

OFFICE OF STATEWIDE HEALTH PLANNING AND DEVELOPMENT FACILITIES DEVELOPMENT DIVISION

APPLICATION FOR OSHPD PREAPPROVAL OF MANUFACTURER'S CERTIFICATION (OPM)

OFFICE USE ONLY

APPLICATION #: OPM-0561

OSHPD Preapproval of Manufacturer's Certification (OPM)

Type: X New Renewal/Update

Manufacturer Information

Manufacturer: California Dynamics Corporation

Manufacturer's Technical Representative: Efrain Escobedo

Mailing Address: 5572 Alhambra Avenue,, Los Angeles, CA 90032

Telephone: (323) 223-3882

Email: ee@caldyn.com

Product Information

		/ / Y	
Product Name: CalD	yn CQB for HVA	C equipment by Lore	n Cook Compan

Product Type: Support under Cook Fans

Product Model Number: CPV 150 – CPV 490

General Description: CalDyn Vibration Isolator With Seismic Restraint (VIWR) Strength and Stiffness that can potentially be

OPM-0561

Applicant Information

Applicant Company Name: California Dynamics Corporation				
Contact Person:	Tim Benkert	BUILDING		
Mailing Address:	5572 Alhambra Avenue, Los Ang	geles, CA 90032		
Telephone: (323)	223-3882	Email: tbenkert@caldyn.com		

Title:

"Access to Safe. Quality Healthcare Environments that Meet California's Diverse and Dynamic Needs"

STATE OF CALIFORNIA - HEALTH AND HUMAN SERVICES AGENCY

OSHP

OFFICE OF STATEWIDE HEALTH PLANNING AND DEVELOPMENT FACILITIES DEVELOPMENT DIVISION

Registered Design Professonal Preparing Engineering Recommendations					
Company Name: Independent Consulting Engineer					
ame: Said Amirsolaimany California License Number: CE37835					
Mailing Address: 196 The Masters Circle, Costa Mesa, CA 9262	7				
Telephone: (818) 239-6180 Email: sama	mir1234@yahoo.com				
OSHPD Special Seismic Certification Preapproval (OSP	~/				
X Special Seismic Certification is preapproved under OSP	OSP Number: OSP-0102-10				
OB CO	DF				
Certification Method	CON				
Testing in accordance with: X ICC-ES AC156 X FM	1950-16				
Other(s) (Please Specify):					
*Use of criteria other than those adopted by the California Buildin and attachments are not permitted. For distribution system, interior criteria other than those adopted in the CBSC 2019 may be used	g Standards Code, 2019 (CBSC 2019) for component supports or partition wall, and suspended ceiling seismic bracings, test when approved by OSHPD prior to testing.				
Analysis	r Kikumoto O				
Experience Data					
Combination of Testing, Analysis, and/or Experience Data (F	Please Specify):				
MO RAVIA	CODE				
OSHPD Approval	DING				
Date: 12/30/2020					
Name: Jeffrey Kikumoto	Senior Structural Engineer Title:				
Condition of Approval (if applicable):					

Table of Contents

Cover Sheet	1
Table of Contents	2
General Notes	3
CQB Style V VIWR Design Procedure for Example	
Determine "g" Force	4
Equipment Information	5-6
Determine T _u & V _u Seismic Demands	7-9
CQB Style V VIWR Seismic & Stiffness Capacities	10-11
CQB Style V VIWR Spring Capacities	12-13
VIWR Installation Instructions	14

OPM-0561-19

Loren Cook Company CPV60 to CPV150 HVAC Fans w/ CalDyn CQB Vibration Isolator with Restraint (CQB Style V VIWR)

Code: CBC 2019, ASCE 7-16

OPM-0561-19. Keviewed for Code Compliance by Jeffrey Kikumoto

Page 2 of 14 4 of 16

GENERAL NOTES

- 1. This OSHPD Preapproval of Manufacturer's Certification (OPM) is based on the CBC 2019. The demand (design forces) for use with this OPM must be based on the CBC 2019.
- 2. For support and attachment of Cook Fans (applicable to various models as listed on this report), the maximum seismic parameters are as follows: $S_{DS} = 2.0$ (Design Short Period Spectral Acceleration) $z/h \le 1.0$ (Component Located at Roof or below) $a_p = 2.5$ (Component Amplification Factor) $R_p = 2.0$ (Response Modification Coefficient) $I_p = 1.5$ (Component Importance Factor) $\Omega_0 = 2.0$ (Overstrength Factor)
 - 3. Strength and Stiffness for CalDyn Vibration Isolator with Restraints (VIWRs) are applicable to any z/h & S_{DS} ≤ 2.0, subject to project specific review and OSHPD approval of supports and attachments design. <u>Registered Design Professional (RDP) must coordinate with CalDyn in selection of VIWRs.</u>
 - 4. The Structural Engineer of Record (SEOR) must verify the adequacy of the supporting structure and must be responsible for obtaining project specific OSHPD approval for structures, components, supports and attachments.

RAVIA BUI

OPM-0561-19

Loren Cook Company CPV60 to CPV150 HVAC Fans w/ CalDyn CQB Vibration Isolator with Restraint (CQB Style V VIWR)

Code: CBC 2019, ASCE 7-16

OPM-0561-99. Reviewed for Code Compliance by Jeffrey Kikumoto

Page 3 of 14

VIWR DESIGN PROCEDURE EXAMPLE

1) Determine "g" Force

OPM-0561-19

Loren Cook Company CPV60 to CPV150 HVAC Fans w/ CalDyn CQB Vibration Isolator with Restraint (CQB Style V VIWR)

Code: CBC 2019, ASCE 7-16

Page 4 of 14 6 of 16

2) Determine dimensions & operating weight from Manufacturer's literature.

Example: Loren Cook Fan MODEL# CPV 150

- W_p = Operating Weight = 344 lbs
- **d** = VIWR Mounting Depth = 28.0 in. (approx.)
- **w** = VIWR Mounting Width = 40.0 in. (approx.)
- **h** = Vertical Center of Gravity = 20.7 in.
- **R** = VIWR Quantity along Width = 2
- **Q** = VIWR Quantity along Depth = 2
- N = Total VIWR Quantity = 4

Mode Line	Model	Dir	Weight		
		Depth	Width	Height	(lb)
CPV (Belt Drive)	60	22.3	25.6	36.8	250
	70	22.3	25.6	36.8	250
	80	22.3	25.6	36.8	250
	100	22.3	25.6	36.8	250
	120	24.8	29.6	36.8	265
	135	26.7	31.7	37.8	297
	150	29.6	35.7	41.4	344

TABLE 1: Loren Cook Fan information

NOTES:

- 1) Equipment data from OSP-0102-10.
- 2) Equipment models listed in **Table 1** represent Loren Cook Fans that could be supported on **CQB Style V VIWRS**.
- Equipment depth and width dimensions do not correspond to w & d VIWR placement dimensions as noted on page 5 of this report.

APPLIED SEISMIC FORCE / CALCULATION:

 $z / h \le 1.0; S_{DS} = 2.0$

 F_{ph} = Applied Lateral Seismic Force = (F_p / W_p) * W_p = 4.5 * 344 lbs = 1,548 lbs

 F_{pv} = Applied Component of Seismic Force (E_v) = 0.2 * S_{ds} * W_p = 0.2 * 2.0 * 344 lbs = 138 lbs

 $(0.9 * W_p) - E_V = (0.9 * 344) - 138 = 172$ lbs $(1.2 * W_p) + E_V = (1.2 * 344) + 138 = 551$ lbs

CALCULATE PULLOUT LOAD DUE TO OVERTURNING (WORST CASE @ VIWR):

 $\mathbf{M}_{\text{OT}} = \text{Overturning Moment} = (\mathbf{F}_{ph} * \mathbf{h}_{cg}) = 1,548 \text{ lbs } * 20.7 \text{ in} = 32,044 \text{ lb-in.}$

 T_{ux} = Pullout Load Demand (about X-X) = (M_{OT}) / (d * R) = (32,044 lb-in) / (28 in * 2) = 572 lbs

 T_{uy} = Pullout Load Demand (about Y-Y) = (M_{OT}) / (w * Q) = (32,044 lb-in) / (40 in * 2) = 401 lbs

CALCULATE SHEAR LOAD (WORST CASE): NG

 V_U = Applied Lateral Seismic Force / Total VIWR Quantity = = (F_{ph} / N) = 1,548 lbs / 4 = 387 lbs

T_u & V_u with orthogonality effect (ASCE 7-16 Section 13.3-1):

 $\mathbf{T}_{UO} = [572 + (0.3 * 401)] * \Omega_{o} = (692.3) * \Omega_{o} = 1,385 \text{ lbs.}$ $\mathbf{V}_{UO} = [1.3 * 387] * \Omega_{o} = (503.1) * \Omega_{o} = 1,006 \text{ lbs.}$

LRFD TENSION & SHEAR using 0.9D-1.0E :

LRFD TENSION & SHEAR using 1.2D-1.0E :

4) Select VIWR size based on seismic forces T_u & V_u in X, Y & Orthogonal directions (Capacity at 45° is permitted to be used for orthogonal direction) using the interaction graph or equation.

 $T_{UX} - V_U$, $T_{UY} - V_U$, and $T_{UO} - V_{UO}$ all must satisfy the following LRFD Demand to Capacity Ratio (DCR) equation:

 $(T_U / T_S) + (V_U / V_S) < 1.0$

 T_s = LRFD Vertical Seismic Strength Rating in Tables 2 & 3 (on page 10 & 11 of this report) V_s = LRFD Horizontal Seismic Strength Rating in Tables 2 & 3 (on page 10 & 11 of this report)

BUJIDING

 $\begin{aligned} \mathsf{DCR}_{\mathsf{X}} &= (1282 \, / \, 6284) + (774 \, / \, 2424) = 0.52 < 1.0 \\ \mathsf{DCR}_{\mathsf{Y}} &= (940 \, / \, 6284) + (774 \, / \, 1834) = 0.57 < 1.0 \\ \mathsf{DCR}_{\mathsf{O}} &= (1522 \, / \, 6284) + (1006 \, / \, 2085) = 0.72 < 1.0 \end{aligned}$

Table 2: CQB Seismic Capacity (LRFD)

VIWR	Rated Vertical (Z) Seismic Capacity Ibs	Rated Perpendicular (X) Horizontal Seismic Capacity Ibs	Rated Parallel (Y) Horizontal Seismic Capacity Ibs	Rated Orthogonal (45° to X-Y) Horizontal Seismic Capacity Ibs
CQB	6,284	2,424	1,834	2,085

12/30/2020

12 of 16 10 of 14

CQB	Rated K1 Stiffness (Ibs/in)	Rated K3 Stiffness (Ibs/in)	Rated K1-K3 Transition Load (Ibs)	Rated K1-K3 Transition Displacement (in.)
X Direction	4,127	3,485	1,733	0.42
Y Direction	5,342	2,314	1,633	0.31
Z Direction	10,691	9,148	4,700	0.44
45° Direction	4,742	2,980	1,433	0.30

 OBHO

 OPM-056

 BY: Jeffrey Kikumoto

 DATE: 12/30/2020

 K1

 K1

Displacement

Table 3: CQB Stiffness for X, Y, Z & 45° Direction with the weakest spring

CQB VIWR NUMBER	Pounds Theoretical Rated	Design Load Ratings (Ibs)	Theoretical (K1) Spring Rate (Ibs/in.)	Spring Arrangement	
CQB-F171	171	166	73	Single Spring	
CQB-F241	241	234	116	Single Spring	
CQB-F348	348	338	162	Single Spring	
CQB-F453	453	439	221	Single Spring	
CQB-F590	590	572	258	Single Spring	
CQB-F787	787	779	325	Double Spring	
CQB-F918	918	909	344	Double Spring	

Table 4: CQB VIWR Gravity Load Rating

6) Instructions For Use:

- Add 20% to the weight of the Non-Structural Component & divide by the number of VIWRs to get average weight per VIWR.
- Select Spring number closest to average weight per VIWR based on theoretical rating.

RAVIA BUI

• Enter as CQB-F171 VIWR Selection. 2

OPM-0561-19

Loren Cook Company CPV60 to CPV150 HVAC Fans w/ CalDyn CQB Vibration Isolator with Restraint (CQB Style V VIWR)

Code: CBC 2019, ASCE 7-16

OPM-0561-99. Keviewed for Code Compliance by Jeffrey Kikumoto

15 of 16 13 of 14

VIWR INSTALLATION INSTRUCTIONS

