4.1 SCD31 3.6.1 SCD31 3.6.1 SCD31 3.6.1 SCD32 3.6.1 SCD37 3.6.1 SCD37 3.6.1 SCD37 3.6.1 SCD38 3.6.1 SCD38 3.6.1 SB2D31 3.7.1 SB2D38 3.7.1 SB2D38 3.7.1 THD31 3.9.1 THD31 3.9.1 THD32 3.9.1 THD32 3.9.1 THD35 3.9.1 THD35 3.9.1 THD35 3.9.1 TT2D34 3.1.1 TZ2D34 3.1.1 TZ2D34 3.1.1 TZ2D34 3.1.1 TZ2D34 3.1.1 TZ2D35 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 SCHD31 3.3.1 KHD36 3.3.1 KHD36 3.3.1 KHD37 3.3.1 KHD37 3.3.1 KHD39 3.3.1 KHD36 3.3.1 KHD37 3.3.1 SCHD31 3.3.1 SCHD31 3.3.1 SCHD31 3.3.1 SCHD32 3.3.1 SCHD32 3.3.1 SCHD33 3.4.1 SCD2D33 3.4.1 SCD2D34 3.4.1 SCD2D36 3.4.1 SCD2D36 3.4.1	DESIGNATION	ATTACHMENT	DETAIL
KHD31 3.3.1 KHD32 3.3.1 KHD34 3.3.1 KHD35 3.3.1 SD2D31 3.4.1 SD2D32 3.4.1 SCD31 3.6.1 SCD32 3.6.1 SCD34 3.6.1 SCD37 3.6.1 SCD38 3.6.1 SB2D31 3.7.1 SB2D38 3.7.1 THD31 3.9.1 THD32 3.9.1 THD33 3.9.1 THD35 3.9.1 TTD33 3.1.1 TZ2D32 3.1.1 TZ2D34 3.1.1 TZ2D34 3.1.1 TZ2D35 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 KHD37 3.3.1 KHD37 3.3.1 KHD39 3.3.1 KHD39 3.3.1 SCD33 3.4.1		–	
KHD34 3.3.1 KHD35 3.3.1 SD2D31 3.4.1 SD2D32 3.4.1 SCD31 3.6.1 SCD31 3.6.1 SCD32 3.6.1 SCD34 3.6.1 SCD37 3.6.1 SB2D31 3.7.1 SB2D38 3.7.1 SB2D39 3.7.1 THD31 3.9.1 THD32 3.9.1 THD33 3.9.1 THD35 3.9.1 THD35 3.9.1 TZ2D32 3.1.1 TZ2D33 3.1.1 TZ2D34 3.1.1 TZ2D35 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 KHD37 3.3.1 KHD36 3.3.1 KHD37 3.3.1 KHD39 3.3.1 SCD2D34 3.4.1 SD2D33 3.4.1 SD2D36 3.4.1			
R1 SCD31 3.4.1 SCD31 3.4.1 SCD31 3.6.1 SCD31 3.6.1 SCD31 3.6.1 SCD32 3.6.1 SCD32 3.6.1 SCD37 3.6.1 SCD37 3.6.1 SCD37 3.6.1 SCD37 3.6.1 SCD37 3.6.1 SCD38 3.7.1 SCD38 3.7.1 SCD38 3.7.1 SCD38 3.7.1 THD31 3.9.1 THD31 3.9.1 THD32 3.9.1 THD32 3.9.1 THD35 3.9.1 THD35 3.9.1 THD35 3.9.1 TZCD32 3.1.1 TZCD32 3.1.1 TZCD32 3.1.1 TZCD34 3.1.1 TZCD34 3.1.1 TZCD34 3.1.1 TZCD35 3.1.1 TZCD36 3.1.1 TZCD36 3.1.1 TZCD36 3.1.1 SCD2D36 3.3.1 SCD2D34 3.3.1 SCD2D34 3.4.1 SCD2D36 3.4.1 SCD2D36 3.4.1			
B1 MAX CABLE TENSION: 100 LBS 30°<Φ ≤ 45° B2 MAX CABLE TENSION: 100 LBS 30°<Φ ≤ 45° B2 MAX CABLE TENSION: 100 LBS 30°<Φ ≤ 45° B3 B4 B5 B5 B5 B5 B5 B7			
B1 MAX CABLE TENSION: 100 LBS 30°<Φ ≤ 45° SCD34 SCD37 SCD37 3.6.1 SCD37 3.6.1 SCD37 3.6.1 SCD37 3.6.1 SCD38 SCD38 3.7.1 SB2D38 3.7.1 SB2D38 3.7.1 SB2D39 3.7.1 THD31 THD31 3.9.1 THD32 3.9.1 THD35 3.9.1 THD35 3.9.1 TT2D32 3.1.1 TZ2D32 3.1.1 TZ2D34 3.1.1 TZ2D34 3.1.1 TZ2D35 3.1.1 TZ2D36 SLD31 KHD33 3.3.1 KHD36 3.3.1 KHD36 3.3.1 KHD37 KHD33 3.3.1 KHD36 3.3.1 KHD37 SCD2D36 SCD38 3.4.1 SCD37 SCD38 3.6.1 SCD37 3.6.1 SCD37 3.6.1 3.6.1 SCD37 3.6.1 SD2D34 3.4.1 SCD2D36 3.4.1			
B1 MAX CABLE TENSION: 100 LBS 30°<Φ ≤ 45° SCD37 SB2D38 3.6.1 SB2D38 3.7.1 SB2D38 3.7.1 THD31 THD31 3.9.1 THD32 3.9.1 THD35 3.9.1 THD35 3.9.1 TZ2D32 TZ2D32 3.1.1 TZ2D34 TZ2D34 TZ2D34 TZ2D35 TZ2D35 TZ2D36 SL1 TZ2D36 SL1 TZ2D36 SL1 TZ2D36 SL1 KHD37 SL1 KHD37 SL1 KHD36 SL3 KHD37 SL3 KHD37 SL3 KHD37 SL3 KHD37 SL3 KHD37 SL3 KHD37 SL3 KHD38 SCD31 SCD			
B1 SCD32 3.6.1 MAX CABLE TENSION: 100 LBS 30°<Φ ≤ 45° SCD38 3.6.1 SB2D38 3.7.1 SB2D39 3.7.1 THD31 3.9.1 THD32 3.9.1 THD35 3.9.1 THD35 3.9.1 THD35 3.9.1 TZ2D32 3.1.1 TZ2D34 3.1.1 TZ2D34 3.1.1 TZ2D34 3.1.1 TZ2D35 3.1.1 TZ2D36 3.1.1 SHD36 3.3.1 KHD36 3.3.1 KHD37 3.3.1 KHD36 3.3.1 KHD37 3.3.1 SCHD37 3.3.1 SCHD37 3.3.1 SCHD38 30°<Φ ≤ 45° 2KHD34 3.3.1 SD2D34 3.4.1 SD2D34 3.4.1 SD2D36 3.4.1			
MAX CABLE TENSION: 100 LBS $30^{\circ} < \Phi \le 45^{\circ}$ SCD34 $3.6.1$ SCD37 $3.6.1$ SB2D31 $3.7.1$ SB2D38 $3.7.1$ SB2D39 $3.7.1$ THD31 $3.9.1$ THD32 $3.9.1$ THD35 $3.9.1$ THD35 $3.9.1$ THD35 $3.9.1$ THD35 $3.9.1$ THD35 $3.10.1$ TZ2D32 $3.1.1$ TZ2D32 $3.1.1$ TZ2D34 $3.1.1$ TZ2D34 $3.1.1$ TZ2D35 $3.1.1$ TZ2D36 $3.1.1$ TZ2D36 $3.1.1$ TZ2D36 $3.1.1$ TZ2D36 $3.1.1$ TZ2D36 $3.1.1$ SD2D36 $3.3.1$ SD2D34 $3.3.1$ SD2D34 $3.3.1$ SD2D34 $3.4.1$ SD2D36 $3.4.1$	D 1		
TENSION: 100 LBS 30°<Φ ≤ 45° SCD37 SCD38 3.6.1 SB2D38 3.7.1 SB2D38 3.7.1 THD31 THD31 THD32 3.9.1 THD35 3.9.1 THD35 3.9.1 THD35 3.9.1 TZ2D32 TZ2D32 TZ2D32 TZ2D33 TZ2D34 TZ2D34 TZ2D35 TZ2D35 TZ2D36 SL1 TZ2D36 TZ2D36 SL1 TZ2D36 SL1 TZ2D36 TZ2			
30°<Φ ≤ 45° SCD38 3.6.1 SB2D31 3.7.1 SB2D39 3.7.1 THD31 3.9.1 THD32 3.9.1 THD35 3.9.1 2THD31 3.10.1 TZ2D32 3.1.1 TZ2D33 3.1.1 TZ2D34 3.1.1 TZ2D35 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 SCD38 KHD37 3.3.1 KHD36 3.3.1 KHD36 3.3.1 KHD37 3.3.1 KHD36 3.3.1 KHD37 3.3.1 SCD2D36 3.4.1 SD2D34 3.4.1			
SB2D31			
SB2D38 3.7.1 SB2D39 3.7.1 THD31 3.9.1 THD32 3.9.1 THD33 3.9.1 THD35 3.9.1 2THD31 3.10.1 TZ2D32 3.1.1 TZ2D32 3.1.1 TZ2D33 3.1.1 TZ2D34 3.1.1 TZ2D35 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 KHD33 3.3.1 KHD36 3.3.1 KHD37 3.3.1 KHD36 3.3.1 KHD37 3.3.1 KHD39 3.3.1 KHD39 3.3.1 SCHD31 3.3.1 SCHD31 3.3.1 SCHD31 3.3.1 SCHD32 3.3.1 SCHD34 3.3.1 SCHD34 3.3.1 SCHD34 3.3.1 SCHD34 3.3.1 SCHD35 3.4.1 SCD2D36 3.4.1	5∪ <Ψ≦ 45°		
SB2D39 3.7.1 THD31 3.9.1 THD32 3.9.1 THD33 3.9.1 THD35 3.9.1 2THD31 3.10.1 TZ2D32 3.1.1 TZ2D33 3.1.1 TZ2D34 3.1.1 TZ2D35 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 SMHD36 3.3.1 KHD37 3.3.1 KHD37 3.3.1 KHD39 3.3.1 KHD39 3.3.1 KHD39 3.3.1 SMHD39 3.3.1			
THD31 3.9.1 THD32 3.9.1 THD33 3.9.1 THD35 3.9.1 2THD31 3.10.1 TZ2D32 3.1.1 TZ2D32 3.1.1 TZ2D34 3.1.1 TZ2D35 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 KHD33 3.3.1 KHD36 3.3.1 KHD37 3.3.1 KHD37 3.3.1 KHD39 3.3.1 KHD39 3.3.1 SHD39 3.3.1 SD2D34 3.4.1 SD2D34 3.4.1			
THD32 3.9.1 THD33 3.9.1 THD35 3.9.1 THD35 3.9.1 2THD31 3.10.1 TZ2D32 3.1.1 TZ2D33 3.1.1 TZ2D34 3.1.1 TZ2D35 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 KHD33 3.3.1 KHD36 3.3.1 KHD37 3.3.1 KHD37 3.3.1 KHD39 3.3.1 KHD39 3.3.1 ZKHD31 3.3.1 SUBS 30°<Φ ≤ 45° 2KHD31 3.3.1 SD2D34 3.4.1 SD2D34 3.4.1			
THD33 3.9.1 THD35 3.9.1 2THD31 3.10.1 TZ2D32 3.1.1 TZ2D33 3.1.1 TZ2D34 3.1.1 TZ2D35 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 ENSION: 3.3.1 KHD37 3.3.1 KHD37 3.3.1 KHD39 3.3.1 KHD39 3.3.1 ZKHD31 3.3.1 SUBS 30°<Φ ≤ 45° 2KHD31 3.3.1 SD2D34 3.4.1 SD2D34 3.4.1			_
THD35 3.9.1 2THD31 3.10.1 TZ2D32 3.1.1 TZ2D33 3.1.1 TZ2D34 3.1.1 TZ2D35 3.1.1 TZ2D36 3.1.1 TZ2D36 3.1.1 KHD33 3.3.1 KHD36 3.3.1 KHD37 3.3.1 KHD37 3.3.1 KHD39 3.3.1 KHD39 3.3.1 ZKHD31 3.3.1 2KHD31 3.3.1 2KHD31 3.3.1 SD2D34 3.4.1 SD2D34 3.4.1			
$B2 \\ MAX CABLE \\ TENSION: \\ 300 LBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING DESTINATION SD2D34 SD2D36 3.4.1 SD2D36 SD2D36 $			
$B2 \\ MAX CABLE \\ TENSION: \\ 300 LBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN$			
TZ2D33 3.1.1 $TZ2D34$ 3.1.1 $TZ2D35$ 3.1.1 $TZ2D36$ 3.1.1 $TZ2D36$ 3.1.1 $TZ2D36$ 3.1.1 $TZ2D36$ 3.1.1 $TZ2D36$ 3.3.1 $TZD2D36$ 3.4.1 $TZD2D36$ 3.4.1			
$B2 \\ MAX CABLE \\ TENSION: \\ 300 LBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 300 DBS \\ 30^{\circ} < \Phi \leq 45^{\circ} \\ ENDING \\ TENSION: \\ 400 DBS \\ 40$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3.1.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		TZ2D35	3.1.1
B2 MAX CABLE TENSION: 300 LBS 30°<Φ ≤ 45° KHD36 KHD37 3.3.1 KHD39 3.3.1 2KHD31 3.3.1 2KHD32 3.3.1 2KHD32 3.3.1 SD2D33 3.4.1 SD2D34 SD2D34 3.4.1		TZ2D36	3.1.1
B2 MAX CABLE TENSION: 300 LBS 30°<Φ ≤ 45° KHD37 KHD39 3.3.1 2KHD31 3.3.1 2KHD32 3.3.1 2KHD32 3.3.1 SD2D33 3.4.1 SD2D34 SD2D34 3.4.1 SD2D36 3.4.1		KHD33	3.3.1
B2 KHD39 3.3.1 MAX CABLE TENSION: 300 LBS 30°<Φ ≤ 45°		KHD36	3.3.1
MAX CABLE TENSION: 300 LBS 30°<Φ ≤ 45° 2KHD31 3.3.1 2KHD32 3.3.1 2KHD32 3.3.1 SD2D33 3.4.1 SD2D34 3.4.1 SD2D36 3.4.1	no l	KHD37	3.3.1
TENSION: 300 LBS 30°<Φ ≤ 45° 2 KHD31 3.3.1 2 KHD32 3.3.1 2 KHD34 3.3.1 2 KHD34 3.3.1 2 KHD34 3.4.1 2 KHD34 3.4.1 2 SD2D34 3.4.1 2 SD2D36 3.4.1		KHD39	3.3.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2KHD31	3.3.1
SD2D33 3.4.1 SD2D34 3.4.1 SD2D36 3.4.1	300 LBS	2KHD32	3.3.1
SD2D34 3.4.1 SD2D36 3.4.1	30°<Φ ≤ 45°	2KHD34	3.3.1
SD2D36 3.4.1		SD2D33	3.4.1
		SD2D34	3.4.1
SCD33 3.6.1		SD2D36	3.4.1
		SCD33	3.6.1
SCD35 3.6.1		SCD35	3.6.1
SCD39 3.6.1		SCD39	3.6.1
SCD310 3.6.1		SCD310	3.6.1

Jopsi JAI	ID LVV COI	VCIVLIL
DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #
	2SCD31	3.6.1
	2SCD37	3.6.1
	SB2D32	3.7.1
	SB2D33	3.7.1
D 2	SB2D34	3.7.1
B2 MAX CABLE	SB2D35	3.7.1
TENSION:	SB2D37	3.7.1
300 LBS	2SB2D31	3.8.1
30°<Φ≤45°	THD34	3.9.1
	THD36	3.9.1
	2THD32	3.10.1
	2THD33	3.10.1
	4THD31	3.10.2
OR	TZ2D37	3.1.1
FUIT	TZ2D38	3.1.1
	2TZ2D31	3.1.1
	KHD38	3.3.1
	2KHD35	3.3.1
	4KHD313	3.3.2
B3	4KHD34	3.3.2
MAX CABLE	SD2D35	3.4.1
TENSION: 600 LBS	2SD2D31	3.4.1
30°<Φ ≤ 45°	2SD2D32	3.4.1
DATE:	07/SCD3602!	3.6.1
	2SCD32	3.6.1
	2SCD34	3.6.1
2/////////////////////////////////////	2SCD38	3.6.1
PA	SB2D36	3.7.1
TVIAD	2SB2D33	3.8.1
10	2TZ2D32	3.1.1
B4	2TZ2D33	3.1.1
MAX CABLE	2TZ2D34	3.1.1
TENSION: 900 LBS	2KHD33	3.3.1
30°<Φ≤45°	2KHD36	3.3.1
	2KHD37	3.3.1

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #
	2KHD39	3.3.1
	4KHD32	3.3.2
	2SCD33	3.6.1
B4 MAX CABLE	2SCD35	3.6.1
	4SCD31	3.6.2
	4SCD37	3.6.2
TENSION: 900 LBS	2SB2D32	3.8.1
30°<Φ ≤ 45°	2SB2D35	3.8.1
	4SB2D31	3.8.2
	2THD34	3.10.1
	4THD32	3.10.2
	4THD33	3.10.2
	4TZ2D31	3.1.2
	2SD2D33	3.4.1
	2SD2D34	3.4.1
B5	2SD2D36	3.4.1
MAX CABLE TENSION: 1200 LBS $30^{\circ} < \Phi \le 45^{\circ}$	4SD2D31	3.4.2
	2SCD39	3.6.1
	4SCD32	3.6.2
	4SCD34	3.6.2
	2SB2D34	3.8.1
O	2SB2D37	3.8.1

NOTES:

- 1. THE VALUE OF Φ IS THE ANGLE OF THE CABLE MEASURED FROM THE HORIZONTAL PLANE FOR THE ATTACHMENTS.
- 2. TO FIND Φ : Φ = 90° x, WHERE x IS THE CABLE ANGLE FROM THE VERTICAL USED FOR THE BRACING DETAILS.
- 3. MAX LOAD DOES NOT INCLUDE Ω_0 .

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

D.9.1

Date:

CABLE BRACE ATTACHMENT INDEX FOR 3" STEEL DECK WITH 3000psi SAND LW CONCRETE FILL

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #
	2TZ2D35	3.1.1
	2TZ2D36	3.1.1
	4TZ2D32	3.1.2
	4TZ2D34	3.1.2
D.C	2KHD38	3.3.1
B6 MAX CABLE	4KHD35	3.3.2
TENSION:	4SD2D32	3.4.2
1500 LBS	2SCD36	3.6.1
30°<Φ ≤ 45°	2SCD310	3.6.1
	4SCD33	3.6.2
	4SCD35	3.6.2
	4SCD38	3.6.2
	4SB2D33	3.8.2
OR	2TZ2D37	3.1.1
FUN	2TZ2D38	3.1.1
	4TZ2D33	3.1.2
	4KHD33	3.3.2
	4KHD36	3.3.2
OF	4KHD37	3.3.2
	4KHD39	3.3.2
RB7 RC	2SD2D35	3.4.1
MAX CABLE	4SD2D33	3.4.2
TENSION:	4SD2D34	3.4.2
2000 LBS 30°<Φ ≤ 45°	74SD2D36	3.4.2
	4SCD39	3.6.2
	4SCD310	3.6.2
	2SB2D36	3.8.1
	4SB2D32	3.8.2
	4SB2D34	3.8.2
B	4SB2D35	3.8.2
	4SB2D37	3.8.2
	4THD34	3.10.2

NOTES:

- THE VALUE OF Φ IS THE ANGLE OF THE CABLE MEASURED FROM THE HORIZONTAL PLANE FOR THE ATTACHMENTS.
- 7. TO FIND Φ : Φ = 90° x, WHERE x IS THE CABLE ANGLE FROM THE VERTICAL USED FOR THE BRACING DETAILS.
- 3. MAX LOAD DOES NOT INCLUDE Ω_0 .

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

D.9.2

Date:

RIGID BRACE ATTACHMENT INDEX FOR 3" STEEL DECK WITH 3000psi SAND LW CONCRETE FILL

		30
DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #
	TZ2DR31	3.1.3
	KHDR31	3.3.3
	KHDR32	3.3.3
	KHDR34	3.3.3
	KHDR35	3.3.3
	SD2DR31	3.4.3
D1	SD2DR32	3.4.3
B1 MAX BRACE	SCDR31	3.6.3
LOAD:	SCDR32	3.6.3
100 LBS	SCDR34	3.6.3
30°<Φ ≤ 45°	SCDR37	3.6.3
	SCDR38	3.6.3
	SB2DR31	3.7.2
	THDR31	3.9.2
	THDR32	3.9.2
	THDR33	3.9.2
	2THDR31	3.10.3
	TZ2DR32	3.1.3
	TZ2DR33	3.1.3
	TZ2DR34	3.1.3
	TZ2DR35	3.1.3
	KHDR33	3.3.3
	KHDR36	3.3.3
	KHDR37	3.3.3
	KHDR39	3.3.3
	2KHDR31	3.3.3
B2	2KHDR32	3.3.3
MAX BRACE	2KHDR34	3.3.3
LOAD: 300 LBS	SD2DR33	3.4.3
30°<Φ≤45°	SD2DR34	3.4.3
	SD2DR36	3.4.3
	SCDR33	3.6.3
	SCDR35	3.6.3
Ţ	SCDR39	3.6.3
	SCDR310	3.6.3
ļ	2SCDR31	3.6.3
ļ	2SCDR34	3.6.3
ļ	2SCDR37	3.6.3
ļ	SB2DR32	3.7.2

DESIGNATION	ATTACHMENT	DETAIL
DESIGNATION	TYPE	PAGE#
	SB2DR33	3.7.2
	SB2DR34	3.7.2
B2	SB2DR35	3.7.2
D∠ MAX BRACE	SB2DR37	3.7.2
LOAD	2SB2DR31	3.8.2
300 LBS	THDR34	3.9.2
30°<Φ ≤ 45°	2THDR32	3.10.3
	2THDR33	3.10.3
	4THDR31	3.10.4
	TZ2DR36	3.1.3
	TZ2DR37	3.1.3
	TZ2DR38	3.1.3
	2TZ2DR31	3.1.3
o D	KHDR38	3.3.3
FOR	2KHDR35	3.3.3
	4KHDR31	3.3.4
B3	4KHDR34	3.3.4
MAX BRACE	SD2DR35	3.4.3
600 LBS	2SD2DR31	3.4.3
30°<Φ ≤ 45°	2SD2DR32	3.4.3
	SCDR36	3.6.3
BY: Ro	y 2SCDR32	3.6.3
	2SCDR33	3.6.3
DATE	-2SCDR38	3.6.3
DAIE.	SB2DR36	3.7.2
	2SB2DR33	3.8.3
	4THDR32	3.10.4
PAUN	2TZ2DR32	3.1.3
TVIARI	2TZ2DR33	3.1.3
BI	2TZ2DR34	3.1.3
B4	2KHDR33	3.3.3
MAX BRACE	2KHDR36	3.3.3
LOAD: 900 LBS	2KHDR37	3.3.3
30°<Φ≤45°	2KHDR39	3.3.3
	4KHDR32	3.3.4
	2SCDR35	3.6.3
	4SCDR31	3.6.4

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
	4SCDR34	3.6.4
B4	4SCDR37	3.6.4
MAX BRACE	2SB2DR35	3.8.3
LOAD: 900 LBS	4SB2DR31	3.8.4
30°<Φ≤45°	2THDR34	3.10.3
	4THDR33	3.10.4
	4TZ2DR31	3.1.4
	2SD2DR33	3.4.3
	2SD2DR34	3.4.3
B5	2SD2DR36	3.4.3
MAX BRACE	4SD2DR31	3.4.4
LOAD:	4SD2DR32	3.4.4
1200 LBS 30°<Φ ≤ 45°	2SCDR39	3.6.3
	2SCDR310	3.6.3
	4SCDR32	3.6.4
	2SB2DR32	3.8.3
	2SB2DR37	3.8.3

NOTES:

- THE VALUE OF Φ IS THE ANGLE OF THE BRACE ARM MEASURED FROM THE HORIZONTAL PLANE FOR THE ATTACHMENTS.
- 2. TO FIND Φ : Φ = 90° x, WHERE x IS THE CABLE ANGLE FROM THE VERTICAL USED FOR THE BRACING DETAILS.
- 3. MAX LOAD DOES NOT INCLUDE Ω_0 .

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: A. Tremblay
California PE No. S6481

Page No.: **D.9.3**

Date:

RIGID BRACE ATTACHMENT INDEX FOR 3" STEEL DECK WITH 3000psi SAND LW CONCRETE FILL

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #
	2TZ2DR35	3.1.3
	2TZ2DR36	3.1.3
	2TZ2DR38	3.1.3
	4TZ2DR32	3.1.4
	4TZ2DR33	3.1.4
	4TZ2DR34	3.1.4
D.C	2KHDR38	3.3.3
B6 MAX BRACE	4KHDR35	3.3.4
LOAD:	4KHDR37	3.3.4
1500 LBS	2SD2DR35	3.4.3
30°<Φ ≤ 45°	2SCDR36	3.6.3
	4SCDR33	3.6.4
	4SCDR35	3.6.4
	4SCDR38	3.6.4
	2SB2DR34	3.8.3
	4SB2DR33	3.8.4
	4THDR34	3.10.4
	2TZ2DR37	3.1.3
	4TZ2DR35	3.1.4
	4KHDR33	3.3.4
	4KHDR36	3.3.4
	4KHDR38	R3.3.4
D.7	4KHDR39	3.3.4
B7 MAX BRACE	4SD2DR33	3.4.47/4
LOAD:	4SD2DR34	3.4.4
2000 LBS	4SD2DR36	3.4.4
30°<Φ ≤ 45°	4SCDR39	3.6.4
	4SCDR310	3.6.4
	2SB2DR36	3.8.3
	4SB2DR32	3.8.4
	4SB2DR35	3.8.4
	4SB2DR37	3.8.4
B8 MAX BRACE LOAD: 3200 LBS 30°<Φ≤45°	4TZ2DR36	3.1.4
	4TZ2DR37	3.1.4
	4TZ2DR38	3.1.4
	4SD2DR35	3.4.4
	4SCDR36	3.6.4
	4SB2DR34	3.8.4
	•	

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
В9	4SB2DR36	3.8.4
MAX BRACE		
LOAD: 4500 LBS		
30°<Φ ≤ 45°		

NOTES:

- THE VALUE OF Φ IS THE ANGLE OF THE BRACE ARM MEASURED FROM THE HORIZONTAL PLANE FOR THE ATTACHMENTS.
- 2. TO FIND Φ : Φ = 90° x, WHERE x IS THE BRACE ANGLE FROM THE VERTICAL USED FOR THE BRACING DETAILS.
- 3. MAX LOAD DOES NOT INCLUDE Ω_0 .

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

D.9.4

Date:

CABLE BRACE ATTACHMENT INDEX FOR 1-1/2" STEEL DECK WITH 3000psi SAND LW CONCRETE FILL

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
B1	TZ2D1.51	3.2.1
	TZ2D1.53	3.2.1
	SD2D1.51	3.5.1
MAX BRACE	SD2D1.52	3.5.1
LOAD: 100 LBS	SCD1.51	3.6.5
30°<Φ ≤ 45°	SCD1.52	3.6.5
	SCD1.53	3.6.5
	SCD1.54	3.6.5
D.O.	TZ2D1.52	3.2.1
B2 MAX CABLE	TZ2D1.54	3.2.1
TENSION:	TZ2D1.55	3.2.1
300 LBS	2TZ2D1.51	3.2.1
30°<Φ ≤ 45°	2SCD1.51	3.6.5
FOR	2TZ2D1.53	3.2.1
D3	2SD2D1.51	3.5.1
B3	2SD2D1.52	3.5.1
MAX CABLE TENSION:	2SCD1.52	3.6.5
600 LBS	O N 2SCD1.53 2	3.6.5
30°<Φ ≤ 45°	2SCD1.54	3.6.5
	4SCD1.51	3.6.6
BB4 Ro	2TZ2D1.52	3.2.1
MAX CABLE	2TZ2D1.54	3.2.1
TENSION:	4TZ2D1.51	3.2.2
900 LBS 30°<Φ ≤ 45°	-011131202	
	2TZ2D1.55	3.2.1
B5	4SD2D1.51	3.5.2
MAX CABLE TENSION:	4SCD1.52	3.6.6
1200 LBS	4SCD1.54	3.6.6
30°<Φ ≤ 45°	III DING	
B6 MAX CABLE TENSION: 1500 LBS 30°<Ф≤45°	4TZ2D1.53	3.2.2
	4SD2D1.52	3.5.2
	4SCD1.53	3.6.6
B7	4TZ2D1.52	3.2.2
MAX CABLE TENSION: 2000 LBS 30°<Ф ≤ 45°	4TZ2D1.54	3.2.2
	4TZ2D1.55	3.2.2
JU 17 2 TJ		

NOTES:

- THE VALUE OF
 Φ IS THE ANGLE OF THE
 CABLE MEASURED FROM THE
 HORIZONTAL PLANE FOR THE
 ATTACHMENTS.
- 2. TO FIND Φ : Φ = 90° x, WHERE x IS THE CABLE ANGLE FROM THE VERTICAL USED FOR THE BRACING DETAILS.
- 3. MAX LOAD DOES NOT INCLUDE Ω_0 .

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

D.10.1

Date:

RIGID BRACE ATTACHMENT INDEX FOR 1-1/2" STEEL DECK WITH 3000psi SAND LW CONCRETE FILL

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
	TZ2DR1.51	3.2.3
	TZ2DR1.53	3.2.3
B1	SD2DR1.51	3.5.3
MAX BRACE	SD2DR1.52	3.5.3
LOAD: 100 LBS	SCDR1.51	3.6.7
100 Lb3 30°<Φ≤45°	2SCDR1.51	3.6.7
	2SCDR1.52	3.6.7
	2SCDR1.54	3.6.7
	TZ2DR1.52	3.2.3
	TZ2DR1.54	3.2.3
B2	TZ2DR1.55	3.2.3
MAX BRACE	2TZ2DR1.51	3.2.3
LOAD: 300 LBS	2SD2DR1.51	3.5.3
30°<Φ ≤ 45°	2SCDR1.51	3.6.7
	2SCDR1.52	3.6.7
	2SCDR1.54	3.6.7
	2TZ2DR1.52	3.2.3
B3 MAX BRACE	2TZ2DR1.53	3.2.3
LOAD:	2SD2DR1.52	3.5.3
600 LBS	2SCDR1.53	3.6.7
30°<Φ ≤ 45°	4SCDR1.51	3.6.8
B4	4TZ2DR1.51	3.2.4
MAX BRACE	4SD2DR1.51	3.5.4
LOAD 900 LBS	4SCDR1.52	3.6.8
30°<Φ ≤ 45°	4SCDR1.54	3.6.8
	2TZ2DR1.54	3.2.3
B5 MAX BRACE	2TZ2DR1.55	3.2.3
LOAD:	4SD2DR1.52	3.5.4
1200 LBS	III DING	
30°<Φ ≤ 45°		
В6	4TZ2DR1.52	3.2.4
MAX BRACE	4TZ2DR1.53	3.2.4
LOAD: 1500 LBS	4TZ2DR1.54	3.2.4
1300 LB3 30°<Φ ≤ 45°	4SCDR1.53	3.6.8
B7	4TZ2DR1.55	3.2.4
MAX BRACE		
LOAD: 2000 LBS		
2000 LB3 30°<Φ ≤ 45°		

NOTES:

- THE VALUE OF Φ IS THE ANGLE OF THE BRACE ARM MEASURED FROM THE HORIZONTAL PLANE FOR THE ATTACHMENTS.
- 2. TO FIND Φ : Φ = 90° x, WHERE x IS THE CABLE ANGLE FROM THE VERTICAL USED FOR THE BRACING DETAILS.
- 3. MAX LOAD DOES NOT INCLUDE Ω_0 .

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

D.10.2

Date:

CABLE BRACE ATTACHMENT INDEX FOR MIN. 3000psi NW REINFORCED CONCRETE

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #
B1 MAX CABLE TENSION: 100 LBS	KHRC1	3.13.1
	KHRC4	3.13.1
	SCRC1	3.17.1
	SCRC2	3.17.1
	SCRC4	3.17.1
30°<Φ ≤ 45°	SB2RC1	3.19.1
	THRC1	3.21.1
	TZ2RC1	3.11.1
	TZ2RC2	3.11.1
	TZ2RC3	3.11.1
	TZ2RC4	3.11.1
	KHRC2	3.13.1
	KHRC3	3.13.1
	KHRC5	3.13.1
	KHRC7	3.13.1
B2	2KHRC1	3.14.1
MAX CABLE	SD2RC1	3.15.1
TENSION: 300 LBS	SD2RC2	3.15.1
30°<Φ ≤ 45°	SCRC3	3.17.1
	SCRC5	3.1 <mark>7.1</mark>
	SCRC8	3.17.1
	2SCRC1	3. <mark>18.1</mark>
	SB2RC2	3. <mark>19.1</mark>
	SB2RC3	3. <mark>19.1</mark>
	THRC2	3.21.1
	THRC3	3.21.1
	THRC5	3.21.1
	TZ2RC5	3.11.1
	KHRC6	3.13.1
	KHRC9	3.13.1
	2KHRC2	3.14.1
	2KHRC4	3.14.1
В3	SD2RC3	3.15.1
MAX CABLE TENSION: 600 LBS 30°<Φ ≤ 45°	SD2RC4	3.15.1
	SCRC6	3.17.1
	SCRC7	3.17.1
	SCRC9	3.17.1
	SCRC10	3.17.1
	2SCRC2	3.18.1
	2SCRC4	3.18.1
	SB2RC4	3.19.1

KLINI OKCLO CONCKLIL		
DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
В3	SB2RC5	3.19.1
MAX CABLE	2SB2RC1	3.20.1
TENSION: 600 LBS	THRC4	3.21.1
30°<Φ≤45°	2THRC1	3.22.1
30 14 = 13	TZ2RC6	3.11.1
	TZ2RC7	3.11.1
	KHRC8	3.13.1
	SD2RC5	3.15.1
В4	SD2RC6	3.15.1
MAX CABLE	2SD2RC1	3.16.1
TENSION: 900 LBS	2SCRC7	3.18.1
900 LB3 30°<Φ≤45°	SB2RC6	3.19.1
	SB2RC7	3.19.1
	2SB2RC2	3.20.1
EOR	THRC6	3.21.1
OF	THRC7	3.22.1
	TZ2RC8	3.11.1
	TZ2RC9	3.11.1
	2TZ2RC1	3.12.1
	KHRC10	3.13.1
	2KHRC3	3.14.1
BY: Ro	∨ L2KHRC5	3.14.1
B5	2KHRC7	3.14.1
MAX CABLE	SD2RC7	3.15.1
TENSION: 1200 LBS	2SD2RC2	3.16.1
30°<Φ ≤ 45°	2SCRC3	3.18.1
	2SCRC5	3.18.1
20 MININ	SB2RC8	3.19.1
VIA	2SB2RC3	3.20.1
PNIA BU	ITI THRC8	3.21.1
	2THRC2	3.22.1
	2THRC3	3.22.1

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
B6 MAX CABLE TENSION: 1500 LBS $30^{\circ} < \Phi \le 45^{\circ}$	2TZ2RC2	3.12.1
	2TZ2RC4	3.12.1
	2KHRC9	3.14.1
	2SCRC8	3.18.1
	2THRC4	3.22.1
	2THRC5	3.22.1
	2TZ2RC3	3.12.1
	2KHRC6	3.14.1
	2KHRC8	3.14.1
	2SD2RC3	3.16.1
	2SD2RC4	3.16.1
В7	2SD2RC5	3.16.1
MAX CABLE	2SD2RC6	3.16.1
TENSION: 2000 LBS	2SCRC6	3.18.1
2000 LB3 30°<Φ ≤ 45°	2SCRC9	3.18.1
	2SCRC10	3.18.1
	2SB2RC4	3.20.1
	2SB2RC5	3.20.1
	2SB2RC7	3.20.1
	2THRC6	3.22.1
	2TZ2RC5	3.12.1
	2TZ2RC7	3.12.1
B8	2KHRC10	3.14.1
MAX CABLE	2SD2RC7	3.16.1
TENSION: 3200 LBS	2SB2RC6	3.20.1
30°<Φ ≤ 45°	2SB2RC8	3.20.1
	2THRC7	3.22.1
	2THRC8	3.22.1
B9 MAX CABLE TENSION: 4500 LBS	2TZ2RC6	3.12.1
	2TZ2RC8	3.12.1
	2TZ2RC9	3.12.1
30°<Φ≤45°		

NOTES:

- THE VALUE OF Φ IS THE ANGLE OF THE CABLE MEASURED FROM THE HORIZONTAL PLANE FOR THE ATTACHMENTS.
- 2. TO FIND Φ : Φ = 90° x, WHERE x IS THE CABLE ANGLE FROM THE VERTICAL USED FOR THE BRACING DETAILS.
- 3. MAX LOAD DOES NOT INCLUDE Ω_0 .

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

D.11.1

Date:

RIGID BRACE ATTACHMENT INDEX FOR MIN. 3000psi NW REINFORCED CONCRETE

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
D1	KHRCR1	3.13.2
B1 MAX BRACE	KHRCR4	3.13.2
LOAD:	SCRCR1	3.17.2
100 LBS	SCRCR4	3.17.2
30°<Φ ≤ 45°	SB2RCR1	3.19.2
	TZ2RCR1	3.11.2
	TZ2RCR2	3.11.2
	TZ2RCR3	3.11.2
	TZ2RCR4	3.11.2
	KHRCR2	3.13.2
	KHRCR3	3.13.2
	KHRCR5	3.13.2
D.O.	KHRCR7	3.13.2
B2	2KHRCR1	3.14.2
MAX BRACE LOAD:	SD2RCR1	3.15.2
300 LBS	SD2RCR2	3.15.2
30°<Φ ≤ 45°	SCRCR2	3.17.2
	SCRCR3	3.17.2
	SCRCR5	3.17.2
	SCRCR7	3.17.2
	SCRCR8	3.17.2
	2SCRCR1	3.18.2
	SB2RCR2	3.19.2
	SB2RCR3	3.19.2
	THRCR1	3.21.2
	THRCR2	3.21.2
	THRCR3	3.21.2
	2TZ2RCR1	3.12.2
	KHRCR6	3.13.2
	KHRCR9	3.13.2
	2KHRCR2	3.14.2
В3	2KHRCR4	3.14.2
MAX BRACE	SD2RCR3	3.15.2
LOAD: 600 LBS	SD2RCR4	3.15.2
600 LBS 30°<Φ≤45°	SCRCR6	3.17.2
	SCRCR9	3.17.2
	SCRCR10	3.17.2
	2SCRCR2	3.18.2
	2SCRCR4	3.18.2

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
	SB2RCR4	3.19.2
В3	SB2RCR5	3.19.2
MAX BRACE	2SB2RCR1	3.20.2
LOAD: 600 LBS	THRCR4	3.21.2
30°<Φ≤45°	THRCR5	3.21.2
	2THRCR1	3.22.2
	TZRCR5	3.11.2
	TZRCR6	3.11.2
	2TZ2RCR2	3.12.2
	KHRCR8	3.13.2
	2KHRCR5	3.14.2
	SD2RCR6	3.15.2
В4	2SD2RCR1	3.16.2
MAX BRACE	2SD2RCR2	3.16.2
LOAD: 900 LBS	2SCRCR5	3.18.2
30°<Φ ≤ 45°	2SCRCR7	3.18.2
75-111	SB2RCR7	3.19.2
	SB2RCR9	3.19.2
	2SB2RCR2	3.20.2
	THRCR6	3.21.2
	2THRCR2	3.22.2
BY: Ro	V 2THRCR3	3.22.2
	TZ2RCR7	3.11.2
	TZ2RCR8	3.11.2
DAIE:	TZ2RCR9	3.11.2
	2TZ2RCR3	3.12.2
	2TZ2RCR4	3.12.2
	KHRCR10	3.13.2
TVI	2KHRCR3	3.14.2
A BI	2KHRCR7	3.14.2
B5 MAX BRACE	SD2RCR5	3.15.2
MAX BRACE LOAD:	SD2RCR7	3.15.2
1200 LBS	2SCRCR3	3.18.2
30°<Φ ≤ 45°	2SCRCR8	3.18.2
	SB2RCR6	3.19.2
	SB2RCR8	3.19.2
	SB2RCR10	3.19.2
	2SB2RCR3	3.20.2
	THRCR7	3.21.2
	THRCR8	3.21.2
	2THRCR5	3.22.2

	DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
		2KHRCR6	3.14.2
	D.C.	2KHRCR9	3.14.2
	B6 MAX BRACE	2SD2RCR3	3.16.2
	LOAD:	2SCRCR9	3.18.2
	1500 LBS	2SB2RCR4	3.20.2
	30°<Φ ≤ 45°	2SB2RCR5	3.20.2
		2THRCR4	3.22.2
-			
		2TZ2RCR5	3.12.2
		2TZ2RCR6	3.12.2
		2TZ2RCR7	3.12.2
		2TZ2RCR8	3.12.2
		2KHRCR8	3.14.2
	В7	2KHRCR10	3.14.2
	MAX BRACE LOAD:	2SD2RCR4	3.16.2
	2000 LBS	2SD2RCR5	3.16.2
4	30°<Φ ≤ 45°	2SD2RCR6	3.16.2
	m	2SCRCR6	3.18.2
		2SCRCR10	3.18.2
	0	2SB2RCR6	3.20.2
		2SB2RCR7	3.20.2
		2SB2RCR9	3.20.2
1	\	2THRCR6	3.22.2
	S /	2THRCR7	3.22.2
Y	B8	2TZ2RCR9	3.12.2
	MAX BRACE	2SD2RCR7	3.16.2
	LOAD: 3200 LBS	2SB2RCR8	3.20.2
	30°<Φ ≤ 45°	2THRCR8	3.22.2
	B9	2SB2RCR10	3.20.2
	MAX BRACE		
	LOAD: 4500 LBS		
	30°<Φ≤45°		
	NOTES:		

- THE VALUE OF Φ IS THE ANGLE OF THE BRACE ARM MEASURED FROM THE HORIZONTAL PLANE FOR THE ATTACHMENTS.
- TO FIND Φ : $\Phi = 90^{\circ} x$, WHERE x IS THE CABLE ANGLE FROM THE VERTICAL USED FOR THE BRACING DETAILS.

MAX LOAD DOES NOT INCLUDE Ω_0 .

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481

Page No.:

D.11.2

Date:

CABLE BRACE ATTACHMENT INDEX FOR WOOD, STEEL, & CAST-IN-PLACE

TO MIN. 20GA BARE STEEL DECKING

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
B2	BD1	3.23.1
MAX CABLE		
TENSION: 300 LBS		
30°<Φ ≤ 45°		
В3	BD2	3.23.1
MAX CABLE		
TENSION: 600 LBS		
30°<Φ ≤ 45°		
B4	BD3	3.23.1
MAX CABLE		
TENSION: 900 LBS		
30°<Φ ≤ 45°		

TO STRUCTURAL STEEL **FRAMING**

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
В6	SS1	3.24.1
MAX CABLE		-0
TENSION: 1500 LBS		
30°<Φ ≤ 45°		-
B7	SS2	3.24.1
MAX CABLE		\
TENSION: 2000 LBS		
30°<Φ ≤ 45°		

NOTES:

- THE VALUE OF Φ IS THE ANGLE OF THE CABLE MEASURED FROM THE HORIZONTAL PLANE FOR THE ATTACHMENTS.
- TO FIND Φ : $\Phi = 90^{\circ} x$, WHERE x IS THE CABLE ANGLE FROM THE VERTICAL USED FOR THE BRACING DETAILS.
- 3. MAX LOAD DOES NOT INCLUDE Ω_0 FOR CONCRETE ATTACHMENTS.

WITH LAG BOLTS

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #
B2	LBW1	3.25.1
MAX CABLE		
TENSION: 300 LBS		
30°<Φ≤45°		
В3	LBW2	3.25.1
MAX CABLE	2LBW1	3.25.1
TENSION: 600 LBS		
30°<Φ≤45°		
B4	LBW3	3.25.1
MAX CABLE		
TENSION: 900 LBS	7000	
30°<Φ ≤ 45°	CODE	
B5	LBW4	3.25.1
MAX CABLE	2LBW2	3.25.1
TENSION: 1200 LBS		
30°<Φ≤45°		
B6	2LBW3	3.25.1
MAX CABLE		
TENSION: 1500 LBS	y Lobe	(((((
30°<Φ ≤ 45°	8888888 -	
B7	_2LBW4	3.25.1
MAX CABLE	07/19/202) <u></u>
TENSION: 2000 LBS		BARE BAY
30°<Φ≤45°		

TO WOOD MEMBERS/BLOCKING TO WOOD MEMBERS/BLOCKING WITH THRU BOLTS

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #
В3	TBW1	3.26.1
MAX CABLE	TBW2	3.26.1
TENSION: 600 LBS	TBW3	3.26.1
30°<Φ ≤ 45°		
B5	2TBW1	3.26.1
MAX CABLE	2TBW2	
TENSION: 1200 LBS		
30°<Φ ≤ 45°		
В6	2TBW3	3.26.1
MAX CABLE		
TENSION: 1500 LBS		
30°<Φ ≤ 45°		

CAST-IN-PLACE FOR NORMAL **REINFORCED & PT CONCRETE SLAB & MEMBERS**

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#	
B2	CIP1	3.27.1	
MAX CABLE			
TENSION: 300 LBS			
30°<Φ ≤ 45°			
B3	CIP2	3.27.1	
MAX CABLE			
TENSION: 600 LBS			
30°<Φ ≤ 45°			
B6	CIP3	3.27.1	
MAX CABLE	-	-	
TENSION: 1500 LBS	-	-	
30°<Φ ≤ 45°	-	1	
B7	CIP4	3.27.1	
MAX CABLE	CIP5	3.27.1	
TENSION: 2000 LBS			
30°<Φ ≤ 45°			

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

D.12.1

Date:

BRACE ATTACHMENT INDEX FOR WOOD, STEEL, & CAST-IN-PLACE

TO MIN. 20GA BARE STEEL DECKING

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
B2	BDR1	3.23.2
MAX BRACE	BDR4 ⁴	3.23.3
LOAD: 300 LBS		
30°<Φ ≤ 45°		
В3	BDR2	3.23.2
MAX BRACE	BDR5 ⁴	3.23.3
LOAD: 600 LBS		
30°<Φ ≤ 45°		
B4	BDR3	3.23.2
MAX BRACE	BDR6 ⁴	3.23.3
LOAD: 900 LBS		
30°<Φ ≤ 45°		

TO STRUCTURAL STEEL **FRAMING**

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
B6	SSR1	3.24.2
MAX BRACE		-0
LOAD: 1500 LBS		
30°<Φ ≤ 45°		
B8	SSR2	3.24.2
MAX BRACE		
LOAD: 3200 LBS		
30°<Φ ≤ 45°		
B9	SSR3	3.24.2
MAX BRACE	SSR5 ⁴	3.24.3
LOAD: 4500 LBS	SSR6 ⁴	3.24.3
30°<Φ ≤ 45°		

TO WOOD MEMBERS/BLOCKING TO WOOD MEMBERS/BLOCKING WITH LAG BOLTS

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
B2	LBWR1	3.25.2
MAX BRACE		
LOAD: 300 LBS		
30°<Φ≤45°		
В3	LBWR2	3.25.2
MAX BRACE	2LBWR1	3.25.2
LOAD: 600 LBS		
30°<Φ≤45°		
B4	LBWR3	3.25.2
MAX BRACE	2LBWR2	3.25.2
LOAD: 900 LBS		
30°<Φ ≤ 45°	CODE	0
B5	LBWR4	3.25.2
MAX BRACE	2LBWR2	3.25.2
LOAD: 1200 LBS		////// <u>-</u> -
30°<Φ ≤ 45°		
B6	2LBWR3	3.25.2
MAX BRACE		
LOAD:	ov Lobe	((((
1500 LBS 30°<Φ ≤ 45°	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
B7	_2LBWR4	3.25.2
MAX BRACE	07719/202	5
LOAD:		HHHH
2000 LBS 30°<Φ ≤ 45°		KKN TV

- 1. THE VALUE OF Φ IS THE ANGLE OF THE BRACE ARM MEASURED FROM THE HORIZONTAL PLANE FOR THE ATTACHMENTS.
- TO FIND Φ : $\Phi = 90^{\circ}$ x, WHERE x IS THE BRACE ANGLE FROM THE VERTICAL USED FOR THE BRACING DETAILS.
- 3. MAX LOAD DOES NOT INCLUDE Ω_0 FOR CONCRETE ATTACHMENTS.
- ATTACHMENT DESIGNATIONS FOR HSLH-1 ANCHOR BRACKET (1/8" & 1" ROD OR BOLT).

WITH THRU BOLTS

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
В3	TBWR1	3.26.2
MAX BRACE	TBWR2	3.26.2
LOAD: 600 LBS		
30°<Φ ≤ 45°		
B4	TBWR3	3.26.2
MAX BRACE	TBWR4	3.26.2
LOAD: 900 LBS	TBWR5	3.26.2
30°<Φ ≤ 45°		-
B6	2TBWR1	3.26.2
MAX BRACE	2TBWR2	3.26.2
LOAD: 1500 LBS		-
30°<Φ ≤ 45°		1
B7	2TBWR3	3.26.2
MAX BRACE		
LOAD: 2000 LBS		
30°<Φ ≤ 45°		

CAST-IN-PLACE FOR NORMAL **REINFORCED & PT CONCRETE SLAB & MEMBERS**

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #		
V B4	CIPR1	3.27.2		
MAX BRACE	CIPR2	3.27.2		
LOAD: 600 LBS				
30°<Φ ≤ 45°				
B6	CIPR3	3.27.2		
MAX BRACE				
LOAD: 1500 LBS				
30°<Φ ≤ 45°				
В7	CIPR4	3.27.2		
MAX BRACE	CIPR5	3.27.2		
LOAD: 2000 LBS				
30°<Φ ≤ 45°				
B8	CIPR6	3.27.2		
MAX BRACE	CIPR7	3.27.2		
LOAD: 3200 LBS				
30°<Φ ≤ 45°				

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay California PE No. S6481 Page No.:

D.12.2

Date:

PRMXA-1C HANGER ATTACHMENT INDEX FOR ALL CONDITIONS

TO 3" STEEL DECK WITH MIN. 3000psi SAND LW CONCRETE FILL

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #
H2	HDE32	3.28
MAX LOAD:	HDE33	3.28
700 LBS		
H3 MAX LOAD: 1000 LBS	HDE31	3.28
	2HDE31	3.28
	2HDE32	3.28
	2HDE33	3.28
	2HDS31	3.30
	2HDS32	3.30
	2HDS33	3.30

^{*}MAX LOAD DOES NOT INCLUDE Ω_0 .

TO 1.5" STEEL DECK WITH MIN. 3000psi SAND LW CONCRETE FILL

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #
H2 MAX LOAD: 700 LBS	HDE1.51	3.29
	HDE1.52	3.29
		3 Y : _ KO
Н3	2HDE1.51	3.29
MAX LOAD: 1000 LBS	2HDE1.52	∆3.29 •
	F	

^{*}MAX LOAD DOES NOT INCLUDE Ω_0 .

TO NORMAL REINFORCED CONC. SLAB OR MEMBER

		5 101
DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #
H2 MAX LOAD: 700 LBS	HRCS31	3.30
	HRCS32	3.30
	HRCS33	3.30
Н3	HRCE31	3.31
MAX LOAD: 1000 LBS	HRCE32	3.31
	HRCE33	3.31

^{*}MAX LOAD DOES NOT INCLUDE Ω_0 .

TO PT CONCRETE SLAB OR MEMBER

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
Н3	HCIP1	3.31
MAX LOAD:		
1000 LBS		

^{*}MAX LOAD DOES NOT INCLUDE Ω_0 .

TO MIN. 20GA BARE STEEL DECKING

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
H1	HBD1	3.32
MAX LOAD:		
350 LBS		

TO STRUCTURAL STEEL FRAMING

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #
H3	HSS1	3.32
MAX LOAD:		
1000 LBS		

TO WOOD MEMBERS/BLOCKING WITH LAG BOLTS

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #
H3	HSW1	3.32
MAX LOAD:		
1000 LBS		

TO WOOD MEMBERS/BLOCKING WITH THRU-BOLTS

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
H1	HTW1	3.32
MAX LOAD:		
350 LBS		

M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: 7. Tremblay
California PE No. S6481

Page No.:

D.13.1

Date:

ROD ATTACHMENT INDEX FOR 3" & 1-1/2" STEEL DECK WITH 3000psi SAND LW CONCRETE FILL

TO 3" STEEL DECK WITH MIN. 3000psi SAND LW CONCRETE FILL

TO 1.5" STEEL DECK WITH MIN. 3000psi SAND LW CONCRETE FILL

3000psi 3Ai			_		IND LVV COINC	
DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #		DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #
	RDS31	3.37	3.37	R1	RDS1.51	3.37
R1	RDS32	3.37		MAX LOAD:	RKCM1.51	3.34
MAX LOAD: 1	RDS33	3.37		300 LBS	RKCM1.52	3.34
300 253	RDE37	3.33			RKCM1.53	3.34
	RKCM31	3.38		R2	RDE1.52	3.34
[RDE32	3.33		MAX LOAD:	RDE1.54	3.34
R2	RDE33	3.33		600 LBS	RDE1.55	3.34
MAX LOAD: 600 LBS	RDE34	3.33		R3	RDE1.51	3.34
	RDE35	3.33	OD	MAX LOAD:	RDE1.53	3.34
	RDE38	3.33	AVAVAVOORY	1000 LBS		
	RKCM32	3.38		R6	2RDE1.51	3.34
R3	RKCM33	3.38		MAX LOAD:	4RDE1.52	3.34.1
MAX LOAD: 1000 LBS	RKCM34	3.38		2500 LBS	7/	
[RDE31	3.33	1_02	03 R7	4RDE1.51	3.34.1
	RDE39	3.33	VI-02	MAX LOAD:	7	
R4	RDE36	3.33		3000 LBS	-	
MAX LOAD:		Y: Roy	Lobo			
1500 LBS	/ /////	V44445				
	2RDE31	3.33	7/19/	2025		
R7	2RDE32	3.33	11101	2020		
MAX LOAD: 1	2RDE33	3.33	+ 11		0'	
3000 233	1		11 19		/ /	
R8	4RDE31	3.33.1		NG CODY		
MAX LOAD: 4RDE32 3.33.1						
7500 LBS	4RDE33	3.33.1	IDI	NIG		

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

D.14.1

Date:

ROD ATTACHMENT INDEX FOR NORMAL REINFORCED AND POST-TENSIONED CONCRETE SLAB & MEMBERS

POST INSTALLED TO NORMAL REINFORCED CONCRETE SLAB/MEMBER

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
R1	RRCS2	3.37
MAX LOAD:		
300 LBS		
	RRCE10	3.35
R2	RRCS1	3.37
MAX LOAD: 600 LBS	RRCS3	3.37
300 200		
	RRCE5	3.35
R3	RRCE6	3.35
MAX LOAD:	2RRCE9	3.35.1
1000 LBS	(-)	
	-7	-N V
R4	RRCE1	3.35
MAX LOAD:	RRCE2	3.35
1500 LBS	RRCE11	3.35
R5	RRCE12	3.35
MAX LOAD:	2RRCE1	3.35.1
2000 LBS	2RRCE11	3.35.1
	RRCE7	A 3.35
R6	RRCE9	3.35
MAX LOAD: 2500 LBS	RRCE13	3.35
2300 LB3	2RRCE5	3.35.1
	RRCE3	3.35
	RRCE4	3.35
	RRCE8	3.35
R7	2RRCE2	3.35.1
MAX LOAD:	2RRCE3	3.35.1
3000 LBS	2RRCE6	3.35.1
	2RRCE7	3.35.1
	2RRCE10	3.35.1
_	2RRCE4	3.35.1
R8	2RRCE8	3.35.1
MAX LOAD: 7500 LBS	2RRCE12	3.35.1
	2RRCE13	3.35.1

CAST-IN-PLACE TO NORMAL & POST-TENSIONED CONCRETE SLAB/MEMBER

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #
R2	RKCMRC1	3.38.1
MAX LOAD:		
600 LBS		
R4	RKCMRC2	3.38.1
MAX LOAD:		
1500 LBS		
R5	RKCMRC3	3.38.1
MAX LOAD:		
2000 LBS		1
R6	RCIP1	3.38.1
MAX LOAD:		
2500 LBS		
R7	RCIP2	3.35
MAX LOAD:	RCIP3	3.35
3000 LBS	RKCMRC4	3.38.1
R8	RCIP4	3.35
MAX LOAD:	RCIP5	3.35
7500 LBS	-	
202Æ9	RCIP6	3.35
MAX LOAD:	7 \ /	
12500 LBS	9/-	

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

D.15.1

Date:

ROD ATTACHMENT INDEX FOR WOOD, STEEL, & CAST-IN-PLACE

TO MIN. 20GA BARE STEEL DECKING

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #
R2	RBD1	3.36
MAX LOAD:		
600 LBS		

TO STRUCTURAL STEEL FRAMING

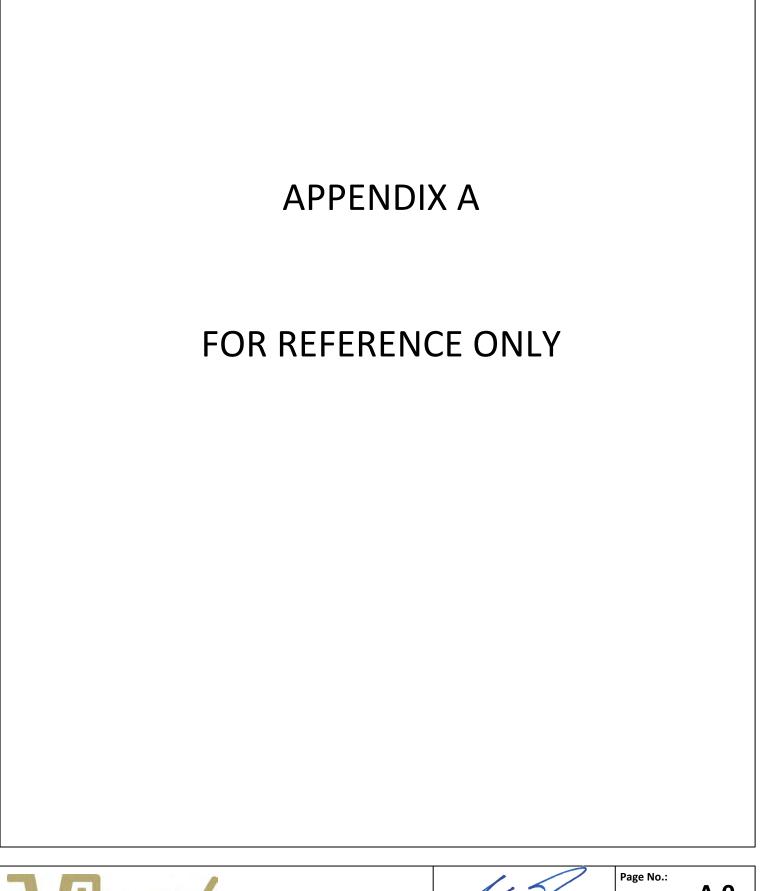
DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#	
R5	RSS1	3.36	
MAX LOAD:			
2000 LBS			
RPR	RSS2	3.36	
MAX LOAD:	RSS3	3.36	
3000 LBS			
		W-7	
R8	RSS4	3.36	
MAX LOAD:	VI-URSS5	3.36	
7500 LBS			
R\R10Rov	l ob RSS6	3.36	
MAX LOAD: 12500 LBS			
DATE:	07/19/2025		

TO WOOD MEMBERS/BLOCKING WITH LAG BOLTS

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE #
R250	RSW1	3.36
MAX LOAD:		
600 LBS		

TO WOOD MEMBERS/BLOCKING WITH THRU-BOLTS

DESIGNATION	ATTACHMENT TYPE	DETAIL PAGE#
R1	RTW1	3.36
MAX LOAD: 300 LBS		


M.W. Saussé & Co., Inc.

28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: A. Tremblay
California PE No. S6481

Page No.:

D.16.1

Date:

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay
California PE No. S6481

A.0

Date:

Unit Conversion Chart

Convert From	То	Multiply By
Angle		
degree	radian (rad)	0.017453
radian	degree (°)	57.29578
<u>Area</u>		
sq. feet (ft ²)	sq. meter (m ²)	0.092903
sq. inch (in²)	sq. meter (m ²)	0.000645
sq. centimeter (cm²)	sq. inch (in²)	0.001077
sq. meter (m²)	sq. feet (ft²)	10.7639
sq. meter (m²)	sq. inch (in²)	1550
<u>Temperature</u>		
degree Fahrenheit (°F)	degree Celsius (°C)	t°C = (t°F-32)/1.8
degree Celsius (°C)	degree Fahrenheit (°F)	t°F = 1.8t°C+32
Kelvin (K)	degree Celsius (°C)	t°C = t°K+273.15
<u>Force</u>		
Pound-force	Newton (N)	4.4482
Kip (1000 lbs)	kilo Newton (kN)	4.4482
pound-foot (lb-ft)	Newton-meter (N-m)	1.355818
<u>Length</u>		
foot (ft)	meter (m)	0.3048
inch (in)	centimeter (cm)	2.54
mil	inch (in)	0.001
meter (m)	foot (ft)	3.28084
centimeter (cm)	inch (in)	0.393701
micrometer (µm)	inch (in)	3.93701e-5
<u>Volume</u>		
cubic foot (ft³)	cubic meter (m³)	0.02832
cubic inch (in³)	cubic centimeter (cm³)	16.3871
cubic centimeter (cm³)	cubic inch (in³)	0.061024
cubic meter (m³)	cubic foot (m³)	35.3147
gallon (US Liquid)	cubic foot (ft³)	0.13368
Liter (L)	gallon (US Liquid)	0.26417
Liter (L)	cubic foot (ft³)	0.035315

7	ibi	rex
	vibration & seisr	nic control systems

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

A.1

Date:

Unit Conversion Chart (continued)

Convert From	То	Multiply By
Mass		
pound (lb)	Kilogram (kg)	0.45359
Kilogram (kg)	pound (lb)	2.20462
Mass/Length		
lb/ft	kg/m	1.48816
lb/in	kg/m	17.85797
kg/m	lb/ft	0.671969
kg/m	lb/in	0.055997
Mass/Volume		
lb/ft ³	kg/m ³	16.0185
lb/in ³	kg/m ³	2767.99
kg/m ³	lb/ft ³	0.062478
kg/m ³	lb/in ³	0.000036127
lb/ft ³	lb/in ³	1728.0
Mass/Area or Pressure		
pascal (Pa)	lbs/sq. inch (psi)	0.000145
kilopascal (kPa)	lbs/sq. inch (psi)	0.145038
megapascal (MPa)	kips/sq. inch (ksi)	0.145038
lb/ft ²	kg/m ²	0.204816
kg/m ²	lb/ft ²	4.882427
lb/in (psi)	lb/ft ²	144
kip/in (ksi)	MPa	6.894759

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: N. Tremblay

California PE No. S6481

Page No.:

A.2

Date:

Pipe, Duct, & Cable Tray Weights

					1		
	STEEL PIPE						
PIPE	PIPE		Weight p	per Foot (lbs)			
DIA.	SCH.	Steel	Water	1½" Insul. ²	Total		
1"	40	1.68	0.375	0.61	2.67		
1¼"	40	2.27	0.648	0.68	3.61		
1½"	40	2.72	0.882	0.74	4.34		
2"	40	3.65	1.454	0.84	5.95		
2½"	40	5.80	2.075	0.95	8.82		
3"	40	7.58	3.203	1.08	11.87		
3½"	40	9.12	4.284	1.19	14.59		
4"	40	10.80	5.516	1.30	17.62		
5"	40	14.63	8.669	1.53	24.83		
6"	40	18.99	12.52	1.76	33.27		
8"	40	28.58	21.68	2.19	52.45		
10"	40	40.52	34.17	2.65	77.35		
12"	¹ STD	49.61	49.01	3.09	101.7		
14"	¹ STD	54.62	58.69	3.36	117.7		
16"	¹ STD	62.64	77.79	3.79	145.6		
18"	¹ STD	70.66	99.58	4.23	176.2		
20"	¹ STD	78.67	126.1	4.66	209.4		
22"	¹ STD	86.69	153.7	5.09	245.5		
24"	¹ STD	94.71	184.0	5.53	284.2		

COPPER PIPE						
PIPE	TYPE	V	Veight per	Foot (lbs)		
DIA.		Copper	Water	1½"	Total	
				Insul. ²		
1/2"	L	0.285	0.101	0.46	0.85	
3/4"	L	0.456	0.210	0.51	1.18	
1"	L	0.656	0.358	0.57	1.58	
1¼"	L	0.885	0.545	0.62	2.05	
1½"	L	1.145	0.771	0.68	2.59	
2"	L	1.754	1.341	0.79	3.88	
2½"	L	2.483	2.068	0.89	5.44	
3"	L	3.331	2.952	1.00	7.29	
3½"	L	4.299	3.992	1.11	9.4	
4"	L	5.576	5.169	1.22	11.96	
5"	L	7.622	8.088	1.44	17.15	
6"	L	10.22	11.627	1.65	23.50	

PIPE NOTES:

- 1. STD. designation means the wall thickness for 12" pipe and larger is 0.375".
- 2. Insulation weight per foot varies greatly depending on the type used. Insulation density used for the above table is 6.622 lb/ft³.

ROUND DUCT WEIGHT							
DUCT	1 ½"					Cross	
DIA.	INSUL ¹		Weight in lb/ft per Gage				
DIA.	INJOL	26	24	22	20	Section Area, ft ²	
24"	0.63	4.8	6.4	8.0	9.6	3.1	
26"	0.63	5.2	6.9	8.7	10.4	3.7	
28"	0.67	5.6	7.5	9.4	11.2	4.3	
30"	0.72	6.0	8.0	10.0	12.0	4.5	
32"	0.82	6.4	8.6	10.7	12.8	5.6	
34"	0.82	6.8	9.1	11.4	13.6	6.3	
36"	0.92	7.2	9.6	12.0	14.4	7.1	
38"	0.97	7.6	10.2	12.7	15.2	7.9	
40"	1.02	8.0	10.7	13.4	16.0	8.7	
42"	1.07	8.4	11.2	14.1	16.8	9.6	
44"	1.12	8.8	11.8	14.7	17.6	10.6	
46"	1.17	9.2	12.3	15.4	18.4	11.5	
48"	1.21	9.6	12.8	16.1	19.2	12.6	
50"	1.26	10.0	13.4	16.7	20.0	13.6	
52"	1.31	10.5	13.9	17.4	20.8	14.7	
54"	1.36	10.9	14.4	18.1	21.6	15.9	
56"	1.41	11.3	15.05	18.7	22.4	17.1	
58"	1.46	11.7	15.5	19.4	23.3	18.3	
60"	1.51	12.1	16.0	20.1	24.1	19.6	
62"	1.56	12.5	16.6	20.7	24.9	21.0	
64"	1.61	12.9	17.1	21.4	25.7	22.3	
66"	1.66	13.3	17.6	22.1	26.5	23.8	
68"	1.71	13.7	18.2	22.8	27.3	25.2	
70"	1.75	14.1	18.7	23.4	28.1	26.7	
72"	1.80	14.5	19.2	24.1	28.9	28.3	
D	NOTE						

DUCT NOTE

1. Insulation type used for this weight table is Type 75 ASTM C518-76.

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: M. Tremblay

California PE No. S6481

Page No.:

A.3

Date:

February 5, 2025

335 of 337 07/19/2025

RECTANGULAR DUCT WEIGHT						
DUCT	1 ½"	Weig	ht in lb	/ft per	Gage	Max
PERI-	INS ¹	26	24	22	20	Section
METER						Area,
						ft ²
48"	0.38	3.1	4.1	5.1	6.1	1.0
56"	0.44	3.6	4.8	6.0	7.1	1.4
64"	0.50	4.1	5.4	6.8	8.2	1.8
72"	0.56	4.6	6.1	7.7	9.2	2.3
80"	0.63	5.1	6.8	8.5	10.2	2.8
88"	0.69	5.6	7.5	9.4	11.2	3.4
96"	0.75	6.1	8.2	10.2	12.3	4.0
104"	0.81	6.7	8.8	11.1	13.3	4.7
112"	0.88	7.2	9.5	11.9	14.3	5.4
120"	0.94	7.7	10.2	12.8	15.3	6.3
128"	1.00	8.2	10.9	13.6	16.3	7.1
136"	1.06	8.7	11.6	14.5	17.4	8.0
144"	1.13	9.2	12.3	15.3	18.4	9.0
152"	1.19	9.7	12.9	16.2	19.4	10.0
160"	1.25	10.2	13.6	17.0	20.4	11.1
168"	1.31	10.7	14.3	17.9	21.4	12.3
176"	1.38	11.3	15.0	18.7	22.5	13.4
184"	1.44	11.8	15.7	19.6	23.5	14.7

DUCT NOTE

1. Insulation type used for this weight table is Type 75 ASTM C518-76.

CABLE TRAY WEIGHTS W/ DATA CABLE							
TRAY			TR	AY WIE	TH		
DEPTH	6"	9"	12"	18"	24"	30"	36"
(in)	(lb/ft)						
2	5	7	9	14	17	21	27
3	7	10	14	21	26	32	41
4	9	13	18	27	35	43	54
5	12	17	23	34	43	53	68
6	14	20	27	41	52	64	81

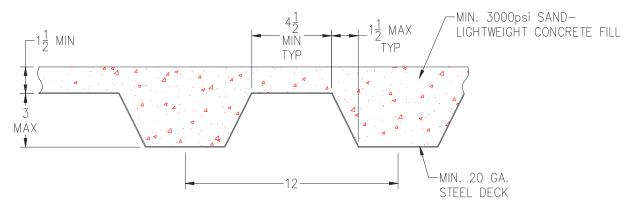
CABLE TRAY WEIGHTS W/ POWER CABLE

TRAY WIDTH			
6"	9"	12"	18"
(lb/ft)	(lb/ft)	(lb/ft)	(lb/ft)
23	35	45	70

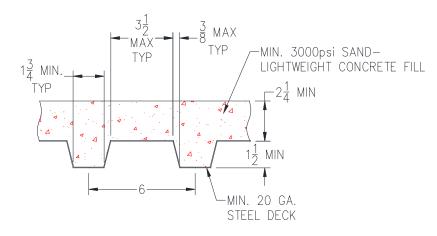
M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050

Structural Engineer: W. Tremblay
California PE No. S6481

Page No.:


A.4

Date:


February 5, 2025

07/19/2025 336 of 337

Steel Deck with Concrete Fill

STANDARD 3" STEEL DECK WITH CONCRETE FILL

TYPE "B" 1½" STEEL DECK WITH CONCRETE FILL

Note:

The details above are typical for all concrete anchor bolts with ICC Evaluation Service Reports (ESR's) where applicable. See section 3 for deck profiles specific to each anchor (not all anchors are approved for the TYPE "B" decking)

vibration & seismic control systems

M.W. Saussé & Co., Inc. 28744 Witherspoon Parkway | Valencia, CA 91355 Ph: (661) 257-3311 | Fax: (661) 257-6050 Structural Engineer: N. Tremblay
California PE No. S6481

Page No.:

A.5

Date: