

#### DEPARTMENT OF HEALTH CARE ACCESS AND INFORMATION OFFICE OF STATEWIDE HOSPITAL PLANNING AND DEVELOPMENT

## APPLICATION FOR HCAI PREAPPROVAL OF MANUFACTURER'S CERTIFICATION (OPM)

OFFICE USE ONLY

APPLICATION #: OPM-0601

| HCAI Preapproval of Manufacturer's Certification (O | PM |
|-----------------------------------------------------|----|
|-----------------------------------------------------|----|

Type: X New Renewal/Update

### **Manufacturer Information**

Manufacturer: ISOTECH Industries USA Inc.

Manufacturer's Technical Representative: Matthew Hooti

Mailing Address: 7700 Irvine Center Drive, Suite 800, Irvine, CA 92618

Telephone: (949) 788-2920

Email: mhooti@isotechindustries.com

#### **Product Information**

Product Name: IRR-1000

Product Type: Seismic Bracing system for suspended equipment and distribution systems

Product Model Number: IRR-1000 O BY: William Staenil

General Description: Seismic Restraints for Suspended Distribution Systems and Equipment

 $\mathbf{ATE}$ .

#### **Applicant Information**

| Applicant Company Name: ISOTECH Industries USA Inc. |                                    |                                     |  |  |
|-----------------------------------------------------|------------------------------------|-------------------------------------|--|--|
| Contact Person:                                     | Matthew Hooti                      | BUILDING                            |  |  |
| Mailing Address:                                    | 7700 Irvine Center Drive, Suite 80 | 00, Irvine, CA 92618                |  |  |
| Telephone: (949)                                    | 788-2920                           | Email: mhooti@isotechindustries.com |  |  |

04/10/2024

PM-0601

Title: Director of Engineering

"A healthier California where all receive equitable, affordable, and quality health care"

STATE OF CALIFORNIA – HEALTH AND HUMAN SERVICES AGENCY





### DEPARTMENT OF HEALTH CARE ACCESS AND INFORMATION OFFICE OF STATEWIDE HOSPITAL PLANNING AND DEVELOPMENT

## Registered Design Professonal Preparing Engineering Recommendations

Company Name: Newport Structural Design, Inc.

Name: Matthew Brown

California License Number: S5877

Mailing Address: 134 S Glassell St., Suite G, Orange, CA 92866

Telephone: (949) 244-5427

Email: mattb@newportsd.com

| HCAI Special Seismic Certification Preapproval (OSP)                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Special Seismic Certification is preapproved under OSP OSP Number:                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| FOR CODE COM                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Certification Method                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Testing in accordance with: ICC-ES AC156 X FM 1950-16                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Other(s) (Please Specify):                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| *Use of criteria other than those adopted by the California Building Standards Code, 2019 (CBSC 2019) for component supports and attachments are not permitted. For distribution system, interior partition wall, and suspended ceiling seismic bracings, test criteria other than those adopted in the CBSC 2019 may be used when approved by HCAI prior to testing. |  |  |  |  |
| X Analysis                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Experience Data                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Combination of Testing, Analysis, and/or Experience Data (Please Specify):                                                                                                                                                                                                                                                                                            |  |  |  |  |
| ORNIA DI CODE                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| HCAI Approval                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Date: 4/10/2024                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Name: William Staehlin Title: Senior Structural Engineer                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Condition of Approval (if applicable):                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |



Vibration Isolation . Restraint Systems . Custom Engineering

OPM-0601

ECH

3021 E Coronado St. Anaheim, CA, 92806 U.S.A.

https://isotechindustries.com/

SEISMIC RESTRAINT GUIDELINES FOR SUSPENDED DISTRIBUTION SYSTEMS & EQUIPMENT

3<sup>rd</sup> EDITION, 2024

*OPM-0601* 



Revision 1: 12/04/2023, Addressed HCAI Comments

Revision 2: 02/13/2024, Addressed HCAI Comments

Revision 3: 04/04/2024, Addressed HCAI Comments

## **TABLE OF CONTENTS**

| SECTION | N 1.0 GENERAL NOTES                                                       |
|---------|---------------------------------------------------------------------------|
| 1.1     | Preface7                                                                  |
| 1.2     | Introduction                                                              |
| 1.3     | Building Codes, Standards, & Guidelines11                                 |
| 1.4     | Seismic Bracing General Requirements12                                    |
| 1.5     | Seismic Bracing Layout – General requirements14                           |
| 1.5     | .1 Piping/Conduit, Duct, and/or Trapeze Supported Members                 |
| 1.6     | General Design Procedure19                                                |
| 1.6     | .1 Suspended Piping Design Example                                        |
| 1.6     | .2 Suspended Ductwork Design Example                                      |
| 1.6     | .3 Trapeze Design Example                                                 |
| 1.7     | General Installation Notes                                                |
| 1.8     | Post- Installed Anchor Test Values                                        |
| SECTION | N 2.0 RIGID BRACING & CONFIGURATION DETAILS                               |
| 2.1     | Single & Dual Transverse Bracing on Clevis Hanger for Pipe/Conduit        |
| 2.2     | Single & Dual Transverse Bracing on Riser Clamp for Pipe/Conduit          |
| 2.3     | Single & Dual Longitudinal Bracing on Riser Clamp for Pipe/Conduit        |
| 2.4     | Transverse & Longitudinal Bracing for Pipe/Conduit                        |
| 2.5     | Single & Dual Transverse Bracing for Pipe/Conduit on Threaded Rod         |
| 2.6     | Single & Dual Transverse Bracing for Trapeze Supported Rectangular Duct   |
| 2.7     | Single & Dual Longitudinal Bracing for Trapeze Supported Rectangular Duct |
| 2.8     | Transverse & Longitudinal Bracing for Trapeze Supported Rectangular Duct  |
| 2.9     | Single & Dual Transverse Bracing for Metal Strap Supported Round Duct     |
| 2.10    | Dual Longitudinal Bracing for Metal Strap Supported Round Duct            |
| 2.11    | Single & Dual Transverse Bracing for Trapeze Supported Pipe/Conduit       |
| 2.12    | Dual Longitudinal Bracing for Trapeze Supported Pipe/Conduit              |
| 2.13    | Maximum Supporting Weight for Strut77                                     |



3021 E Coronado St. Anaheim, CA, 92806 U.S.A. https://isotechindustries.com/ S.E. #S5877 (CA)

Section TOC

| 2.14 Rod Stiffener                                               | 78  |
|------------------------------------------------------------------|-----|
| 2.15 Cross Bolt Spacer                                           | 79  |
| SECTION 3.0 RIGID RESTRAINT STRUCTURAL ATTACHMENT                | 80  |
| 3.1 Concrete over Metal Deck                                     |     |
| 3.1.1 Post-installed Wedge Anchor                                |     |
| 3.1.1.1 Hilti KB-TZ2 Anchor                                      | 83  |
| 3.1.2 Cast-In Anchor                                             |     |
| 3.1.2.1 Hilti KCM-MD Headed Stud Cast-In Anchor                  | 86  |
| 3.1.2.2 Hilti KCM-MD Headed Stud Cast In Anchor – Double Anchors | 87  |
| 3.2 Concrete Slab/Beam                                           | 88  |
| 3.2.1 Post-installed Wedge Anchor CODE                           | 88  |
| 3.2.1.1 Hilti KB-TZ2 Anchor                                      | 90  |
| 3.2.2 Cast-In Anchor                                             |     |
| 3.2.2.1 Hilti KCM-WF Headed Stud Cast-In Anchor                  | 93  |
| 3.3 Concrete Wall                                                |     |
| 3.3.1 Post-installed Wedge Anchoram Staehlin                     |     |
| 3.3.1.1 Hiliti K <mark>B-TZ</mark> 2 Anchor                      | 95  |
| 3.4 Unfilled Metal Deck. DATE: 04/10/2024                        |     |
| 3.4.1 Hilti PPH Self-Drilling Screw                              |     |
| 3.5 Steel Beam                                                   |     |
| 3.5.1 Welded                                                     |     |
| 3.5.2 Bolted                                                     | 104 |
| 3.5.3 Beam Clamp                                                 | 109 |
| 3.5.4 Supplemental Strut                                         | 112 |
| 3.6 Wood Beam                                                    | 114 |
| 3.6.1 Lag Screw                                                  | 114 |
| 3.6.2 Thru-Bolt                                                  | 117 |
| 3.7 Channel Nuts Selection Table (Atkore Unistrut)               | 120 |
| SECTION 4.0 HANGER ROD STRUCTURAL ATTACHMENTS                    | 121 |
|                                                                  |     |



| 4.1 Concrete over Metal Deck122                                                                        |  |
|--------------------------------------------------------------------------------------------------------|--|
| 4.1.1 Post-installed Wedge Anchor122                                                                   |  |
| 4.1.1.1 Hilti KB-TZ2 Anchor                                                                            |  |
| 4.1.2 Cast-In Anchor129                                                                                |  |
| 4.1.2.1 Hilti KCM-MD Cast-In Anchor130                                                                 |  |
| 4.2 Concrete Slab/Beam133                                                                              |  |
| 4.2.1 Post-installed Wedge Anchor133                                                                   |  |
| 4.2.1.1 Hilti KB-TZ2 Anchor135                                                                         |  |
| 4.2.2 Cast-In Anchor136                                                                                |  |
| 4.2.2.1 Hilti KCM-WF Cast-In Anchor                                                                    |  |
| 4.3 Unfilled Metal Deck                                                                                |  |
| 4.3.1 Hilti PPH Self-Drilling Screw                                                                    |  |
| 4.4 Steel Beam                                                                                         |  |
| 4.4.1 Welded Lug Attachment To Steel Beam                                                              |  |
| 4.4.2 Supplemental Steel                                                                               |  |
| 4.4.3 Beam Clamp                                                                                       |  |
| SECTION 5.0 RIGID BRACE COMPONENTS                                                                     |  |
| 5.1 IRRA-3000R Bracket DATE: 04/10/2024 148                                                            |  |
| 5.2 IRRA-3000R Rigid Restraint                                                                         |  |
| SECTION 6.0 RIGID RESTRAINT SPACING CHART                                                              |  |
| 6.1 Pipe Spacing Charts (Single Restraint)                                                             |  |
| 6.2 Pipe Spacing Chart (Double Restraint)                                                              |  |
| 6.3 Duct Spacing Charts (Single Restraint)161                                                          |  |
| 6.4 Duct Spacing Charts (Double Restraint)163                                                          |  |
| 6.5 Pipe /Conduit, Raceway, & Cable Tray Trapeze Supported System Spacing Charts<br>(Single Restraint) |  |
| 6.6 Pipe /Conduit, Raceway, & Cable Tray Trapeze Supported System Spacing Charts<br>(Double Restraint) |  |
| SECTION 7.0 REFERENCING INFORMATION 168                                                                |  |



Ulto Ben S.E. #S5877 (CA)

| Α | ppend | ix A. | . Design by Rule for Noncritical Pipes ASME                 | 182 |
|---|-------|-------|-------------------------------------------------------------|-----|
|   | 7.3.  | .2    | Max Transverse Brace Spacing Based On Pipe Size And G Force | 177 |
|   | 7.3.  | .1    | Pipe Stress Calculation Design Example                      | 175 |
|   | 7.3   | Des   | sign by Analysis for Critical Pipes ASME                    | 174 |
|   | 7.2   | We    | ight of Ducts (Gauge Numbers)                               | 170 |
|   | 7.1   | We    | ight of Pipes and Contents                                  | 169 |









## 1.1 Preface

This HCAI Pre-approval of Manufacturer's Certification (OPM) is based on the 2022 CBC. The demand/design forces for use with the OPM shall be based on the 2022 CBC, and Section 2.4, ASCE 7-16 for Allowable Stress Design only.

Maximum allowable  $S_{DS}$  for this OPM is  $\leq 2.8$ g.

#### I. Scope & Limitations:

This pre-approval is for the seismic rigid bracing of interior suspended equipment, mechanical pipe & duct systems, as well as electrical conduit & cable trays/raceways. It does not address other loads such as, but not limited to, those generated by thermal growth, pressure or pressure thrust, & fluid dynamics. It does not address components that cross seismic separations of buildings or components attached to portions of the structure or equipment that will experience relative seismic drifts other than pipe & duct risers.

#### II. The ranges of component sizes and material included in the pre-approval are listed as follows:

- 1) Mechanical Pipe: Schedule 40 Steel Pipe Sizes 1" to 8" (Nominal)
- 2) Mechanical Duct (Round & Rectangular) \_\_\_\_\_
- 3) Electrical Distribution Systems Conduit & Cable Trays/Raceways
- 4) Suspended Equipment Mechanical & Electrical Equipment

#### III. The anchorage/attachment structures included in this pre-approval are as follows:

- 1) Composite Deck (concrete cast over Metal Deck)
- 2) Concrete
- 3) Unfilled Metal Deck
- 4) Steel Beams
- 5) Wood

#### IV. Construction Tolerances:

- 1) Construction tolerances shall be as noted on the drawing details from Sections 2.0 to 5.0.
- Construction tolerances for angles of all braces shall be limited to ±5° out of plane & elevation as shown in the details of Section 2.0.
- 3) The recommended brace angle is 45° for the diagonal brace, or 1:1 brace ratio. The Rigid Brace shall be installed between 30°- 60° from the horizontal, as detailed in Section 2.0.



## Introduction

## 1.2 Introduction

I. This Manual is a guideline for seismic bracing design for interior equipment, mechanical piping & duct systems, and electrical conduit & cable trays/raceways. The following is an outline of the manual:

**Section 1.0 – General Information:** Presents general notes and requirements for bracing of mechanical, electrical, and plumbing systems. A general step by step procedure for seismic rigid bracing design has also been included in this manual.

Section 2.0 – Rigid Bracing & Configuration Details: Provides detailed illustrations of seismic rigid bracing for individually hung and trapeze supported pipe/conduit, cable trays/raceways, & ducts.

Section 3.0 – Rigid Brace Structural Attachments: Details structural attachment design and strengths for attaching the seismic rigid brace to the supporting structure. Attachments to Composite Concrete with Metal Deck, Concrete Slab/Beam/Wall, Unfilled Metal Deck, Steel I-Beam, & Wood Beam are included.

Section 4.0 – Hanger Rod Structural Attachments: Details structural attachment design and strengths for attaching the threaded hanger rod (with stiffener if Req'd) to the supporting structure. Attachments to Composite Concrete with Metal Deck, Concrete Slab/Beam, Unfilled Metal Deck, Steel I-Beam are included.

**Section 5.0 – Rigid Brace Components:** Includes details and design strengths for bracket, and strut used in the seismic bracing design and brace attachment fittings.

Section 6.0 – Rigid Restraint Spacing Charts: Includes the installation spacing requirements for suspended systems using the rigid restraint bracing. These values are based on brace capacity, not pipe capacity.

**Section 7.0 – Referencing Information:** Includes weight information of suspended systems (Pipes & Ducts) and brace spacing designed in compliance with ASME guidelines/rules. The brace spacings in this section may govern over the spacings from Section 6.0. Use the lesser of the spacings from both sections.

#### II. Registered Design Professional Responsibility:

The Registered Design Professional (RDP) is the engineer executing the design of the seismic bracing system, as well as the Mechanical/Electrical Engineer of Record responsible for sizing pipe/duct/conduit. The RDP delivers the complete seismic bracing design to the Structural Engineer of Record (SEOR) for the HCAI project. It is the responsibility of the Registered Design Professional in responsible charge to:



## Introduction

- 1) Verify that the non-structural components or system is seismically qualified in accordance with the 2022 CBC.
- 2) Verify that the proper ISOTECH Ind. Brace system is selected to meet the seismic requirements of this OPM.
- 3) Verify that the structure to which the ISOTECH Ind. seismic brace is anchored meets the requirements of the applicable anchorage ICC ESR Report.
- 4) Verify that the installation is in conformance with the 2022 CBC and with details shown in this OPM. Testing of post installed anchors shall also be performed in accordance with 2022 CBC Section 1910 A.5. The testing requirements are summarized in Section 1.8 of this manual.

#### III. Layout Drawings:

- 1) Layout drawings of the supports, attachments and the bracing systems in accordance with the preapproval shall be submitted to the design team for review in accordance with the 2022 California Administrative Code, Sections 7-115 and 7-126. The layout drawings shall at least satisfy the requirements of ASCE 7 Section 13.6 as modified by 2022 CBC 1617A.1.18.
  - a) The Structural Engineer of Record (SEOR) shall verify that the supporting structure is adequate for the forces imposed on it by the supports, attachments, and braces installed in accordance with the preapproval in addition to all other loads.
  - b) The SEOR shall forward the supports, attachments, and bracing drawings (including construction documents for supplementary framing where required) to the RDP in responsible charge with a notation indicating that the drawings have been reviewed and are in general conformance with the preapproval and the design of the project.
  - c) A review stamp shall be permitted to be used, by the SEOR, to indicate compliance with this requirement.
  - d) The RDP, other than SEOR, may provide the review stamp for small projects at the discretion of the HCAI.
- 2) The Structural Engineer of Record shall design any supplementary framing that is needed to resist the loads, maintain stability, and/or is required for installation of preapproved system. The supplementary framing shall be submitted to HCAI as part of original Construction Documents (CDs) or as a Deferred Submittal Item (DSI) which shall be listed on the cover page of the original Construction Documents.
- 3) The layout drawings (with the review stamp) shall be submitted to HCAI, as part of original CDs or as DSIs in accordance with 2022 CAC Section 7-126 and 2022 CBC Section 107.3.4.1 for verification that:
  - a) Structure supporting the distribution system has adequate capacity.
  - b) Seismic design forces ( $F_P$ ) are in accordance with the 2022 CBC; and



## Introduction

c) Submittal is within the scope of the HCAI Preapproval of Manufacturer's Certification (OPM):

i. Size of distribution system components

ii. Spacing of bracing and flexible joints

iii. Substrate for attachments.

- 4) The layout drawings, with the review stamp, shall be kept on the jobsite to be used for installation of the support and bracing.
  - a) The approved agency/inspector of record shall provide inspection in accordance with CBC Sections 1704A/CAC Section 7-145.
  - b) HCAI field staff will review/inspect the installation in accordance with CAC Section 7-147.
- 5) A copy of the chosen bracing system(s) installation guide/OPM manual shall be on the jobsite prior to starting the installation of hangers and/or braces. The approved agency/inspector shall maintain an approved copy of the OPM (available on HCAI website) in accordance with CAC Section 7-145 Item # 4.
- 6) Components of two or more preapproved bracing systems shall not be mixed. Only one preapproved bracing system may be used for a run of pipe, duct or raceway and any substitution of component of an OPM system shall require HCAI review and approval.
- IV. Anchors:
  - 1) All post installed concrete anchors shall be installed per their ICC ESR report. Detailed ICC ESR listing for each anchor is in Section 1.3. 04/10/2024

**BY: William Staehlin** 

- 2) The special inspector shall be on the jobsite continuously during anchor installation, unless otherwise noted in the ICC ESR.
- 3) Post installed anchors to be tested per the requirements specified in 2022 CBC Section 1910 A.5. The testing requirements are summarized in Section 1.8 of this manual.
- 4) When anchoring into prestressed/post-tensioned concrete, locate tendons prior to drilling to avoid damaging tendons.



## Building Codes, Standards, & Guidelines

#### Building Codes, Standards, & Guidelines 1.3

The ISOTECH Industries Seismic Restraint Guidelines are designed to meet or exceed the requirements of the following:

2022 California Building Code (CBC 2022) ANSI / AWC NDS-2018 American Concrete Institute (ACI 318-19) American Welding Society (AWS D1.1-20) American Society of Civil Engineers (ASCE 7-16) including Supplement No. 1, 2 and 3 American Society of Mechanical Engineers (ASME B31.9-2020) American Institute of Steel Construction (ANSI/AISC 360-16) ESR-4266 (Hilti KB-TZ2, Latest Edition) ESR-2196 (Hilti Self-drilling Screws, Latest Edition) ESR-4145 (Hilti KCM-MD Cast-In Anchors, Latest Edition)

NOTES:

ESR evaluation reports for post-installed anchor bolts into concrete and self-tapping screws to steel are following 2022 California Building Codes.

These guidelines are intended to describe seismic rigid restraints for the ducts, pipes, cable tray/raceways/conduit, and equipment typically used in health care settings. (See Preface, page 8 Section 1.1 for details.) DATE: 04/10/2024

For piping with additional weights such as flanges, and other mechanical/plumbing/electrical systems, bracing is designed based on maximum weight per foot equivalent to the total weight including additional weights. PNIA BUILDING CC



3021 E Coronado St. Anaheim, CA, 92806 U.S.A.

| Ulto Bon   | S.E. #S5877 (CA) |
|------------|------------------|
| who or the |                  |

| Sect | tion |  |
|------|------|--|
| 1    | 2    |  |

OPM-0601: Reviewe

## 1.4 Seismic Bracing General Requirements

#### I. See CBC 2022, Section 1617A for where transverse and longitudinal seismic bracing is required. Below is a summary of circumstances where it is required per that chapter:

- 1) Trapeze supported pipe system which meets any of the following conditions:
  - a) Trapeze assembly hung with anything other than rod hangers 3/8" or 1/2" in diameter
  - b) Trapeze assembly hung more than 12" below the connection to the structure (hanger longer than 12")
  - c) Any single nominal pipe diameter exceeds 1"
  - d) Trapeze assembly supports more than 100 lbs
- 2) Single hung pipe which meets any of the following conditions:
  - a) Rp in Table 13.6-1 (ASCE 7-16) is less than 4.5
  - b) Without seismic bracing pipe would impact other structural or non-structural components
  - c) Pipe hung with anything other than individual rod hangers 3/8" or 1/2" in diameter
  - d) Pipe hung more than 12" below the connection to the structure (hanger longer than 12")
  - e) Pipe hanger supports more than 50 lbs
  - f) Nominal pipe diameter exceeds 3"
  - g) Ip > 1.0 (See CBC 2022 Section 1617A.1.17) and nominal pipe diameter exceeds 1"
    - OPM-0601
- 3) Conduits, Cable Trays, and Raceways which meets any of the following conditions:
  - a) Conduit, Cable Tray, Raceway, or trapeze supporting cable trays or raceways hung with anything other than rod hangers 3/8" or 1/2" in diameter
  - b) Cable Tray, Raceway, or trapeze supporting cable trays or raceways hung more than 12" below the connection to the structure (hangerlonger than 12")
  - c) Trapeze assembly supports more than 100 lbs of conduit, cable trays, raceways
  - d) Individual rod hanger supports more than 50 lbs of conduit, cable trays, raceways
  - e) Conduit is greater than or equal to 2.5" trade size
  - f) Ip > 1.0 (See CBC 2022 Section 1617A.1.17)
- 4) Duct systems which meet any of the following conditions:
  - a) Duct or trapeze supporting ducts hung with anything other than rod hangers 3/8" or 1/2" in diameter
  - b) Duct or trapeze supporting ducts hung more than 12" below the connection to the structure (hanger longer than 12")
  - c) Duct trapeze supports more than 100 lbs of duct
  - d) Duct trapeze supports combined duct weight of 10 lbs/ft or more
  - e) Individual rod hanger supports more than 50 lbs of duct
  - f) Duct has cross-sectional area of 6sf or more
  - g) Duct weighs more than 20 lbs/ft



Seismic Bracing General Requirements

- II. <u>Piping or ductwork designed to carry toxic, highly toxic or flammable gases, or used for smoke</u> <u>control shall be designed and braced without consideration of any exceptions.</u>
- III. A pipe system shall not be braced to different parts of the building that may respond differently during seismic activity unless specifically detailed on documents and approved by HCAI.
- IV. Refer to the appropriate codes and standards for additional information and requirements.





## 1.5 Seismic Bracing Layout – General requirements

- 1.5.1 Piping/Conduit, Duct, and/or Trapeze Supported Members
- I. The ISOTECH Seismic Rigid Restraint Guidelines provide for the protection of suspended pipe, duct, conduit, cable trays/raceways & equipment against excessive movement due to seismic forces.
- II. The seismic restraint assemblies in this guideline are designed to simultaneously resist vertical loads due to the weight of the component and its contents and both horizontal and vertical seismic loads.
- III. Horizontal loads are braced with transverse and/or longitudinal bracing to provide resistance against movement perpendicular or parallel to the run, respectively. Spacing must not exceed the values provided in Section 6 or 7 (whichever governs) of this Manual.
- IV. A run of pipe, duct, or electrical system is defined as a straight length. Offset(s) occurring between changes of direction may be neglected if the distance perpendicular to the run is less than the maximum offset length. The maximum offset length for pipes and ducts are shown in the figures below.

Maximum offset length for Pipes =  $\frac{s}{10}$ , where S is the maximum transverse brace spacing.



Max. offset length for Ducts = 2' (inside-to-inside)





Seismic Bracing Layout – General requirements

**Note:** When a run of a pipe, duct, or electrical system that requires bracing transitions down to a size that does not, the point of transition is considered the end of the run and will require a transverse brace

V. Each run of pipe, duct, electrical conduit, cable tray and others require a minimum of two transverse braces (TB), one at each end of the run.



VI. If the distance between two transverse bracing kits exceeds the maximum allowable spacing, add transverse bracing kits as needed.



VII. Each run of pipe, duct, electrical system, cable tray and others must have at least one longitudinal brace (LB). If the maximum allowable longitudinal spacing (L), is exceeded then add longitudinal braces to meet the spacing requirement. The longitudinal spacing shall not exceed twice the length of the maximum transverse brace spacing.



- VIII. Each run of pipe, duct, electrical system, cable tray and others require a minimum of one longitudinal brace. However, a transverse brace placed on the run section at the opposite side of an elbow or tee within  $\frac{S}{10}$  max. may act as a longitudinal brace and can be referred to as a "DUAL USE" brace. Dual Use Braces are to be designed for worst case of longitudinal or transverse loading. Distance to the first longitudinal brace around corner (P) shall not exceed maximum longitudinal spacing (L), minus  $\frac{S}{2}$ , minus A, where A is the distance between the corner and the Dual Use bracing nearest the corner.
  - a) Longitudinal and Longitudinal "DUAL USE" braces on a single supported pipe or conduit shall be attached directly to the pipe or conduit.
  - b) Bracing installed to smaller piping shall not be used to brace larger piping.



IX. In some cases, several short runs may occur in close proximity. By following the preceding guidelines each run shall have longitudinal and transverse bracing. Transverse bracing may be used as longitudinal bracing and vice versa on runs adjacent to each other if the total length of pipe tributary to the brace does not exceed the maximum allowable spacing (S). in cases where it does, additional braces are required.



X. A vertical pipe or conduit drop to equipment, where pipe or conduit is connected to the equipment using a flexible connection, provide transverse bracing before the vertical drop. The total length from the transverse brace to the vertical drop shall not be more than the allowable offset previously determined  $(\frac{S}{10})$ . Provide transverse bracing at the floor after the vertical drop of the total length of the pipe from the transverse brace before the vertical drop to the flexible connection is greater than  $\frac{1}{2}$  of the maximum transverse brace spacing  $(\frac{S}{10})$ .



- XI. When systems cross a building seismic separation or seismic joint, they must be capable of accommodating the joint displacements as specified by the engineer of record.
- XII. A system shall not be braced to dissimilar parts of a building structure or two dissimilar building systems that may respond differently during a seismic event. Bracing shall be attached to the part of the building structure that is supporting the pipe, duct, or electrical system.
- XIII. Transverse and longitudinal braces shall be installed as shown in this guideline between 30° 60° from horizontal. However, the recommended brace ratio is 45° from horizontal, providing a brace ratio of 1 (vert.):1 (horiz.).
- XIV. The seismic brace assemblies in this guideline consist of three important components: (a) supports and attachments to building structure; (b) brace member such as strut (c) seismic brace attachments.
- XV. Transverse and Longitudinal bracing kit locations are required to be within 6" of a vertical seismic brace assembly to protect against vertical movement (typically a stiffened hanger rod).
- XVI. Steel bolt connections to steel structure or components shall not have a diameter <1/16" less than the mounting hole. Steel bolt connections to concrete structure shall not have a diameter <1/8" less than the mounting hole.



- XVII. At a brace location, threaded rod and their building attachment components used in a vertical hanger assembly shall be increased in size when capacity is inadequate for loads due to the additional seismic tension or compression loads placed upon them. The vertical hanger assembly is adequate if the maximum allowable load of its components is greater than or equal to the system gravity load plus any additional seismic loads.
- XVIII. Bracing may be omitted for short runs (20") of cable tray if its tributary seismic load can be transferred to an adjacent run of cable tray that is braced and can properly restrain the additional seismic loads.





## 1.6 General Design Procedure

This HCAI Preapproval of Manufacturer's Certification is in accordance with the 2022 California Building Code. The horizontal seismic force ( $F_P$ ) and vertical seismic force ( $F_{PV}$ ) can be calculated as follows based on ASCE 7-16, 13.3:

$$F_P = (\alpha_D) \frac{0.4a_p S_{DS} I_P W_P}{R_P} \left(1 + 2\frac{z}{h}\right); \qquad \text{Use if } (F_{min} \le F_P \le F_{max})$$

$$F_{max} = (\alpha_D) 1.6 S_{DS} I_P W_P;$$
 Use if  $(F_P > F_{max})$ , then  $F_P = F_{max}$ 

$$F_{min} = (\alpha_D) 0.3 S_{DS} I_P W_P$$
; Ouse if  $(F_P < F_{min})$ , then  $F_P = F_{min}$ 

 $F_{PV} = (\alpha_D) 0.2 S_{DS} W_P$ 

Where:

 $S_{DS}$  = short period spectral acceleration. Values of SDS indicated in the general notes of the structural drawing take precedence over those calculated per ASCE 7-16, 11.4.4.

 $W_P$  = component operating weight (lbs).

 $I_P$  = component importance factor. Use 1.5 unless a lower value is permitted per CBC 2022 Section 1617A.1.17.

 $a_P$  = component amplification factor (Ref. ASCE 7-16, Table 13.6-1). A lowered value for  $a_P$  is permitted where justified by detailed dynamic analysis. The values for  $a_P$  shall not be < 1.0.

= 2.5 for all piping, ductwork, conduit, cable trays

 $R_P$  = component response modification factor (Ref. ASCE 7-16, Table 13.6-1). Per ASCE 7-16, Section 13.4.1, do not use a  $R_P$  factor greater than 6.0 when calculating  $F_P$  and  $F_{PV}$  for design of the attachment.

z = height in structure of point of component connection with respect to base (ft).

h = average roof height of structure with respect to base (ft).  $\alpha_D = 1.0$  for LRFD/Strength Design, 0.7 for ASD/Service Design. (See Seismic Load Factors from ASCE 7-16 Sections 2.3.6 and 2.4.5)



#### NOTES:

- 1) The tables in this manual have been developed using the ASD method, with the exception of the concrete anchors which are required by code to be designed using the Strength method. When anchoring to concrete it is therefore necessary to be calculate both ASD and Strength values.
- 2) Components mounted on vibration isolators shall have a bumper restraint or snubber in each horizontal direction. The design force shall be taken as  $2F_P$  if the nominal clearance (air gap) between the equipment support frame and restraint is > 0.25 in. (6 mm), if  $\leq$  0.25 in. the design force is permitted to be taken as  $F_P$ .

Seismic restraint system design including but not limited to bracing type and strength, spacing determination and connection methods is based on the following design procedures:

#### Step 1. Determine G-Factor

Calculate the G-Factor as follows:

Where:

 $F_p$  = Seismic Force as calculate per previous page of this document

 $W_p$  = Component Operating Weight DATE: 04/10/2024

#### Step 2. Seismic Bracing Detail

Select ISOTECH IRRA-3000R seismic bracing for both transverse and longitudinal bracing. Detailed installation and configurations see Section 2 "RIGID BRACE DETAILS" and Section 5 "SEISMIC BRACE AND HANGER COMPONENT". Verifications and integrations would be made in the following steps before finalizing the bracing selection.

#### Step 3. Brace Spacing

Determine the maximum transverse and maximum longitudinal brace spacings from Sections 6 and 7 (whichever governs) based on the calculated G-factors and maximum operating weight/foot or diameter (pipes only).



#### Step 4. Determine Horizontal Seismic Forces

Seismic forces ( $F_{PH}$ ) can be calculated based on:

$$F_{PH} = w_P \times Brace \ Spacing \times G = W_P \times G$$

Where

- *W<sub>P</sub>* component operating weight (lbs).
- $w_P$  is distributed operation weight of the system (lbs/ft), can be read from Tables in Section 7 of this manual.
- G-factor and Brace Spacing are obtained from step 1 and step 3.

# \*Weight of the Pipe indicated in the spacing chart tables represent the overall system weight including the weight of the empty pipe, contents, and insulation layers.

## Step 5. Determine Vertical Load on Hanger Rod

When a single rigid bracing is used, a vertical seismic load will be applied to the hanger rod at the seismic brace location. This brace-induced seismic load is a compression load when the sway brace is in tension and is a tension load when the sway brace is in compression. Because there is a tension load on the hanger rod due to the system weight, the vertical seismic load should be added to or subtracted from the existing gravity load.

The maximum vertical load applied to the hanger rod  $(F_{Rod})$  is summation of operating loads  $(W_P)$ , vertical seismic load  $(F_{PV})$  and the brace-induced vertical seismic load  $(F_{Brace-induced}, \text{ calculated based})$  on the installation angle  $\theta$  by  $F_{Brace-induced} = F_{PH \ Longitudinal} \times tan\theta$ . The longitudinal brace spacing is typically larger, which results in the highest value of  $F_{PH}$ , which is why it is used here as opposed to transverse.

#### $F_{Rod} = \beta_D \times W_P + F_{PV} + F_{Brace-induced}$

where both vertical seismic load and brace-induced vertical load are in the same direction of the gravity.  $\beta_D = 1.2$  for LRFD/Strength design, 1.0 for ASD/Service Design(See Dead Load Factors from ASCE 7-16 Sections 2.3.6 and 2.4.5)

Rod compression is always less than or equal to rod tension. Conservatively assume that rod compression equals  $F_{Rod}$  and choose a rod diameter and stiffener from the table in Section 2.14.

#### Step 6. Brace Detail

Go to Section 2.0 of this manual and find a brace detail that will work for the (ASD Level) transverse and longitudinal forces calculated in Step5.



#### Step 7. Structural Attachment Detail

• Brace Structural Attachment:

Brace structural attachment details are specified and illustrated in Section 3 "RIGID RESTRAINT STRUCTURAL ATTACHMENTS". Horizontal Seismic load capacities of each fastener (anchor/screw/bolt) for connecting brace to various types of structures (Concrete, Unfilled Metal Deck, Steel and Wood) are listed in the tables. Types and sizes of fasteners can be selected based on the seismic load calculated in step 4. Follow detailed installation requirements in corresponding sections after selection.

• Hanger Rod Structural Attachment:

Hanger rod structural attachment details are specified and illustrated in Section 4 "HANGER ROD STRUCTURAL ATTACHMENTS". Vertical load capacities of each fastener (anchor/screw/bolt) for connecting hanger rod to various types of structures (Concrete, Unfilled Metal Deck, Steel) listed in the tables. Types and sizes of fasteners can be selected based on the vertical load calculated in step 5. Follow detailed installation requirements in corresponding sections after selection.

• Anchoring to Concrete:

When anchoring to concrete,  $F_p$  must be calculated at Strength level ( $\alpha_p = 1.0$ ), and the G factor must be amplified by the overstrength factor ( $\Omega_0$ )  $M_{-0.001}$ 

 $GFactor = \Omega_0 \times \frac{F_p}{W_p}$ 

DATE: 04/10/2024

Calculate the G Factor for concrete anchors as follows:

Where:

 $F_p$  = Seismic Force as calculated per previous page of this document using  $\alpha_D$ =1.0

 $W_p$  = Component Operation Weight

- $\Omega_0$  = Overstrength factor (Ref.ASCE 7-16, Table 13.6-1)
  - = 2 for all piping, ductwork, conduit, cable trays

Calculate  $F_{PH}$  using the overstrength G factor as shown above.

Calculate  $F_{Brace-induced}$  using the  $F_{PH}$  value that incorporates the overstrength G factor.

Calculate  $F_{Rod}$  using  $\beta_D = 1.2$ 



#### Step 8. Seismic Bracing Layout

Layout the designed bracing system follow the requirements listed in Section 1.5 "Seismic Bracing Layout" on Page 14-18.

### 1.6.1 Suspended Piping Design Example

In this example we design seismic bracing for a hypothetical suspended 5" diameter water pipe made of schedule 40 steel (not in accordance with ASME B31, with threading joints) in a 4-story poured-in-place concrete building where each floor is 10' elevation. The pipe is supported with hangers at every 12'. Short period spectral acceleration  $S_{DS}$  and component importance factor  $I_P$  are 2.0 and 1.5 indicated by the contract drawings. The pipe is "critical" according to ASME B31.9. HCAI considers all piping in facilities under their regulation to be critical.

#### Step 1. Determine G-Factor

As read from ASCE 7-16 Table 13.6-1, component amplification  $a_p$  and component response modification factors  $R_p$  for piping not in accordance with ASME B31, including in-line components, constructed of high- or limited-deformability materials, with joints made by threading are 2.5 and 4.5 correspondingly.

 $F_P = (\alpha_D) \frac{0.4a_p S_{DS} I_P W_P}{R_P} \left(1 + 2\frac{z}{h}\right)$ 

DATE: 04/10/2024

FORCODE

Where:

 $\alpha_D = 0.7$  for ASD Method  $S_{DS} = 2.0$  (contract drawings)  $I_P = 1.5$  (contract drawings)  $a_P = 2.5$  (ASCE 7-16 Table 13.6-1)  $R_P = 4.5$  (ASCE 7-16 Table 13.6-1)

(Note: your value of Rp may be different depending on distribution system. For this example we are using 4.5)

$$F_{P} = (\alpha_{D}) \frac{0.4 (2.5) (2.0) (1.5) W_{P}}{(4.5)} \left(1 + 2\frac{z}{h}\right) = 0.47 \left(1 + 2\frac{z}{h}\right) W_{P}$$

$$F_{max} = (\alpha_{D}) 1.6 S_{DS} I_{P} W_{P} = (0.7) 1.6 (2.0) (1.5) W_{P} = 3.36 W_{P}$$

$$F_{min} = (\alpha_{D}) 0.3 S_{DS} I_{P} W_{P} = (0.7) 0.3 (2.0) (1.5) W_{P} = 0.63 W_{P}$$

$$F_{PV} = (\alpha_{D}) 0.2 S_{DS} W_{P} = (0.7) 0.2 (2.0) W_{P} = 0.28 W_{P}$$



z = X-th story x 10'/story = 10X', where X stands for floor level point of component connection with h = 4 story x 10'/story = 40'

(Note: your z and h values may be different. Verify actual z and h values from project drawings. For this example all stories are 10 feet high)

| ASD LEVEL G-FACTORS FOR PIPING LOCATED ON DIFFERENT FLOORS |                   |      |                      |       |  |  |
|------------------------------------------------------------|-------------------|------|----------------------|-------|--|--|
| Floor Level X                                              | Floor Height (ft) | z/h  | $F_P$                | G     |  |  |
| 1                                                          | 10                | 0.25 | 0.7 W <sub>P</sub>   | 0.7   |  |  |
| 2                                                          | 20                | 0.5  | 0.933 W <sub>P</sub> | 0.933 |  |  |
| 3                                                          | 30                | 0.75 | 1.167 $W_P$          | 1.167 |  |  |
| 4                                                          | 40                | 1    | 1.4 $W_P$            | 1.4   |  |  |

#### Step 2. Seismic Bracing Detail

Select the rigid seismic bracing ISOTECH IRRA-3000R and check Section 5 "IRRA-3000R Bracket" for brace details.

#### Step 3. Brace Spacing

Let's Take the 2<sup>nd</sup> floor as an example, select maximum brace spacings with G-factor being 0.933 and diameter being 5 inches, assume 45° installation angle.

- From Table 6.1 "SCHEDULE 40 (STD)/STEEL PIPE-INSULATED AND FILLED WITH WATER", maximum Longitudinal Brace Spacing @1.0G, 5" diameter and 45° installation angle = 26 ft (single restraint based on Brace Capacity)
- Maximum Transverse Brace Spacing @1.0G for 5" diameter pipe= 26/2=13 ft based on Brace Capacity
- For installation convenience, 24ft and 12ft. can also be used as the longitudinal and transverse brace spacing correspondingly, so that the braces align with the hangers at 12ft spacing.
- Check the Grade A Steel Water Pipe Table in Section 7.3, the maximum transverse spacing for 5" schedule 40 steel pipe @1.0G is 19 ft, larger than the selected spacing 12 ft.



#### Step 4. Determine Horizontal Seismic Forces at Floor Level 1

For 5" diameter, schedule 40 steel pipe, operating weight (with insulation layer and filled with water) is 26.6 lbs/ft (read from Table "SCHEDULE 40 (STD) STEEL PIPE-INSULATED AND FILLED WITH WATER" in Section 6.1).

DIAN

With maximum operating weight being 26.6 lbs/ft,

• Transverse Direction (bracing space 12 ft):

$$F_{PH\ Transverse} = 0.933\ \left(26.6\frac{lbs}{ft}\right)(12ft) = 298\ lbs$$

• Longitudinal Direction (bracing space 24 ft):

$$F_{PH \ Longitudinal} = 0.933 \left(26.6 \frac{lbs}{ft}\right) (24ft) = 596 \ lbs$$

#### Step 5. Determine Vertical Loads

 $\beta_D = 1.0$  FOR ASD/Service Design

• Operating Loads (gravity supports space 12ft):

$$W_P = \left(26.6 \frac{lbs}{ft}\right)(12ft) = 319 \, lbs$$

Vertical Seismic Force (gravity supports space 12ft):

$$F_{PV} = 0.28 \left(26.6 \frac{lbs}{ft}\right) (12ft) = 89 \, lbs$$

Assume the brace installation angle is 45°: DING

 $F_{Brace-induced} = F_{PH \ Longitudinal} \times tan\theta = F_{PH \ Longitudinal} \times tan45^{\circ} = 596 \ lbs$ 

$$F_{Rod} = \beta_D \times W_P + F_{PV} + F_{Brace-induced} = 1004 \, lbs$$



#### Step 6. Brace Detail

- A Transverse Brace can be quickly selected from Section 2.2. For 298 lbs (Transverse seismic load), single transverse bracing is good for  $(0.6)^*(724 \text{ lbs}) = 434 \text{ lbs}$  for insulated pipe (incorporating the 40% reduction for insulation per the table notes).
- A Longitudinal Brace can be quickly selected from Section 2.3. For 596 lbs (Longitudinal seismic load), single longitudinal bracing is good for 680 lbs.
- Conservatively assume that rod compression is 1004 lbs. See the table in Section 2.14 and select a rod size. A 3/8" rod with stiffener is adequate for up to 1246 lbs.

#### Step 7. Structural Attachment Detail

In this example, the ceiling is made of poured-in-place concrete, so the structure is concrete beam/slab. When anchoring to concrete, forces must be calculated at Strength Level with overstrength:

| STRENGTH LEVEL G-FACTORS FOR PIPING LOCAITON ON DIFFERENT FLOORS |                   |                               |                      |       |                     |
|------------------------------------------------------------------|-------------------|-------------------------------|----------------------|-------|---------------------|
| Floor Level X                                                    | Floor Height (ft) | ) OP/z/h06                    | $01 F_P$             | G     | $\Omega_0 \times G$ |
| 1                                                                | 10                | 0.25                          | $1.0 W_P$            | 1.0   | 2.0                 |
| 2                                                                | _20               | ✓• Willia <mark>0,5</mark> St | 1.333 W <sub>P</sub> | 1.333 | 2.667               |
| 3                                                                | <b>3</b> 0        | 0.75                          | 1.667 W <sub>P</sub> | 1.167 | 3.333               |
| 4                                                                | 40                | 1                             | $2.0 W_P$            | 2.0   | 4.0                 |
|                                                                  |                   | ATE: 04/10                    | )/2024               | 6     |                     |

 $F_{PV} = (0.2) * 2 * W_P = 0.4 * W_P$ 

 $F_{PH \ Transverse} = (2.667) * (26.6 \ lbs/ft) * (12ft) = 851 \ lbs$ 

VG CODE  $F_{PH \ Longitudinal} = (2.667) * (26.6 \ lbs/ft) * (24ft) = 1703 \ lbs$ 

 $F_{Brace-induced}$  = (1703 lbs) \* tan 45 deg = 1703 lbs

 $\beta_D$  = 1.2 for LFRD/Strength Design

 $F_{Rod} = (1.2) * (26.6 \text{ lbs/ft}) * (12\text{ft}) + (0.4) * (26.6 \text{ lbs/ft}) * (12\text{ft}) + 1703 \text{ lbs} = 2214 \text{ lbs}$ 

**Brace Structural Attachment:** 

Brace structural attachment can be quickly selected from Table 3.2.1.1. For 1703 lbs (longitudinal attachment design force) a 1/2 " diameter Hilti Kwik Bolt TZ2 with 3 1/4 " minimum embedment is sufficient.



• Hanger Rod Structural Attachment:

Brace structural attachment can be quickly selected from Table 4.2.1.1. For 2214 lbs a 1/2'' diameter Hilti Kwik Bolt TZ2 with 3 1/4'' minimum embedment is sufficient.

#### Step 8. Seismic Bracing Layout

Layout the designed bracing system follow the requirements listed in Section 1.5 "Seismic Bracing Layout".





### 1.6.2 Suspended Ductwork Design Example

In this example we design seismic bracing for a hypothetical suspended 38" x 50" rectangular duct made of 20-gauge sheet metal (constructed under SMACNA standards) in a 4-story concrete w/ metal deck building where each floor is 10' elevation. The ductwork is supported at every 10'. Short period spectral acceleration  $S_{DS}$  and component importance factor  $I_P$  are 2.0 and 1.5 indicated by the contract drawings.

### Step 1. Determine G-factor

As read from ASCE 7-16 Table 13.6-1, component amplification  $a_p$  and component response modification factors  $R_p$  for ductwork, constructed of high- or limited-deformability materials with joints made by means other than welding or brazing are 2.5 and 6.0 correspondingly.

Where:

 $\alpha_D = 0.7$  for ASD Method  $S_{DS} = 2.0$  (contract drawings)  $I_P = 1.5$  (contract drawings)  $a_P = 2.5$  (ASCE 7-16 Table 13.6-1)  $R_P = 6.0$  (ASCE 7-16 Table 13.6-1) (Note: your value of Rp may be different depending on distribution system. For this example, we are using 6.0)

$$F_{P} = (\alpha_{D}) \frac{0.4 (2.5) (2.0) (1.5) W_{P}}{(6.0)} \left(1 + 2\frac{z}{h}\right) = 0.35 \left(1 + 2\frac{z}{h}\right) W_{P}$$

$$F_{max} = (\alpha_{D}) 1.6 S_{DS} I_{P} W_{P} = (0.7) 1.6 (2.0) (1.5) W_{P} = 3.36 W_{P}$$

$$F_{min} = (\alpha_{D}) 0.3 S_{DS} I_{P} W_{P} = (0.7) 0.3 (2.0) (1.5) W_{P} = 0.63 W_{P}$$

$$F_{PV} = (\alpha_{D}) 0.2 S_{DS} W_{P} = (0.7) 0.2 (2.0) W_{P} = 0.28 W_{P}$$

z = X-th story x 10'/story = 10X', where X stands for floor level point of component connection with h = 4 story x 10'/story = 40'

(Note: your z and h values maybe different. Verify actual z and h values from project drawings. For this example



| G-FACTORS FOR DUCTWORK LOCATED ON DIFFERENT FLOORS |                   |      |                                                 |       |  |
|----------------------------------------------------|-------------------|------|-------------------------------------------------|-------|--|
| Floor Level X                                      | Floor Height (ft) | z/h  | F <sub>P</sub>                                  | G     |  |
| 1                                                  | 10                | 0.25 | $0.525W_P < F_{min} \rightarrow F_P = 0.63 W_P$ | 0.63  |  |
| 2                                                  | 20                | 0.5  | $0.7 W_P$                                       | 0.7   |  |
| 3                                                  | 30                | 0.75 | $0.875 W_P$                                     | 0.875 |  |
| 4                                                  | 40                | 1    | 1.05 $W_P$                                      | 1.05  |  |

#### Step 2. Seismic Bracing Detail

Select the rigid seismic bracing ISOTECH IRRA-3000R and check Section 5 "IRRA-3000R Bracket" for brace details.

#### Step 3. Brace Spacing

For 38" x 50" 20-gauge galvanized sheet metal, operating weight is 24.8 lbs/ft (can be read from RECTANGULAR DUCT WEIGHT table in Section 7.2 with gauge number 20 and cross-sectional perimeter being 180).

Perimeter= [(38+50) x 2] inches = 176 inches ||iam Staehlin

Let's take the 1<sup>st</sup> floor as an example, maximum brace spacings with G-factor being 0.63 and maximum operating weight being 24.8 lbs/ft.

- From Section 6.3 (spacing charts in accordance with max weight and G-factor), maximum Longitudinal Brace Spacing @0.75 G and 25 lb./ft = 37 ft (single restraint based on Brace Capacity) assuming 45° installation angle.
- Maximum Transverse Brace Spacing @0.75 G and 25 lb./ft= 37/2=18.5 ft based on Brace Capacity
- For installation convenience, 20 ft. and 10 ft. can also be used as the longitudinal and transverse brace spacing correspondingly.

#### Step 4. Determine Horizontal Seismic Forces at Floor Level 1

With maximum operating weight being 24.8 lbs/ft,



• Transverse Direction (bracing space 10 ft):

$$F_{PH\,Transverse} = 0.63 \left(24.8 \, \frac{lbs}{ft}\right) (10 \, ft) = 156.24 \, lbs$$

• Longitudinal Direction (bracing space 20 ft):

$$F_{PH\ Longitudinal} = 0.63 \left(24.8 \ \frac{lbs}{ft}\right)(20ft) = 312.48 \ lbs$$

#### Step 5. Determine Vertical Loads

 $\beta_D$  = 1.0 for ASD/Service Design

• Operating Loads (gravity supports spaced at 10 ft):

$$W_P = \left(24.8 \frac{lbs}{ft}\right)(10ft) = 248 \, lbs$$

• Vertical Seismic Force (gravity supports spaced at 10 ft):

$$F_{PV} = 0.28 \left(24.8 \frac{lbs}{ft}\right) (10ft) = 69.44 \, lbs$$

Assume the brace installation angle is 45°:

$$F_{Brace-induced} = F_{PH \ Longitudinal} \times tan\theta = 312.48 \ lbs$$

$$F_{Rod} = \beta_D \times W_P + F_{PV} + F_{Brace-induced} = 629.92 \ lbs$$

#### Step 6. Brace Detail

- A Transverse Brace can be quickly selected from Section 2.6. For 156.24 lbs (Transverse seismic load), single longitudinal bracing with 3/8" threaded rod is sufficient.
- A Longitudinal Brace can be quickly selected from Section 2.7. For 312.48 lbs (Longitudinal seismic load), dual longitudinal bracing with 3/8" threaded rod is sufficient.
- Conservatively assume that rod compression is 629.92 lbs. See the table in Section 2.14 and select a rod size. A 3/8" rod with stiffener is adequate for up to 1246 lbs.



#### Step7. Structural Attachment Detail

In this example, the ceiling is made of corrugated concrete w/ metal deck, so the structure is concrete w/ metal deck.

When anchoring to concrete, forces must be calculated at Strength Level with overstrength:

| STRENGTH LEVEL G-FACTORS FOR DUCTWORK LOCAITON ON DIFFERENT FLOORS |                   |      |             |      |                     |  |  |
|--------------------------------------------------------------------|-------------------|------|-------------|------|---------------------|--|--|
| Floor Level X                                                      | Floor Height (ft) | z/h  | $F_P$       | G    | $\Omega_0 \times G$ |  |  |
| 1                                                                  | 10                | 0.25 | 1.0 $W_P$   | 0.75 | 1.5                 |  |  |
| 2                                                                  | 20                | 0.5  | 1.333 $W_P$ | 1    | 2.0                 |  |  |
| 3                                                                  | 30                | 0.75 | 1.667 $W_P$ | 1.25 | 2.5                 |  |  |
| 4                                                                  | 40                | 1    | $2.0 W_P$   | 1.5  | 3.0                 |  |  |

 $F_{PV} = (0.2) * 2 * W_P = 0.4 * W_P$ 

 $F_{PH \ Transverse} = (1.5) * (24.8 \ \text{lbs/ft}) * (15 \ \text{ft}) = 558 \ \text{lbs}$ 

 $F_{PH \ Longitudinal} = (1.5) * (24.8 \ lbs/ft) * (30ft) = 1116 \ lbs$ 

- $F_{Brace-induced}$  = (1116 lbs) \* tan 45 deg = 1116 lbs
- $\beta_D = 1.2$  for LFRD/Strength Design OPM-0601

 $F_{Rod} = (1.2) * (24.8 \text{ lbs/ft}) * (10\text{ft}) + (0.4) * (24.8 \text{ lbs/ft}) * (10\text{ft}) + 1116 \text{ lbs} = 1512.8 \text{ lbs}$ 

Brace Structural Attachment: DATE: 04/10/2024

Brace structural attachment can be quickly selected from Table 3.2.1.1. For 1116 lbs (longitudinal attachment design force) a 1/2 " diameter Hilti Kwik Bolt TZ2 with 3 1/4 " minimum embedment is sufficient.

• Hanger Rod Structural Attachment:

Brace structural attachment can be quickly selected from Table 4.2.1.1. For 1512.8 lbs a 1/2" diameter Hilti Kwik Bolt TZ2 with 2" minimum embedment is sufficient.

### Step 8. Seismic Bracing Layout

Layout the designed bracing system follow the requirements listed in Section 1.5 "Seismic Bracing Layout".



## 1.6.3 Trapeze Design Example

In this example, we design seismic bracing for a hypothetical suspended trapeze which supports two 2" diameter and one 2.5" diameter water pipes made of schedule 40 steel (not in accordance with ASME B31, with threading joints) in a 4-story poured-in place concrete building where each floor is 15' elevation. The pipe is supported at every 10'. Short period spectral acceleration  $S_{DS}$  and component importance factor  $I_P$  are 2.0 and 1.5 indicated by the contract drawings. Use ASD Method. These pipes are "critical" according to ASME B31.9. HCAI considers all piping in facilities under their regulation to be critical.

### Step 1. Determine G-Factor

As read from ASCE 7-16 Table 13.6-1, component amplification  $a_p$  and component response modification factors  $R_p$  for piping not in accordance with ASME B31, including in-line components, constructed of high- or limited-deformability materials, with joints made by threading are 2.5 and 4.5 correspondingly.

Where:  $\alpha_D = 0.7 \text{ for ASD Method}$   $F_P = (\alpha_D) \frac{0.4a_p S_{DS} I_P W_P}{R_P} \left(1 + 2\frac{z}{h}\right)$  Where:  $\alpha_D = 0.7 \text{ for ASD Method}$   $S_{DS} = 2.0 \text{ (contract drawings)}$   $I_P = 1.5 \text{ (contract drawings)}$   $a_P = 2.5 \text{ (ASCE 7-16 Table 13.6-1)}$   $R_P = 4.5 \text{ (ASCE 7-16 Table 13.6-1)}$ DATE: 04/10/2024

Note: your value of  $R_P$  may be different depending on distribution system. For this example, we are using 4.5

$$F_P = (\alpha_D) \frac{0.4 (2.5) (2.0) (1.5) W_P}{(4.5)} \left(1 + 2\frac{z}{h}\right) = 0.47 \left(1 + 2\frac{z}{h}\right) W_P$$

 $F_{max} = (\alpha_D) 1.6S_{DS} I_P W_P = (0.7) 1.6 (2.0) (1.5) W_P = 3.36 W_P$  $F_{min} = (\alpha_D) 0.3S_{DS} I_P W_P = (0.7) 0.3 (2.0) (1.5) W_P = 0.63 W_P$ 

$$F_{PV} = (\alpha_D) 0.2 S_{DS} W_P = (0.7) 0.2 (2.0) W_P = 0.28 W_P$$

z = X-th story x 15'/story = 15X', where X stands for floor level point of component connection with



### h = 4 story x 15'/story = 60'

Note: your value of z and h may be different. Verify z and h values from project drawings. For this example, all stories are 15 feet high

| ASD LEVEL G-FACTORS FOR TRAPEZE LOCATED ON DIFFERENT FLOORS |                   |      |                      |       |  |  |  |
|-------------------------------------------------------------|-------------------|------|----------------------|-------|--|--|--|
| Floor Level X                                               | Floor Height (ft) | z/h  | F <sub>P</sub>       | G     |  |  |  |
| 1                                                           | 15                | 0.25 | 0.7 W <sub>P</sub>   | 0.7   |  |  |  |
| 2                                                           | 30                | 0.5  | 0.933 W <sub>P</sub> | 0.933 |  |  |  |
| 3                                                           | 45                | 0.75 | 1.167 $W_P$          | 1.167 |  |  |  |
| 4                                                           | 60                | 1    | 1.4 $W_P$            | 1.4   |  |  |  |

### Step 2. Seismic Bracing Detail

Select the rigid seismic bracing ISOTECH IRRA-3000R and check Section 5 "IRRA-3000R Bracket" for brace details.

## Step 3. Brace Spacing

Take the 3<sup>rd</sup> floor as an example, select maximum brace spacings with G-factor being 1.167, assume 45° installation angle.

There are 2 pipes (diameter 2 inches and 2.5 inches) in the trapeze supported system.

• From Table "SCHEDULE 40 (STD) STEEL PIPE-INSULATED AND FILLED WITH WATER" in Section 6.1, weights of 2-inch and 2.5-inch piping systems are 6.2 lb./ft and 9.1 lb./ft.

 $w_P = 2 * 6.2 + 1 * 9.1 = 21.5 \frac{lbs}{ft}$ 

- From Section 6.5, Maximum Longitudinal Brace Spacing @ 1.25 G for  $25 \frac{lbs}{ft}$  trapeze supported systems = 22ft
- Maximum Transverse Brace Spacing = 22/2 = 11 ft
- For installation convenience, 20 ft. and 10 ft. can also be used as the longitudinal and transverse brace spacing correspondingly, so that the braces align with the hangers at 10 ft spacing.
- Because the pipes were designated as Critical, use the Grade A Steel Water Pipe Table in Section 7.3 to determine maximum brace spacing based on Pipe Capacity. For grade A steel as an example, maximum transverse spacing at 1.25g, 2" diameter = 12ft which is greater than 10 ft spacing based on brace capacity. Therefore, brace capacity spacing limits govern.



For a total pipe weight of 21.5 lbs and a 10 ft trapeze spacing each trapeze supports 215 lbs. See the ٠ table in Section 2.13 which indicates that the maximum trapeze span can be 120" with a single strut, which is adequate for 255 lbs.

)PM-0601

#### Step 4. Determine Horizontal Seismic Forces at Floor Level 3

With maximum operating weight being 21.5 lbs/ft,

Transverse Direction (bracing space 10ft):

$$F_{PH\,Transverse} = 1.167\,\left(21.5\frac{lbs}{ft}\right)(10ft) = 251\,lbs$$

Longitudinal Direction (bracing space 20ft):

$$F_{PH \ Longitudinal} = 1.167 \left(21.5 \frac{lbs}{ft}\right) (20ft) = 502 \ lbs$$

#### Step 5. Determine Vertical Load

 $\beta_D$ : 1.0 for ASD/Service Design

Operating Loads (gravity supports space 10ft): 2011 •

$$W_P = \left(21.5 \frac{lbs}{ft}\right) (10ft) = 215 lbs: 04/10/2024$$

Vertical Seismic Force (gravity supports space 10ft): DING COD

$$F_{PV} = 0.28 \left(21.5 \frac{lbs}{ft}\right) (10ft) = 60 \ lbs$$

Assume the brace installation angle is 60°:

 $F_{Brace-induced} = F_{PH \ Longitudinal} \times tan60^{\circ} = 869 \ lbs$ 

$$F_{Rod} = \beta_D W_P + F_{PV} + F_{Brace-induced} = 1144 \ lbs$$


#### Step 6. Brace Detail

- A Transverse Brace can be quickly selected from Section 2.11. For 251 lbs (Transverse seismic load), single transverse bracing with 1/2" threaded rod is sufficient for 507 lbs.
- A Longitudinal Brace can be quickly selected from Section 2.12. For 502 lbs (longitudinal seismic load), dual longitudinal bracing with ½" threaded rod is sufficient for (2)\*(440 lbs) = 880 lbs.
- Conservatively assume that rod compression is 1144 lbs. See the table in Section 2.14 and select a rod size. A 3/8" rod with stiffener is adequate for up to 1246 lbs.

#### Step 7. Structural Attachment Detail

In this example, the ceiling is made of pour-in-place concrete, so the structure is concrete beam/slab. When anchoring to concrete forces must be calculated at Strength level for overstrength:

| ASD LEVE                                                                                                                                                                                                                       | L G-FACTORS FOR TH                                                                                                                                                                                                   | RAPEZE LOCAT                                                      | ED ON DIFFERENT                    | FLOORS |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------|--------|---------------------|
| Floor Level X                                                                                                                                                                                                                  | Floor Height (ft)                                                                                                                                                                                                    | z/h                                                               | F <sub>P</sub>                     | G      | $\Omega_o \times G$ |
| 1                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                   | 0.25                                                              | 1.0 W <sub>P</sub>                 | 2 1.0  | 2.0                 |
| 2                                                                                                                                                                                                                              | 30/                                                                                                                                                                                                                  | 0.5/-0                                                            | $601.333 W_P$                      | 1.333  | 2.667               |
| 3                                                                                                                                                                                                                              | 45                                                                                                                                                                                                                   | 0.75                                                              | 1.667 $W_P$                        | 1.667  | 3.333               |
| 4                                                                                                                                                                                                                              | 60 BY                                                                                                                                                                                                                | • Wi <b>l</b> iam S                                               | Stael2.0 Wp                        | 2.0    | 4.0                 |
| $F_{PV} = (0.2)(2)W_{P}$ $F_{PH \ Transverse} = (0.2)(2)W_{P}$ $F_{PH \ Transverse} = (0.2)(2)W_{P}$ $F_{PH \ Transverse} = (0.2)(2)W_{P}$ $F_{Brace-induced} = (0.2)(2)W_{P}$ $F_{Rod} = (1.2)(2)(2)$ $F_{Rod} = (1.2)(2)(2)$ | $P_{p} = (0.4)W_{p}$ $(3.333) \left(21.5 \frac{lbs}{ft}\right) (1)$ $= (3.333) \left(21.5 \frac{lbs}{ft}\right)$ $1433 \ lbs \times tan60^{\circ} = 3333$ Strength Design $(10) + (0.4) (21.5) (10)$ ral Attachment: | TE: 04/1 $0 ft) = 717$ $(20 ft) = 14$ $= 2482 lbs$ $0)+ 2482 = 2$ | 0/2024<br>lbs<br>33 lbs<br>826 lbs | 6102   |                     |



Brace structural attachment can be quickly selected from Table 3.2.1.1. For 1433 lbs (longitudinal attachment design force) a 5/8" diameter Hilti Kwik Bolt TZ2 with 3 1/4" minimum embedment is sufficient for 1750 lbs.

• Hanger Rod Structural Attachment:

Brace structural attachment can be quickly selected from Table 4.2.1.1. For 2482 lbs a 1/2" diameter Hilti Kwik Bolt TZ2 with 3 1/4" minimum embedment is sufficient for 2630 lbs.

#### Step 8. Seismic Bracing Layout

Layout the designed bracing system follow the requirements listed in Section 1.5 "Seismic Bracing Layout".





## 1.7 General Installation Notes

#### I. Rigid Restraint

ISOTECH Industries IRRA-3000R Rigid Restraint system is not meant to support dead load and should not be used as vertical hangers. IRRA-3000R Rigid Restraint system can be used to secure nonstructural component to building structure and provide resisting force against seismic loads. It must be installed at 45°±15° (angle from horizontal) to secure Pipe, Duct, Conduit, Cabe Tray/Raceway to the building structure.

The bracket should be securely attached to pipe or duct with bolts, nuts, and washers. Check available configurations in Section 2.0 and follow the instructions shown in drawings during installation. Check Section 5.0 for Bracket & Rigid Brace Details.

To securely the bracket of rigid restraint to the building structure, requirements listed below must be followed:

- Check structural attachments Section 3.0 for connection details, comply with the corresponding attachment type, size, embedment, and other requirements indicated by notes.
   William Staehlin
- Follow manufacturer installation instruction for torque value and proper anchor installation.

DATE: 04/10/2024

#### II. Rod Stiffeners

Rod stiffeners and clamps are required to be attached to the hanger rod for protection if the overall compression load caused by seismic load and brace-induced load (See details in Step 5 on page 21) exceeds allowable compression strength of the rod.



3021 E Coronado St. Anaheim, CA, 92806 U.S.A. https://isotechindustries.com/

| 0.2. #00017 (01) |
|------------------|
|------------------|

| 1 | 7  |  |
|---|----|--|
| ┸ | •/ |  |

Section

OPM-0601: Reviewed for Code Compliance by William Stachlin

### 1.8 Post- Installed Anchor Test Values

|                         |                              | Concrete Slab Test | Torque Test |
|-------------------------|------------------------------|--------------------|-------------|
|                         | Anchor Size                  | Values             | Values      |
|                         |                              | (lbs)              | (ft-lbs)    |
|                         | Ø3/8" x 2" Min.EFF.EMBED     | 1970               | 30          |
|                         | Ø1/2" x 2" Min.EFF.EMBED     | 1970               | 50          |
| HILTI KB-TZ2            | Ø1/2" x 3 1/4" Min.EFF.EMBED | 3300               | 50          |
| (3000 psi Slab or Wall) | Ø5/8" x 3 1/4" Min.EFF.EMBED | 4100               | 40          |
|                         | Ø5/8" x 4" Min.EFF.EMBED     | 4510               | 40          |
|                         | Ø3/4" x 3 3/4" Min.EFF.EMBED | 5050               | 110         |
|                         | Ø3/4" x 4 3/4" Min.EFF.EMBED | 5550               | 110         |
| HILTI KB-TZ2            | Ø3/8" x 2" Min.EFE.EMBED     | 1390               | 30          |
| (Soffit of Slab on      | Ø1/2" x 2" Min.EFF.EMBED     | 1300               | 50          |
| Composite Metal Deck)   | Ø1/2" x 3 1/4" Min.EFF.EMBED | 2020               | 50          |
|                         | Ø5/8" x 4" Min.EFF.EMBED     | 2660               | 40          |
|                         |                              | E C                |             |

#### Notes:

- 1. Anchor diameter refers to the thread size.
- 2. Apply proof test loads to anchors without removing the nut if possible. If not remove nut and install a threaded coupler to the same tightness of the original nut using a torque wrench and apply load.
- 3. Reaction loads form test fixtures may be applied close to the anchor being tested, provided the anchor is not restrained from withdrawing by the fixture(s).

**OPM-0601** 

- 4. Test equipment is to be calibrated by an approved testing laboratory in accordance with standard recognized procedures.
- 5. Testing shall be done in the presence of the special inspector and a report of the test results shall be submitted to the enforcement agency.
- The following criteria apply for the acceptance of installed anchors: HYDRAULIC RAM METHOD: The anchor should have no observable movement at the applicable test load. A practical way to determine observable movement is that the washer under the nut becomes loose.

TORQUE WRENCH METHOD: The applicable test torque must be reached within ½ turn of the nut.

7. Testing shall occur 24 hours minimum after installation of the subject anchors.





Single & Dual Transverse Bracing on Clevis Hanger for Pipe/Conduit

2.1 Single & Dual Transverse Bracing on Clevis Hanger for Pipe/Conduit



**Single Transverse Bracing** 



### **Dual Transverse Bracing**





## Single & Dual Transverse Bracing on Clevis Hanger for Pipe/Conduit

|                 | Transverse Assembly Allowable Load (ASD) |           |           |  |  |
|-----------------|------------------------------------------|-----------|-----------|--|--|
| Pipe Diameter   | Brace Angle Measured From Horiz. [lbs]   |           |           |  |  |
|                 | 30°                                      | 31° - 45° | 46° - 60° |  |  |
| 2 1/2" - 3 1/2" | 129                                      | 213       | 110       |  |  |
| 4" - 5"         | 236                                      | 448       | 292       |  |  |
| 6"              | 556                                      | 593       | 454       |  |  |
| 8"              | 556                                      | 593       | 454       |  |  |

#### NOTES:

- 1. PIPES WITH INSULATION SHALL NOT BE USED
- 2. FOR BRACES LONGER THAN 12 FT, A SPECIFIC DESIGN OF THE BRACE FOR COMPRESSION MUST BE PERFORMED.





Single & Dual Transverse Bracing on Riser Clamp for Pipe/Conduit

2.2 Single & Dual Transverse Bracing on Riser Clamp for Pipe/Conduit



Single Transverse Bracing







Note: Rigid Insulation or rigid blocks to be used at pipe hanger and brace locations to prevent insulation crushing



2.2

https://isotechindustries.com/

## Single & Dual Transverse Bracing on Riser Clamp for Pipe/Conduit

|                 | Transverse Assembly Allowable Load (ASD) |           |           |  |  |
|-----------------|------------------------------------------|-----------|-----------|--|--|
| Pipe Diameter   | Brace Angle Measured From Horiz. [lbs]   |           |           |  |  |
|                 | 30°                                      | 31° - 45° | 46° - 60° |  |  |
| 1 1/4" - 2"     | 272                                      | 317       | 310       |  |  |
| 2 1/2" - 3 1/2" | 272                                      | 317       | 310       |  |  |
| 4" - 5"         | 582                                      | 724       | 517       |  |  |
| 6"              | 920                                      | 746       | 636       |  |  |
| 8"              | 920                                      | 746       | 636       |  |  |

#### NOTES:

#### CODE

- 1. LOADS LISTED ABOVE ARE FOR SCHEDULE 10 AND BETTER PIPING. THE FOLLOWING REDUCTIONS SHALL APPLY FOR OTHER PIPING AND SYSTEMS:
  - a.) PIPING WITH INSULATION REDUCE LOADS BY 40% FOR 1 1/10-5" PIPES AND 25% FOR 6"-8" PIPES.
  - b.) THIN WALL PIPING REDUCE LOADS BY 0%
  - c.) CONDUITS EXCLUDING EMT REDUCE LOADS BY 0%

## **OPM-0601**

BY: William Staehlin

DATE: 04/10/2024

2. FOR TOLCO FIG.4B SPECIAL PIPE CLAMP, TIGHTEN BOLTS TO FOLLOWING TORQUE VALUES:

5/16'' – 11 ft·lbs

3/8'' – 19 ft·lbs

1/2'' – 50 ft·lbs

5/8'' – 65 ft·lbs

3. FOR BRACES LONGER THAN 12 FT, A SPECIFIC DESIGN OF THE BRACE FOR COMPRESSION MUST BE PERFORMED.



2.3 Single & Dual Longitudinal Bracing on Riser Clamp for Pipe/Conduit Single Longitudinal Bracing





Anaheim, CA, 92806 U.S.A. https://isotechindustries.com/

OPM-0601: Reviewed for Code



Compliance

Section 2.3







|               | Longitudinal Assembly Allowable Load (ASD) |           |           |  |
|---------------|--------------------------------------------|-----------|-----------|--|
| Pipe Diameter | Brace Angle Measured From Horiz. [lbs]     |           |           |  |
|               | 30°                                        | 31° - 45° | 46° - 60° |  |
| 2 1/2"        | 1420                                       | 1180      | 1030      |  |
| 3" - 4"       | 890                                        | 730       | 530       |  |
| 5" - 8"       | 830                                        | 680       | 490       |  |

#### NOTES:

| 1.                              | FOR TOLCO FIG.4L LONG                                                 | GITUDINAL CLAMP, TIGHTEN BO                                                                                     | LTS TO FOLLOWING TORQU | IE VALUES:                   |                       |
|---------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|------------------------------|-----------------------|
|                                 | 1/4'' – 6 ft·lbs                                                      |                                                                                                                 |                        |                              |                       |
|                                 | 5/16'' – 11 ft·lbs                                                    |                                                                                                                 | 0.5                    |                              |                       |
|                                 | 3/8'' – 20 ft·lbs                                                     | FORC                                                                                                            | ODE COA                |                              |                       |
|                                 | 1/2'' – 49 ft·lbs                                                     | EP.                                                                                                             | MD,                    |                              |                       |
|                                 | 5/8'' – 97 ft·lbs                                                     |                                                                                                                 |                        | 2                            |                       |
| 2.                              | FOR TOLCO FIG.4B SPEC                                                 | CIAL PIPE CLAMP, TIGHTEN BOLT                                                                                   | S TO FOLLOWING TORQUE  | VALUES:                      |                       |
|                                 | 5/16'' – 11 ft·lbs                                                    |                                                                                                                 | -0001                  | m                            |                       |
|                                 | 3/8'' – 19 ft·lbs                                                     | BY: Willian                                                                                                     | n Staehlin             |                              |                       |
|                                 | 1/2'' – 50 ft·lbs                                                     |                                                                                                                 |                        |                              |                       |
|                                 | 5/8'' – 65 ft·lbs                                                     |                                                                                                                 | 4/10/2024              | 0                            |                       |
| 3.                              | NO SUBSTITUTIONS ALL                                                  | OWED FOR TOLCO CLAMPS LIST                                                                                      | ED HERE.               | 0                            |                       |
|                                 |                                                                       | INIA BUI                                                                                                        | DINGCOV                |                              |                       |
| Vibration Isolation - R<br>4/10 | OTECH<br>DUSTRIES<br>Restraint Systems - Custom Engineering<br>0/2024 | 3021 E Coronado St.<br>Anaheim, CA, 92806 U.S.A.<br>https://isotechindustries.com/<br>OPM-0601: Reviewed for Co | When Bern S            | S.E. #S5877 (CA)<br>Stachlin | Section<br><b>2.3</b> |

2.4 Transverse & Longitudinal Bracing for Pipe/Conduit



2.5 Single & Dual Transverse Bracing for Pipe/Conduit on Threaded Rod
<u>Single Transverse Bracing</u>









|                 | Transverse Assembly Allowable Load (ASD) |           |           |  |  |
|-----------------|------------------------------------------|-----------|-----------|--|--|
| Pipe Diameter   | Brace Angle Measured From Horiz. [lbs]   |           |           |  |  |
|                 | 30°                                      | 31° - 45° | 46° - 60° |  |  |
| 1 1/4" – 2 1/2" | 93                                       | 97        | 96        |  |  |
| 3"              | 111                                      | 109       | 107       |  |  |

#### NOTES:

1. PIPES WITH INSULATION SHALL NOT BE USED.

2. FOR BRACES LONGER THAN 12 FT, A SPECIFIC DESIGN OF THE BRACE FOR COMPRESSION MUST BE PERFORMED.





Single & Dual Transverse Bracing for Trapeze Supported Rectangular Duct

2.6 Single & Dual Transverse Bracing for Trapeze Supported Rectangular Duct



Single Transverse Bracing





## Single & Dual Transverse Bracing for Trapeze Supported Rectangular Duct





|            | Transvers |           |           |           |
|------------|-----------|-----------|-----------|-----------|
| All Inread | Brace A   |           |           |           |
| ROU SIZE   | 30°       | 31° - 45° | 46° - 60° | UI SCIEWS |
| 3/8"       | 549       | 234       | 507       | 10        |
| 1/2"       | 549       | 234       | 507       | 10        |



| -     |                  |  |
|-------|------------------|--|
| Ultor | S.E. #S5877 (CA) |  |
|       |                  |  |

Section **2.6** 

ר ר

OPM-0601: Reviewed for code Compliance by William Stachlin

Single & Dual Longitudinal Bracing for Trapeze Supported Rectangular Duct

2.7 Single & Dual Longitudinal Bracing for Trapeze Supported Rectangular Duct



Single Longitudinal Bracing



### Single & Dual Longitudinal Bracing for Trapeze Supported Rectangular Duct





| 10/202<br>All | Dual Longitudinal Assembly<br>Allowable Load F <sub>P</sub> (ASD) |                            |                       | Single<br>Longitudinal       |
|---------------|-------------------------------------------------------------------|----------------------------|-----------------------|------------------------------|
| Thread<br>Rod | Brace                                                             | Angle Measu<br>Horiz. [lbs | Assembly<br>Allowable |                              |
| Size          | 30°                                                               | 31° - 45°                  | 46° - 60°             | Load F <sub>P</sub><br>(ASD) |
| 3/8"          | 463                                                               | 492                        | 440                   | 197                          |
| 1/2"          | 463                                                               | 492                        | 440                   | 197                          |





Transverse & Longitudinal Bracing for Trapeze Supported Rectangular Duct

2.8 Transverse & Longitudinal Bracing for Trapeze Supported Rectangular Duct



Single & Dual Transverse Bracing for Metal Strap Supported Round Duct

2.9 Single & Dual Transverse Bracing for Metal Strap Supported Round Duct



Single Transverse Bracing





| IVIA DI LA COM         |                                                         |           |           |  |
|------------------------|---------------------------------------------------------|-----------|-----------|--|
| All Thread Rod<br>Size | Transverse Assembly Allowable Load F <sub>P</sub> (ASD) |           |           |  |
|                        | Brace Angle Measured From Horiz. [lbs]                  |           |           |  |
|                        | 30°                                                     | 31° - 45° | 46° - 60° |  |
| 3/8"                   | 549                                                     | 234       | 507       |  |
| 1/2"                   | 549                                                     | 234       | 507       |  |

William Stat

PLAN VIEW (Showing Transverse Bracing Only)

04/10/2024

BY:

DAL

11ª

12 ga. Solid Strut B-Line, Unistrut or equal-



DO NOT BEND BRACE PAST 90

Single & Dual Longitudinal Bracing for Metal Strap Supported Round Duct

2.10 Dual Longitudinal Bracing for Metal Strap Supported Round Duct



**Dual Longitudinal Bracing** 







3021 E Coronado St. Anaheim, CA, 92806 U.S.A. https://isotechindustries.com/

| Utor Ben | S.E. #S5877 (CA) |
|----------|------------------|
|          |                  |

Section
2.10

OPM-0601: Reviewed for Code Compliance by William Stachlin
2.11 Single & Dual Transverse Bracing for Trapeze Supported Pipe/Conduit



Single Transverse Bracing



<sup>72</sup> of 185



Note: Rigid Insulation or rigid blocks to be used at pipe hanger and brace locations to prevent insulation crushing



| All Thread Rod<br>Size | Transverse Assembly Allowable Load F <sub>P</sub> (ASD) |           |           |  |  |  |
|------------------------|---------------------------------------------------------|-----------|-----------|--|--|--|
|                        | Brace Angle Measured From Horiz. [lbs]                  |           |           |  |  |  |
|                        | 30°                                                     | 31° - 45° | 46° - 60° |  |  |  |
| 3/8"                   | 549                                                     | 234       | 507       |  |  |  |
| 1/2"                   | 549                                                     | 234       | 507       |  |  |  |

### NOTES:

- 1. LOADS LISTED ABOVE ARE FOR SCHEDULE 10 AND BETTER PIPING. THE FOLLOWING REDUCTIONS SHALL APPLY FOR OTHER **PIPING AND SYSTEMS:** 
  - a. PIPING WITH INSULATION REDUCE LOADS BY 25% FOR 1"-2" PIPES, 32% FOR 2.5"-3.5" PIPES AND 43% FOR 4"-8" PIPES.
  - b. THIN WALL PIPING REDUCE LOADS BY 0%
  - c. CONDUITS INCLUDING EMT REDUCE LOADS BY 15%
- 2. MOUNTING HARDWARE FOR PIPE CLAMP OR PIPE STRAP SEE BELOW:

USE ¼" x 1 ¼" HARDWARE ON 1 1/2" PIPE AND SMALLER (TORQUE TO 6 ft·lbs).

USE 3/8" x 1 ¼" HARDWARE ON 2" - 3 1/2" PIPE (TORQUE TO 19 ft·lbs).

USE ½" x 1 ¼" HARDWARE ON 4" PIPES AND LARGER (TORQUE TO 50 ft·lbs).

3. FOR BRACES LONGER THAN 12 FT, A SPECIFIC DESIGN OF THE BRACE FOR COMPRESSION MUST BE PERFORMED.





3021 E Coronado St. Anaheim, CA, 92806 U.S.A.

Ulto Ber S.E. #S5877 (CA)

| Sec | ti | on |
|-----|----|----|
| 2   | 1  | 1  |

OPM-0601: Reviewed for Code Compliance by William

2.12 Dual Longitudinal Bracing for Trapeze Supported Pipe/Conduit



**Dual Longitudinal Bracing** 





| All Throad Rod | Longitudinal Assembly Allowable Load F <sub>P</sub> (ASD) |                                        |           |  |  |  |
|----------------|-----------------------------------------------------------|----------------------------------------|-----------|--|--|--|
| Size           | Brace                                                     | Brace Angle Measured From Horiz. [lbs] |           |  |  |  |
| 5120           | 30°                                                       | 31° - 45°                              | 46° - 60° |  |  |  |
| 3/8"           | 463                                                       | 492                                    | 440       |  |  |  |
| 1/2"           | 463                                                       | 492                                    | 440       |  |  |  |

NOTE: FOR BRACES LONGER THAN 12 FT, A SPECIFIC DESIGN OF THE BRACE FOR COMPRESSION MUST BE PERFORMED.



3021 E Coronado St. Anaheim, CA, 92806 U.S.A. https://isotechindustries.com/

| IIII SEA |               |
|----------|---------------|
| 3.E. #   | \$\$5877 (CA) |

Section
2.12

OPM-0601: Reviewed for tode Compliance by William Stachlin

# 2.13 Maximum Supporting Weight for Strut

| Trapeze Span  | Allowable Load                | Per Trapeze (lbs) |
|---------------|-------------------------------|-------------------|
| (in)          | Single Strut                  | Double Strut      |
| 24            | 1349                          | 3823              |
| 36            | 897                           | 2544              |
| 48            | 670                           | 1902              |
| 60            | 533                           | 1517              |
| 72            | 442<br>P C D E C              | 1258              |
| 84 J          | 376                           | 1073              |
| 96            | 326                           | 933               |
| 108           | DPM <sup>286</sup> 01         | 824               |
| 120<br>BY: V  | <b>255</b><br>Villiam Staehli | 736               |
| 144           | 207                           | 602               |
| <b>2168DA</b> | E: 04/720/202                 | 4 505             |
| 192           | 145                           | 430               |
| 216           | 123                           | 371               |
| 240           | 105                           | 322               |

### NOTES:

1. STRUTS ARE ASSUMED TO BE 1.625" x1.625" x12ga. SINGLE STRUT REFERS TO UNISTRUT P1000 OR EQUIVALENT. DOUBLE STRUT REFERS TO UNISTRUT P1001 OR EQUIVALENT.

2. CAPACITIES ARE BASED ON A UNIFORM LOAD OVER THE MIDDLE 75% OF THE TRAPEZE.



3021 E Coronado St. Anaheim, CA, 92806 U.S.A. https://isotechindustries.com/

| Ultor Ben | S.E. #S5877 (CA) |
|-----------|------------------|
|           |                  |

Section
2.13

79 of 187

Rod Stiffener

## 2.14 Rod Stiffener



OPM-0601: Reviewed for Code Compliance by William Stachli

https://isotechindustries.com/

10/202

## 2.15 Cross Bolt Spacer



- 1) CROSS BOLT SPACER ONLY REQUIRED AT SEISMIC BRACING LOCATIONS
- 2) RIGID INSULATION OR RIGID BLOCKS TO BE USED AT PIPE HANGER AND BRACE LOCATIONS TO PREVENT INSULATION CRUSHING.





- 3.1 Concrete over Metal Deck
- 3.1.1 Post-installed Wedge Anchor





## Single Anchor



#### **Double Anchor w/ Solid Channel**



|                |                             |                       | Min.                          |        | Stren        | gth Design           | Seismic C           | apacity    |         |
|----------------|-----------------------------|-----------------------|-------------------------------|--------|--------------|----------------------|---------------------|------------|---------|
| Anchor<br>Dia. | Min.<br>Effective<br>embed. | Cmin'<br>Min.<br>Edge | Spacing<br>Between<br>Anchors | Ma     | ax. Horizont | al Load Bra<br>Horiz | ce Angle I<br>ontal | Measured F | rom     |
|                | Depth hef                   | Distance              | on Same<br>Flute              |        | Single (LB)  |                      |                     | Double (LB | 5)      |
|                |                             |                       |                               | 0°-30° | 31°-45°      | 46°-60°              | 0°-30°              | 31°-45°    | 46°-60° |
| 3/8"           | 2"                          | 6 3/4"                | 12"                           | 1050   | 800          | 550                  | 2100                | 1600       | 1100    |
| 1/2"           | 2"                          | 6 3/4"                | 12"                           | 1060   | 790          | 530                  | 2120                | 1580       | 1060    |
| 1/2"           | 3 1/4"                      | 9 3/4"                | 12"                           | 1820   | 1300         | 850                  | 3640                | 2600       | 1700    |
| 5/8"           | 4"                          | 12"                   | 12"R                          | 2500 E | 1780         | 1120                 | 5000                | 3560       | 2240    |

### 3.1.1.1 Hilti KB-TZ2 Anchor

#### NOTES:

1. CAPACITIES ARE FOR ANCHORS INSTALLED IN STONE AGGREGATE CONCRETE HAVING A MIN. COMPRESSIVE STRENGTH OF 3,000 PSI AT THE TIME OF INSTALLATION AND DETERMINED PER ICC ESR-4266 (HILTI KB-TZ2 ANCHOR) FOR ANCHORS IN CRACKED CONCRETE. ALLOWABLE LOADS HAVE BEEN MULTIPLIED BY THE SEISMIC REDUCTION FACTOR PER ACI 318-19 Table 17.5.3(a).

- 2. SEE SECTION 1.8 FOR TESTING REQUIREMENTS.
- 3. FOLLOW ALL WEDGE ANCHOR INSTALLATION REQUIREMENTS PER ICC ESR-4266.
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE. LOCATE PRESTRESSING STEEL AND AVOID DAMAGING PRESTRESSING STEEL.
- 6. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED ALLOWABLE LOADS.
- 7. SPECIAL INSPECTION SHALL BE PROVIDED PER CBC. THE SPECIAL INSPECTOR MUST BE ON THE JOBSITE CONTINUOUSLY DURING ANCHOR INSTALLATION TO VERIFY ANCHOR TYPE, ANCHOR DIMENSIONS, HOLE DIMENSIONS, ANCHOR SPACING, EDGE DISTANCES, SLAB THICKNESS, ANCHOR EMBEDMENT AND TIGHTENING TORQUE. TEST REPORT OF THE RESULTS SHALL BE SUBMITTED TO HCAI.
- 8. IRRA-3000R ATTACHMENT DIAMETER SHALL BE EQUAL TO THE ANCHOR DIAMETER.
- 9. STRUT HOLE SIZE SHALL BE NO LARGER THAN BOLT DIAMETER PLUS 1/16" PER AISI.
- 10. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIAMETER BY MORE THAN 1/8" PER ICC-ESR.
- 11. S-MAX (MAX SPACING BETWEEN ANCHORS ON SAME FLUTE) NOT TO EXCEED 21 INCHES

|           | 3021 E Coronado St.            | Uller Bar S.F. #S5877 (CA)          | Section   |
|-----------|--------------------------------|-------------------------------------|-----------|
| SISUIECH  | Anaheim, CA, 92806 U.S.A.      |                                     | 21        |
|           | https://isotechindustries.com/ |                                     | 3.1       |
| 4/10/2024 | OPM-0601: Reviewed for         | Code Compliance by William Stachlin | 85 of 187 |
|           |                                |                                     | 02 ( 105  |

### 3.1.2 Cast-In Anchor







### Double Anchor w/ Solid Channel



|                |                                      |                            | Strength Design Seismic Capacity |                          |                           |                                 |                              |  |  |
|----------------|--------------------------------------|----------------------------|----------------------------------|--------------------------|---------------------------|---------------------------------|------------------------------|--|--|
| Anchor<br>Dia. | Min.<br>Anchor<br>Effective<br>Depth | Upper Flute M<br>Angle Mea | ax. Horizontal<br>sured From Ho  | Load Brace<br>oriz. (LB) | Lower Flute N<br>Angle Me | Max. Horizonta<br>asured From H | ll Load Brace<br>Ioriz. (LB) |  |  |
|                |                                      | 0° - 30°                   | 31° - 45°                        | 46° - 60°                | 0° - 30°                  | 31° - 45°                       | 46° - 60°                    |  |  |
| 3/8"           | 1 3/4"                               | 1900                       | 1380                             | 900                      | 1100                      | 740                             | 470                          |  |  |
| 1/2"           | 2"                                   | 2850                       | 1900                             | 1200                     | 1400                      | 950                             | 600                          |  |  |
| 5/8"           | 2 1/2"                               | 3700                       | 2400                             | 1500                     | 1700                      | 1120                            | 700                          |  |  |
| 3/4"           | 2 1/2"                               | 3850                       | 2500                             | 1550                     | 1700                      | 1130                            | 700                          |  |  |

### 3.1.2.1 Hilti KCM-MD Headed Stud Cast-In Anchor

#### NOTES:



- 1. CAPACITIES ARE FOR ANCHORS INSTALLED IN 3,000 PSI SAND LIGHTWEIGHT CONCRETE.
- HOLE MUST BE MADE IN THE STEEL DECK USING A STEP-DRILL, HOLE SAW, DECK PUNCH OR EQUIVALENT IN ACCORDANCE 4. WITH THE ANCHOR DIAMETER
- 5. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED CAPACITIES.
- 6. SPECIAL INSPECTION SHALL BE PROVIDED PER CBC, THE SPECIAL INSPECTOR MUST BE ON THE JOBSITE CONTINUOUSLY DURING ANCHOR INSTALLATION TO VERIFY ANCHOR TYPE, ANCHOR DIMENSIONS, HOLE DIMENSIONS, ANCHOR SPACING, EDGE DISTANCES, SLAB THICKNESS AND ANCHOR EMBEDMENT. TEST REPORT OF THE RESULTS SHALL BE SUBMITTED TO HCAI.
- 7. MINIMUM SPACING BETWEEN INSERTS SHALL BE 3 TIMES THE EMBEDMENT DEPTH OR 6 TIMES THE ANCHOR DIAMETER (WHICH EVER IS GREATER), UNLESS NOTED OTHERWISE.

VIA BUILDING COD

- 8. IRRA-3000R ATTACHMENT DIAMETER SHALL BE EQUAL TO THE ANCHOR DIAMETER.
- 9. MINIMUM EDGE DISTANCE SHALL BE 1.5 TIMES THE EMBEDMENT DEPTH OR 6 TIMES THE ANCHOR DIAMETER WHICHEVER IS GREATER, UNLESS NOTED OTHERWISE.
- 10. FOLLOW ALL HILTI KCM-MD INSTALLATION REQUIREMENTS PER ICC-ESR 4145.
- 11. S-MAX (MAX SPACING BETWEEN ANCHORS) NOT TO EXCEED 17 INCHES



3021 E Coronado St. Anaheim, CA, 92806 U.S.A.

|  | Ulto Ben | S.E. #S5877 (CA) |
|--|----------|------------------|
|--|----------|------------------|

**Section** 

<del>OPM-0601: Reviewed for </del>Co<del>de Compliance by</del>

|                |                             | Strength                                                                                 | Design Seismi | c Capacity |  |  |
|----------------|-----------------------------|------------------------------------------------------------------------------------------|---------------|------------|--|--|
| Anchor<br>Dia. | Min.<br>Anchor<br>Effective | Lower Flute Double Anchors Max. Horizontal<br>Load Brace Angle Measured From Horiz. (LB) |               |            |  |  |
|                | Deptil                      | 0° - 30°                                                                                 | 31° - 45°     | 46° - 60°  |  |  |
| 3/8"           | 1 3/4"                      | 2200                                                                                     | 1480          | 940        |  |  |
| 1/2"           | 2"                          | 2800                                                                                     | 1900          | 1200       |  |  |
| 5/8"           | 2 1/2"                      | 3400                                                                                     | 2240          | 1400       |  |  |
| 3/4"           | 2 1/2"                      | 3400                                                                                     | 2260          | 1400       |  |  |

### 3.1.2.2 Hilti KCM-MD Headed Stud Cast In Anchor – Double Anchors

#### NOTES:



- 1. CAPACITIES ARE FOR ANCHORS INSTALLED IN 3,000 PSI SAND LIGHTWEIGHT CONCRETE.
- 2. HOLE MUST BE MADE IN THE STEEL DECK USING A STEP-DRILL, HOLE SAW, DECK PUNCH OR EQUIVALENT IN ACCORDANCE WITH THE ANCHOR DIAMETER.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED CAPACITIES.
- 4. SPECIAL INSPECTION SHALL BE PROVIDED PER CBC, THE SPECIAL INSPECTOR MUST BE ON THE JOBSITE CONTINUOUSLY DURING ANCHOR INSTALLATION TO VERIFY ANCHOR TYPE, ANCHOR DIMENSIONS, HOLE DIMENSIONS, ANCHOR SPACING, EDGE DISTANCES, SLAB THICKNESS AND ANCHOR EMBEDMENT. TEST REPORT OF THE RESULTS SHALL BE SUBMITTED TO HCAI.
- 5. MINIMUM SPACING BETWEEN INSERTS SHALL BE 3 TIMES THE EMBEDMENT DEPTH OR 6 TIMES THE ANCHOR DIAMETER (WHICH EVER IS GREATER), UNLESS NOTED OTHERWISE.
- 6. IRRA-3000R ATTACHMENT DIAMETER SHALL BE EQUAL TO THE ANCHOR DIAMETER.
- 7. MINIMUM EDGE DISTANCE SHALL BE 1.5 TIMES THE EMBEDMENT DEPTH OR 6 TIMES THE ANCHOR DIAMETER WHICHEVER IS GREATER, UNLESS NOTED OTHERWISE.
- 8. FOLLOW ALL HILTI KCM-MD INSTALLATION REQUIREMENTS PER ICC-ESR 4145
- 9. S-MAX (MAX SPACING BETWEEN ANCHORS) NOT TO EXCEED 17 INCHES

| _            |                                             |       |
|--------------|---------------------------------------------|-------|
|              | ISOTECI                                     |       |
|              | NUCLICATION                                 | -     |
| -            | INDUSTRIE                                   | 5     |
| Vibration Is | olation . Restraint Systems . Custom Engine | ering |
|              | 4/10/2024                                   | 100   |



https://isotechindustries.com/

114 Pan S.E. #S5877 (CA)

| 2 | 1 |
|---|---|
|   |   |

Section

-OPM-0601: Reviewed for Code Compliance by William Stachlin

- 3.2 Concrete Slab/Beam
- 3.2.1 Post-installed Wedge Anchor





88 of 185



Ulto Ber

Compliance by William

Anaheim, CA, 92806 U.S.A.

https://isotechindustries.com/

OPM-0601: Reviewed for Co

S.E. #S5877 (CA)

Stac

Double Anchor w/ Solid Channel

3.2

### 3.2.1.1 Hilti KB-TZ2 Anchor

| Min. Cmin' Smin'<br>Anchor Effective Min. | Custul          | Crain                                                        |         | Strength Design Seismic Capacity |      |           |      |        |           |      |
|-------------------------------------------|-----------------|--------------------------------------------------------------|---------|----------------------------------|------|-----------|------|--------|-----------|------|
|                                           | T' Min.<br>Base | Max. Horizontal Load Brace Angle Measured<br>From Horizontal |         |                                  |      |           |      |        |           |      |
| Dia.                                      | embed.          | Edge                                                         | Spacing | Material                         | S    | ingle (LE | 3)   | D      | ouble (LE | 3)   |
|                                           | Depth hef       | Distance                                                     | Anchors | Thickness                        | 0°-  | 31°-      | 46°- | 0° 20° | 31°-      | 46°- |
|                                           |                 |                                                              | Anchors |                                  | 30°  | 45°       | 60°  | 0-30   | 45°       | 60°  |
| 3/8"                                      | 2"              | 6 3/4"                                                       | 12"     | 4"                               | 1600 | 1200      | 800  | 3200   | 2400      | 1600 |
| 1/2"                                      | 2"              | 6 3/4"                                                       | 12"     | 4"                               | 1600 | 1200      | 800  | 3200   | 2400      | 1600 |
| 1/2"                                      | 3 1/4"          | 9 3/4"                                                       | 12"     | 6"                               | 2900 | 2100      | 1400 | 5800   | 4200      | 2800 |
| 5/8"                                      | 3 1/4"          | 9 3/8"                                                       | 12"     | 5"                               | 4000 | 2700      | 1750 | 8000   | 5400      | 3500 |
| 5/8"                                      | 4"              | 12"                                                          | 12"     | 6"                               | 4200 | 2950      | 1900 | 8400   | 5900      | 3800 |
| 3/4"                                      | 3 3/4"          | 11 1/4"                                                      | 12"     | 6"                               | 5100 | 3500      | 2200 | 10200  | 7000      | 4400 |

### NOTES:

- 1. CAPACITIES ARE FOR ANCHORS INSTALLED IN STONE AGGREGATE CONCRETE HAVING A MIN. COMPRESSIVE STRENGTH OF 3,000 PSI AT THE TIME OF INSTALLATION AND DETERMINED PER ICC ESR-4266 (HILTI KB-TZ2 ANCHOR) FOR ANCHORS IN CRACKED CONCRETE. ALLOWABLE LOADS HAVE BEEN MULTIPLIED BY THE SEISMIC REDUCTION FACTOR PER ACI 318-19 Table 17.5.3(a).
- 2. SEE SECTION 1.8 FOR TESTING REQUIREMENTS.
- 3. FOLLOW ALL WEDGE ANCHOR INSTALLATION REQUIREMENTS PER ICC ESR-4266
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE. LOCATE PRESTRESSING STEEL AND AVOID DAMAGING PRESTRESSING STEEL.
- 6. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED ALLOWABLE LOADS.
- 7. SPECIAL INSPECTION SHALL BE PROVIDED PER CBC. THE SPECIAL INSPECTOR MUST BE ON THE JOBSITE CONTINUOUSLY DURING ANCHOR INSTALLATION TO VERIFY ANCHOR TYPE, ANCHOR DIMENSIONS, HOLE DIMENSIONS, ANCHOR SPACING, EDGE DISTANCES, SLAB THICKNESS, ANCHOR EMBEDMENT AND TIGHTENING TORQUE. TEST REPORT OF THE RESULTS SHALL BE SUBMITTED TO HCAI.
- 8. IRRA-3000R ATTACHMENT DIAMETER SHALL BE EQUAL TO THE ANCHOR DIAMETER.
- 9. STRUT HOLE SIZE SHALL NOT BE LARGER THAN BOLT DIAMETER PLUS 1/16" PER AISI.
- 10. S-MAX (MAX SPACING BETWEEN ANCHORS) NOT TO EXCEED 17 INCHES

|           | 3021 E Coronado St.            | Ulter Br S.E. #S5877 (CA)           | Section   |
|-----------|--------------------------------|-------------------------------------|-----------|
| SISUIECH  | Anaheim, CA, 92806 U.S.A.      |                                     | 22        |
|           | https://isotechindustries.com/ |                                     | 3.2       |
| 4/10/2024 | OPM-0601: Reviewed for         | eode Compliance by William Stachlin | 92 of 187 |
|           |                                |                                     |           |

### 3.2.2 Cast-In Anchor







Section



Anaheim, CA, 92806 U.S.A.

https://isotechindustries.com/

OPM-0601: Reviewed for Co

\_\_\_\_\_] \_\_\_\_\_\_<u>94 of 187</u>

William

Compliance by



3.2

|                                        | Min. T' Min  |                  | Strength Design Seismic Capacity                          |           |          |           |           |      |  |  |
|----------------------------------------|--------------|------------------|-----------------------------------------------------------|-----------|----------|-----------|-----------|------|--|--|
| Anchor Effective Base<br>Dia. Material |              | Base<br>Material | Max. Horizontal Load Brace Angle Measured From Horiz (LB) |           |          |           |           |      |  |  |
|                                        | Depth<br>hef | Thickness        | Single                                                    |           |          |           | Double    |      |  |  |
|                                        |              | 0° - 30°         | 31° - 45°                                                 | 46° - 60° | 0° - 30° | 31° - 45° | 46° - 60° |      |  |  |
| 3/8"                                   | 1 3/4"       | 3 1/2"           | 1050                                                      | 900       | 700      | 2100      | 1800      | 1400 |  |  |
| 1/2"                                   | 2"           | 4"               | 1700                                                      | 1400      | 1050     | 3400      | 2800      | 2100 |  |  |
| 5/8"                                   | 2 1/2"       | 5"               | 2600                                                      | 2100      | 1500     | 5200      | 4200      | 3000 |  |  |
| 3/4"                                   | 2 1/2"       | 5"               | 2600                                                      | 2100      | 1500     | 5200      | 4200      | 3000 |  |  |

### 3.2.2.1 Hilti KCM-WF Headed Stud Cast-In Anchor

#### NOTES:



- 1. Hilti KCM-WF INSERTS MUST BE POSITIONED ON WOOD OR SIMILAR FORMWORK WITH ALL THREE NAILS IN CONTACT WITH THE FORM. THE HEAD OF THE HILTI KCM-WF MUST BE IMPACTED WITH SUFFICIENT FORCE TO DRIVE NAILS ALL THE WAY INTO THE FORMWORK UNTIL THE PLASTIC BASE SITS FLUSH AND TIGHT AGAINST THE FORM.
- 2. CAPACITIES ARE FOR 4,000 PSI NORMAL WEIGHT CONCRETE.
- 3. MINIMUM CONCRETE THICKNESS OF 2 TIMES THE EFFECTIVE EMBEDMENT DEPTH, OR THE EMBEDMENT DEPTH PLUS THREE TIMES THE DIAMETER, WHICHEVER IS GREATER, SHALL BE PROVIDED, UNLESS NOTED OTHERWISE.
- 4. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED CAPACITIES.
- 5. SPECIAL INSPECTION SHALL BE PROVIDED PER CBC. THE SPECIAL INSPECTOR MUST BE ON THE JOBSITE CONTINUOUSLY DURING ANCHOR INSTALLATION TO VERIFY ANCHOR TYPE, ANCHOR DIMENSIONS, HOLE DIMENSIONS, ANCHOR SPACING, EDGE DISTANCES, SLAB THICKNESS AND ANCHOR EMBEDMENT. TEST REPORT OF THE RESULTS SHALL BE SUBMITTED TO HCAI.
- 6. MINIMUM SPACING BETWEEN THE INSERTS SHALL BE 3 TIMES THE EMBEDMENT DEPTH OR 6 TIMES THE ANCHOR DIAMETER (WHICH EVER IS GREATER), UNLESS NOTED OTHERWISE.
- 7. Hilti KCM-WF IS A CAST-IN-PLACE ANCHOR BOLT AND COMPLIES WITH ACI 318 CHAPTER 17 AND DOES NOT REQUIRE ADDITIONAL TESTING CERTIFICATION.
- 8. IRRA-3000R ATTACHMENT DIAMETER SHALL BE EQUAL TO THE ANCHOR DIAMETER.
- 9. MINIMUM EDGE DISTANCE SHALL BE 1.5 TIMES THE EMBEDMENT DEPTH OR 6 TIMES THE ANCHOR DIAMETER WHICHEVER IS GREATER, UNLESS NOTED OTHERWISE.
- 10. FOLLOW ALL HIITI KCM-WF INSTALLATION REQUIREMENTS PER ICC-ESR 4145.
- 11. S-MAX (MAX SPACING BETWEEN ANCHORS) NOT TO EXCEED 33 INCHES

| 5 U.S.A.                                       | Section                                                                        |
|------------------------------------------------|--------------------------------------------------------------------------------|
| ies.com/                                       | 3.2                                                                            |
| viewed for Code Compliance by William Stachlin | 95 of 187                                                                      |
|                                                | St.<br>5 U.S.A.<br>ries.com/<br>viewed for Code Compliance by William Stachlin |

Concrete Wall – Rigid Restraint Attachment

## 3.3 Concrete Wall

3.3.1 Post-installed Wedge Anchor









OPM-0601: Reviewed for code Compliance by William Stachlin

# Concrete Wall – Rigid Restraint Attachment

### 3.3.1.1 Hiliti KB-TZ2 Anchor

|                  | Min.<br>Effective<br>embed. | lin.<br>ctive<br>bed.<br>th hef | T' Min. Base<br>Material<br>Thickness | Strength Design Seismic Capacity                                  |           |           |  |
|------------------|-----------------------------|---------------------------------|---------------------------------------|-------------------------------------------------------------------|-----------|-----------|--|
| Anchor E<br>Dia. |                             |                                 |                                       | Max. Horizontal Load Brace Angle<br>Measured From Horizontal (LB) |           |           |  |
|                  | Depth hef                   |                                 |                                       | 0° - 30°                                                          | 31° - 45° | 46° - 60° |  |
| 3/8"             | 2"                          | 12"                             | 4"                                    | 1600                                                              | 1200      | 800       |  |
| 1/2"             | 2"                          | 12"                             | 4"                                    | 1600                                                              | 1200      | 800       |  |
| 1/2"             | 3 1/4"                      | 12"                             | 6"                                    | 2900                                                              | 2100      | 1400      |  |
| 5/8"             | 3 1/4"                      | 12"                             | 5"                                    | 4000                                                              | 2700      | 1750      |  |
| 5/8"             | 4"                          | 12"                             | 6"                                    | 4200                                                              | 3500      | 2200      |  |

### NOTES:



- 1. CAPACITIES FOR ANCHORS INSTALLED IN STONE AGGREGATE CONCRETE HAVING A MIN. COMPRESSIVE STRENGTH OF 3,000 PSI AT THE TIME OF INSTALLATION AND DETERMINED PER ICC ESR-4266 (HILTI KB-TZ2 EXPANSION ANCHOR) FOR ANCHORS IN CRACKED CONCRETE. ALLOWABLE LOADS HAVE BEEN MULTIPLIED BY THE SEISMIC REDUCTION FACTOR PER ACI 318-19 Table 17.5.3(a).
- 2. SEE SECTION 1.8 FOR TESTING REQUIREMENTS. DM\_0601
- 3. FOLLOW ALL WEDGE ANCHOR INSTALLATION REQUIREMENTS PER ICC ESR-4266
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE. LOCATE PRESTRESSING STEEL AND AVOID DAMAGING PRESTRESSING STEEL.
- 6. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED ALLOWABLE LOADS.
- 7. SPECIAL INSPECTION SHALL BE PROVIDED PER CBC. THE SPECIAL INSPECTOR MUST BE ON THE JOBSITE CONTINUOUSLY DURING ANCHOR INSTALLATION TO VERIFY ANCHOR TYPE, ANCHOR DIMENSIONS, HOLE DIMENSIONS, ANCHOR SPACING, EDGE DISTANCES, SLAB THICKNESS, ANCHOR EMBEDMENT AND TIGHTENING TORQUE. TEST REPORT OF THE RESULTS SHALL BE SUBMITTED TO HCAI.

BUTIDING

8. IRRA-3000R ATTACHMENT DIAMETER SHALL BE EQUAL TO THE ANCHOR DIAMETER.



3021 E Coronado St. Anaheim, CA, 92806 U.S.A.

| Ulto Ban | S.E. #S5877 (CA) |
|----------|------------------|
| Who er a | 3.E. #33077 (OR) |

Section

OPM-0601: Reviewed for Code Compliance by



3.4 Unfilled Metal Deck







# Unfilled Metal Deck – Rigid Restraint Attachment

### 3.4.1 Hilti PPH Self-Drilling Screw

| ALLOWABLE STRENGTH DESIGN (ASD)                                   |                                                                 |           |                              |          |  |  |  |
|-------------------------------------------------------------------|-----------------------------------------------------------------|-----------|------------------------------|----------|--|--|--|
| MAX. HORIZONTAL LOAD<br>BRACE ANGLE MEASURED FROM HORIZONTAL (LB) |                                                                 |           |                              |          |  |  |  |
|                                                                   | PERPENDICULA                                                    | २         |                              | PARALLEL |  |  |  |
| 0° - 30°                                                          | 31° - 45°                                                       | 46° - 60° | 0° - 30° 31° - 45° 46° - 60° |          |  |  |  |
| 100                                                               | 100         100         100         100         100         100 |           |                              |          |  |  |  |

#### NOTES:

1. ALLOWABLE LOADS ARE CALCULATED BASED ON CAPACITY OF HILTI SELF-DRILLING SCREW S-MD 8-18 PPH #2 WITH NOMINAL SCREW LENGTH ¾ INCH WHICH IS USED FOR CONNECTION BETWEEN METAL DECK (MIN. GAUGE # 18) AND A STEEL CHANNEL (GAUGE # 12).

- 2. TO UTILIZE FULL CAPACITY OF THE SCREW, PROTRUSION LENGTH OF THE SCREW SHALL NOT BE LESS THAN 0.375 INCH. ALSO FOLLOW OTHER INSTALLATION AND INSPECTION REQUIREMENTS PER ICC ESR 2196 (2022).
- 3. FOR SHEET METALS WITH  $F_{\mu} \ge 65$  KSI, THE MAXIMUM ALLOWABLE STRENGTH VALUE SHALL BE MULTIPLIED BY 1.44 IN ACCORDANCE WITH ICC ESR 2196.
- 4. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY THE ADEQUACY OF THE STRUCTURE FOR THE TABULATED ANCHOR LOAD CAPACITY.

ATE: 04/10/2024

PNIA BUI

ING CODE

- 5. MINIMUM 2 SCREWS PER FLUTE
- 6. MINIMUM 2 SCREWS AT EACH UNISTRUT-TO-FLUTE CONNECTION



3021 E Coronado St. Anaheim, CA, 92806 U.S.A.

Ulter Ben S.E. #S5877 (CA)

1<del>00 of</del>

OPM-0601: Reviewed for Code Compliance by William Stael







Compliance by William

https://isotechindustries.com/

OPM-0601: Reviewed for Code

Welding to Lower Flange Perpendicular to Beam

3.5



Ulter Ben

Compliance by William

Anaheim, CA, 92806 U.S.A.

https://isotechindustries.com/

OPM-0601: Reviewed for Code

S.E. #S5877 (CA)

Sta

Welding to Lower Flange Parallel to Beam

3.5

| ALLOWABLE STRENGTH DESIGN (ASD)                                   |  |  |  |  |
|-------------------------------------------------------------------|--|--|--|--|
| MAX. HORIZONTAL LOAD<br>BRACE ANGLE MEASURED FROM HORIZONTAL (LB) |  |  |  |  |
| 0° - 30° 31° - 45° 46° - 60°                                      |  |  |  |  |
| 1155 1220 1250                                                    |  |  |  |  |

#### NOTES:

\* Due to high strength of welding connection, the tabulated capacity values of the attachment are limited by capacity of IRRA-3000R rigid brace system, i.e., the brace would fail before the attachment failure.

- 1. ALL STRUCTURAL STEEL SHALL BE MINIMUM ASTM A36. BOLT SHALL BE A307 BOLT OR BETTER, IT SHALL MEET ASME STANDARD B18.2.1, WITH A MINIMUM MATERIAL SPECIFICATION, YIELD STRENGTH  $F_{v}$  OF 45 KSI.
- 2. WELDING SHALL BE DONE BY ELECTRIC SHIELDED ARC PROCESS USING E-70XX ELECTRODE.

DAIE:

RNIA BUIL

- 3. ALL WELDING SHALL BE PERFORMED BY CERTIFIED WELDER AND IN CONFORMED WITH AWS STANDARDS AND 2022 CBC. CONTINUOUS INSPECTIONS ARE REQUIRED FOR ALL WELDING CONNECTIONS. PIVI-060
- 4. DO NOT WELD IN ANY PORTION OF A BEAM THAT IS DESIGNATED AS A "PROTECTED ZONE" PER AISC 358 OR AISC 341. SEE STRUCTURAL DRAWINGS FOR LOCATIONS OF PROTECTED ZONES. vvillam Staehlin БY.

04/10/2024

DING CODE

5. THE BUILDING STRUCTURAL ENGINEER OF RECORD MUST BE NOTIFIED OF REACTION FORCES ON THE STEEL BEAM TO VERIFY THEIR ADEQUACY, INCLUDING BEAM TORSION EFFECTS ON BOTTOM FLANGE CONNECTIONS.



3021 E Coronado St. Anaheim, CA, 92806 U.S.A.

| Ulto Ben | S.E. #S5877 (CA) |
|----------|------------------|
|          |                  |

| 5 | e | ct | 1 | 0 | r | ۱ |
|---|---|----|---|---|---|---|
|   | 3 | }_ | 5 | - |   |   |

<del>OPM-0601: Reviewed for C</del>o <del>de Compliance by</del>

### 3.5.2 Bolted

**Bolting to Upper Flange** 










|           | ALLOW       |                       |                        |        |
|-----------|-------------|-----------------------|------------------------|--------|
| BOLT DIA. | BRACE ANGLE | MIN. EDGE<br>DISTANCE |                        |        |
|           | 0° - 30°    | 31° - 45°             | <mark>46° -</mark> 60° |        |
| 3/8''     | 500 BY:     | William Staehlin      | 500                    | 1''    |
| 1/2''     | 800         | 800                   | <mark>80</mark> 0      | 1''    |
| 5/8''     | 1200 DA     | TE: 04200/2024        | 01,200                 | 1 1/2" |

#### NOTES:

- ALL STRUCTURAL STEEL SHALL BE ASTM A36 OR BETTER WITH A MINIMUM FLANGE THICKNESS OF 0.25 INCH. BOLT SHALL BE A307 BOLT OR BETTER, IT SHALL MEET ASME STANDARD B18.2.1, WITH A MINIMUM MATERIAL SPECIFICATION, YIELD STRENGTH F<sub>y</sub> OF 45 KSI.
- 2. INSTALLATION OF BOLTS (DRILLED HOLES REQUIRED) INTO STEEL STRUCTURE SHALL BE APPROVED BY STRUCTURAL ENGINEER OF RECORD IN ADVANCE.
- 3. ATTACHMENTS ARE PROHIBITED IN PROTECTED ZONES. (EXEMPTIONS SEE AISC 341, CHAPTER D). SEE STRUCTURAL DRAWINGS FOR LOCATIONS OF PROTECTED ZONES.
- 4. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY THE ADEQUACY OF THE STRUCTURE FOR THE TABULATED BOLT LOAD CAPACITY.

THE BUILDING STRUCTURAL ENGINEER OF RECORD MUST BE NOTIFIED OF REACTION FORCES ON THE STEEL BEAM TO VERIFY THEIR ADEQUACY, INCLUDING BEAM TORSION EFFECTS ON BOTTOM FLANGE CONNECTIONS.



#### 3.5.3 Beam Clamp



OPM-0601: Reviewed for Code Compliance by William

Stac

**Clamp to Flange Parallel to Beam** 





OPM-0601: Reviewed for Code Compliance by William Stael

**Clamp to Flange Perpendicular to Beam** 

|                          | ALLOWABLE STRENGTH DESIGN (ASD)                                   |           |           |  |  |
|--------------------------|-------------------------------------------------------------------|-----------|-----------|--|--|
| ORIENTATION              | MAX. HORIZONTAL LOAD<br>BRACE ANGLE MEASURED FROM HORIZONTAL (LB) |           |           |  |  |
|                          | 15° - 30°                                                         | 31° - 45° | 46° - 60° |  |  |
| PERPENDICULAR<br>TO BEAM | 1390                                                              | 920       | 465       |  |  |
| PARALLEL TO<br>BEAM      | 1610                                                              | 1310      | 715       |  |  |

#### NOTES:

- 1. BEAM FLANGE THICKNESS TO BE NO MORE THAN ¾ INCH
- 2. THE BEAM CLAMP STEEL SHALL BE MINIMUM ASTM A36
- 3. INSTALLATION OF BOLTS (DRILLED HOLES REQUIRED) INTO STEEL STRUCTURE SHALL BE APPROVED BY STRUCTURAL ENGINEER OF RECORD IN ADVANCE.

D((

- 4. ATTACHMENTS ARE PROHIBITED IN PROTECTED ZONES. (EXEMPTIONS SEE AISC 341, CHAPTER D). SEE STRUCTURAL DRAWING FOR LOCATIONS OF PROTECTED ZONES
- 5. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY THE ADEQUACY OF THE STRUCTURE FOR THE TABULATED CLAMP FORCE CAPACITY.

ATE: 04/10/2024

'RNIA BUI

ING CODE



### 3.5.4 Supplemental Strut



|                      | PMAX MAXIMUM HORIZONTAL ALLOWABLE LOAD<br>(LB)(ASD) |           |  |
|----------------------|-----------------------------------------------------|-----------|--|
| MAXIMUM BEAM<br>SPAN | BRACE ANGLE MEASURED FROM HORIZONTAL                |           |  |
|                      | 0° - 45°                                            | 46° - 60° |  |
| 6'-0''               | 350 300                                             |           |  |
| 10'-0''              | 225                                                 | 180       |  |

- 1. FOR 6'-0" BEAM SPACING, TOTAL PMAX = 350# AT ANY LOCATION WITH BRACE ANGLE MEASURED FROM HORIZONTAL OF 0°-45°, PMAX = 300# AT ANY LOCATION WITH BRACE ANGLE MEASURED FROM HORIZONTAL OF 46°-60°.
- 2. FOR 10'-0" BEAM SPACING, TOTAL PMAX = 225# AT ANY LOCATION WITH BRACE ANGLE MEASURED FROM HORIZONTAL OF 0°-45°, PMAX = 180# AT ANY LOCATION WITH BRACE ANGLE MEASURED FROM HORIZONTAL OF 46°-60°.
- 3. STRUCTURAL ENGINEER OF RECORD TO VERIFY ADEQUACY OF THE STRUCTURE FOR THE APPLIED LOADS.
- 4. NO ATTACHMENTS SHALL BE IN PROTECTED ZONES. (SEE AISC 341, CHAPTER 7.3). SEE STRUCTURAL DRAWINGS FOR LOCATIONS OF PROTECTED ZONES.
- 5. WELDING SHALL BE DONE BY ELECTRIC SHIELDED ARC PROCESS USING E-70XX ELECTRODES.
- 6. ALL WELDING SHALL BE PERFORMED BY CERTIFIED WELDER AND IN CONFORMED WITH AWS STANDARDS AND 2022 CBC. CONTINUOUS INSPECTIONS ARE REQUIRED FOR ALL WELDING CONNECTIONS.
- 7. ALL WELDS SHALL BE IN CONFORMANCE WITH 2022 CALIFORNIA BUILDING CODE. (CBC)
- 8. CONTINUOUS INSPECTION IS REQUIRED FOR ALL WELDING.
- 9. LOADS ARE BASED ON ALLOWABLE STRENGTH DESIGN.
- 10. BRACE MUST BE RUNNING IN SAME DIRECTION AS SOLID CHANNEL/UNISTRUT.



Wood Beam – Rigid Restraint Attachment

- 3.6 Wood Beam
- 3.6.1 Lag Screw

**Single Screw** 







**Double Screw w/ Mounting Plate** 

Anaheim, CA, 92806 U.S.A.

https://isotechindustries.com/

0/202

### Wood Beam – Rigid Restraint Attachment

|               | ALLOWABLE STRENGTH DESIGN (ASD)                                   |           |           |          |           |           |  |
|---------------|-------------------------------------------------------------------|-----------|-----------|----------|-----------|-----------|--|
| LAG BOLT SIZE | MAX. HORIZONTAL LOAD<br>BRACE ANGLE MEASURED FROM HORIZONTAL (LB) |           |           |          |           |           |  |
|               | 1 BOLT                                                            |           |           |          | 2 BOLT    |           |  |
|               | 0° - 30°                                                          | 31° - 45° | 46° - 60° | 0° - 30° | 31° - 45° | 46° - 60° |  |
| 1/2" X 3"     | 122                                                               | 87        | 55        | 150      | 100       | 58        |  |
| 5/8'' X 4''   | 190                                                               | 134       | 84        | 237      | 154       | 89        |  |
| 3/4" X 5"     | 279                                                               | 194       | 119       | 347      | 222       | 127       |  |

#### NOTES:

- 1. ALLOWABLE LOADS ARE CALCULATED BASED ON CAPACITY OF LAG-SCREW INSTALLED IN STANDARD CONSTRUCTION WOOD (SPECIFIC GRAVITY 0.35 OR HIGHER) WITH MIN. THICKNESS OF ¼ INCH SIDE PLATE (IRRA-3000R BRACKET OR MULTI-FASTENER ADAPTER).
- 2. MAXIMUM ALLOWABLE SCREW DIAMETER FOR ISOTECH RIGID BRACE IRRA-3000R IS 5/8".
- 3. TO UTILIZE FULL CAPACITY OF THE LAG-SCREW, A MINIMUM EDGE DISTANCE 4D, END DISTANCE 7D AND SCREW SPACING Smin 5D MUST BE FOLLOWED DURING INSTALLATION. ALSO FOLLOW OTHER INSTALLATION AND INSPECTION REQUIREMENTS PER ASME STANDARD B18.2. William Staehlin DY.
- FASTENERS SHALL BE A307 SCREWS OR BETTER. LAG-SCREW SHALL MEET ASME STANDARD B18.2, WITH A MINIMUM 4. MATERIAL YIELD STRENGTH  $F_{\gamma}$  OF 45 KSI.
- IE: 04/10/2024 STRUCTURAL ENGINEER OF RECORD SHALL VERIFY THE ADEQUACY OF THE STRUCTURE FOR THE TABULATED SCREW LOAD 5. CAPACITY.
- 6. VERIFY THAT WOOD MEMBER THICKNESS IS GREATER THAN LAG SCREW LENGTH.



3021 E Coronado St. Anaheim, CA, 92806 U.S.A.



3.6

Section

OPM-0601: Reviewed for Co Compliance by William

### 3.6.2 Thru-Bolt





### Wood Beam – Rigid Restraint Attachment

|                  | ALLOWABLE STRENGTH DESIGN (ASD)                                   |           |           |          |           |           |  |
|------------------|-------------------------------------------------------------------|-----------|-----------|----------|-----------|-----------|--|
| BOLT<br>DIAMETER | MAX. HORIZONTAL LOAD<br>BRACE ANGLE MEASURED FROM HORIZONTAL (LB) |           |           |          |           |           |  |
|                  | 1 BOLT                                                            |           |           | 2 BOLTS  |           |           |  |
|                  | 0° - 30°                                                          | 31° - 45° | 46° - 60° | 0° - 30° | 31° - 45° | 46° - 60° |  |
| 1/2''            | 260                                                               | 260       | 260       | 440      | 440       | 440       |  |
| 5/8''            | 320                                                               | 320       | 320       | 540      | 540       | 460       |  |
| 3/4''            | -                                                                 | -         | -         | 600      | 600       | 460       |  |

#### NOTES:

- 1. LOADS FOR THRU-BOLT ATTACHMENTS WERE DERIVED FROM AWC NDS 2018 FOR DOUGLAS FIR-LARCH [S.G.=0.50], CALIFORNIA REDWOOD (CLOSE GRAIN) [S.G.=0.44] AND SOUTHERN PINE [S.G.=0.55].
- 2. TO UTILIZE FULL CAPACITY OF THE THRU-BOLT, A MINIMUM EDGE DISTANCE 5D, END DISTANCE 7D AND BOLT SPACING  $S_{min}\,$  5D MUST BE FOLLOWED DURING INSTALLATION WHERE D BEING THE UNTHREADED SHANK DIAMETER. ALSO FOLLOW OTHER INSTALLATION AND INSPECTION REQUIREMENTS PER ASME STANDARD B18.2.1.
- 3. BOLT HOLES SHALL BE BORED MIN. 1/32" AND MAX. 1/16" LARGER THAN THE NOMINAL BOLT DIAMETER, A STANDARD CUT WASHER SHALL BE PROVIDED BETWEEN THE WOOD AND THE BOLT HEAD OR NUT IN ACCORDANCE WITH NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION (NDS 2018) 12.1.3.
- MAXIMUM ALLOWABLE BOLT DIAMETER FOR ISOTECH RIGID BRACE IRRA-3000R IS 5/8". 4.
- FASTENERS SHALL BE A307 BOLTS OR BETTER. THRU-BOLT SHALL MEET ASME STANDARD B18.2.1, WITH A MINIMUM 5. MATERIAL SPECIFICATION, BENDING YIELD STRENGTH  $F_{by}$  OF 45 KSI AND DOWEL BEARING STRENGTH  $F_e$  OF 87 KSI.
- 6. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY THE ADEQUACY OF THE STRUCTURE FOR THE TABULATED BOLT LOAD CAPACITY. PNIA BUILDING COS



3021 E Coronado St. Anaheim, CA, 92806 U.S.A.

| Ulto Ben | S.E. #S5877 (CA) |
|----------|------------------|
|          |                  |

| be | C | LI | υ | ľ |  |
|----|---|----|---|---|--|
| -  | 2 | ſ  | 2 |   |  |

OPM-0601: Reviewed for Code Compliance by

| Channel | Channel Nut<br>Size-Thread        | Gauge               | Allowable<br>Pull-Out<br>Strength Lbs | Resistance to<br>Slip Lbs | Torque Ft-Lbs |
|---------|-----------------------------------|---------------------|---------------------------------------|---------------------------|---------------|
|         | 7/8''-9                           | 12                  | 2500                                  | 1700                      | 125           |
| P1000   | 3/4''-10                          | 12                  | 2500                                  | 1700                      | 125           |
| P3000   | 5/8''-11                          | 12 (0               | DF 2500                               | 1500                      | 100           |
| P4400   | 1/2''-13                          | 12                  | 2000                                  | 1500                      | 50            |
| P4526   | 7/16''-14                         | 12                  | 1400                                  | 1000                      | 35            |
| P5000   | 3/8''-16                          | 12                  | 1000                                  | 800                       | 19            |
| P5500   | 5/16 <mark>''-18</mark>           | 12                  | 800                                   | 500                       | 11            |
|         | 1/ <mark>4<sup>0</sup>-2</mark> 0 | 12                  | 600                                   | <b>3</b> 00               | 6             |
|         | 1 <mark>/2''-1</mark> 3           |                     | 1500                                  | 1500                      | 50            |
| 02200   | 3 <mark>/8''-1</mark> 6           | $D$ $\frac{12}{12}$ | 1000                                  | <mark>8</mark> 00         | 19            |
| P3300   | 5/ <mark>16''-1</mark> 8          | 12                  | 800                                   | <mark>5</mark> 00         | 11            |
|         | 1/4''-20                          | $DAI_{12} 04/$      | 0/20606                               | 300                       | 6             |
|         | 1/2''-13                          | 14                  | 1400                                  | 1000                      | 50            |
| P1100   | 3/8''-16                          | 14                  | 1000                                  | 750                       | 19            |
| P4100   | 5/16''-18                         | 14                  | 800                                   | 400                       | 11            |
|         | 1/4''-20                          | A 14                | 600                                   | 300                       | 6             |
|         | 1/2''-13                          | 16                  | 1000                                  | 1000                      | 50            |
| P2000   | 3/8''-16                          | 16                  | 1000                                  | 750                       | 19            |
| P4000   | 5/16''-18                         | 16                  | 800                                   | 400                       | 11            |
|         | 1/4''-20                          | 16                  | 600                                   | 300                       | 6             |

# 3.7 Channel Nuts Selection Table (Atkore Unistrut)



3021 E Coronado St.

Anaheim, CA, 92806 U.S.A. https://isotechindustries.com/ Ultor Bar S.E. #S5877 (CA)

OPM-0601: Reviewed for Code Compliance by William Stachlin



- 4.1 Concrete over Metal Deck
- 4.1.1 Post-installed Wedge Anchor



\*Type/Brand of Expansion Anchor Specified in Section 4.1.1.1





of **185** 

### 4.1.1.1 Hilti KB-TZ2 Anchor

|             | Min.                                         | Cruis' Mip       | 'Smin' Min.                         | Strength Design    | Seismic Capacity |
|-------------|----------------------------------------------|------------------|-------------------------------------|--------------------|------------------|
| Anchor Dia. | Effective<br>embed.<br>Depth h <sub>ef</sub> | Edge<br>Distance | Between<br>Anchors on<br>Same Flute | Max. Vertical Load |                  |
|             |                                              |                  |                                     | Single (LB)        | Double (LB)      |
| 3/8"        | 2"                                           | 6 3/4"           | 12"                                 | 1110               | 2220             |
| 1/2"        | 2"                                           | 6 3/4"           | 12"                                 | 1030               | 2060             |
| 1/2"        | 3 1/4"                                       | 9 3/4"           | 12"                                 | 1600               | 3200             |
| 5/8"        | 4"                                           | 12"              | 12"                                 | 2130               | 4260             |

#### NOTES:

| FORLODECO |  |
|-----------|--|
|           |  |
|           |  |

- 1. CAPACITIES ARE FOR ANCHORS INSTALLED IN SAND LIGHTWEIGHT CONCRETE HAVING A MIN. COMPRESSIVE STRENGTH OF 3,000 PSI AT THE TIME OF INSTALLATION AND DETERMINED PER ICC ESR-4266 (HILTI KB-TZ2 EXPANSION ANCHOR) FOR ANCHORS IN CRACKED CONCRETE. ALLOWABLE LOADS HAVE BEEN MULTIPLIED BY THE SEISMIC REDUCTION FACTOR PER ACI 318-19 Table 17.5.3(a).
- 2. SEE SECTION 1.8 FOR TESTING REQUIREMENTS
- 3. FOLLOW ALL WEDGE ANCHOR INSTALLATION REQUIREMENTS PER ICC ESR-4266 (2021)
- 4. MINIMUM CONCRETE THICKNESS SHALL COMPLY WITH ICC ESR-4266 (2021). REFER TO METAL DECK DIMENSIONS SHOWN ABOVE.
- 5. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 6. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE. LOCATE PRESTRESSING STEEL AND AVOID DAMAGING PRESTRESSING STEEL.
- 7. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED ALLOWABLE LOADS.
- 8. SPECIAL INSPECTION SHALL BE PROVIDED PER CBC. THE SPECIAL INSPECTOR MUST BE ON THE JOBSITE CONTINUOUSLY DURING ANCHOR INSTALLATION TO VERIFY ANCHOR TYPE, ANCHOR DIMENSIONS, HOLE DIMENSIONS, ANCHOR SPACING, EDGE DISTANCES, SLAB THICKNESS, ANCHOR EMBEDMENT AND TIGHTENING TORQUE. TEST REPORT OF THE RESULTS SHALL BE SUBMITTED TO HCAI.
- 9. HANGER ROD DIAMETER SHALL BE EQUAL TO OR GREATER THAN THE ANCHOR DIAMETER.
- 10. IF ALLOWABLE LOAD FOR ONE ANCHOR IS USED, HANGER ROD MAY BE OFF CENTER WHEN USING TWO ANCHORS WITH STRUT.
- 11. APPLIED LOADS INCLUDE VERTICAL GRAVITY LOADS PLUS VERTICAL SEISMIC LOADS.
- 12. NOT USED
- 13. STRUT HOLE SIZE SHALL BE NO LARGER THAN BOLT DIAMETER PLUS 1/16" PER AISI.
- 14. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIAMETER BY MORE THAN 1/8" PER ICC-ESR.
- 15. S-MAX (MAX SPACING BETWEEN ANCHORS ON SAME FLUTE) NOT TO EXCEED 15 INCHES

| EISOTECH                                                                  | 3021 E Coronado St.       | What Bern S.E. #S5877 (CA)          | Section    |
|---------------------------------------------------------------------------|---------------------------|-------------------------------------|------------|
|                                                                           | Ananeim, CA, 92806 U.S.A. |                                     | 4.1        |
| Vibration Isolation . Restraint Systems . Custom Engineering<br>4/10/2024 | OPM-0601: Reviewed for    | 20de Compliance by William Stachlin | 126 of 187 |
|                                                                           |                           |                                     | 124 -{ 105 |



|                | Min.                         | 'S <sub>min</sub> '<br>Min.   |                          | Two Anchor Connection (Strength Design Seismic<br>Capacity)<br>Combined Total Allowable Rod Tension Design<br>Value (Lbs.) Vertical Support Rod Max. Offset From<br>C.L (LB) |         | Max.<br>Allowable                        |
|----------------|------------------------------|-------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------|
| Anchor<br>Dia. | Effective<br>embed.<br>Depth | Spacing<br>Between<br>Anchors | Min.<br>Edge<br>Distance |                                                                                                                                                                              |         | Single Anchor<br>(LB)(Strength<br>Design |
|                | Tier                         | Flute                         |                          | CL ± 0"                                                                                                                                                                      | CL ± 1" | Seismic<br>Capacity)                     |
| 3/8"           | 2"                           | 12"                           | 6 3/4"                   | 2220                                                                                                                                                                         | 1903    | 1110                                     |
| 1/2"           | 2"                           | 12"                           | 6 3/4"                   | 2060                                                                                                                                                                         | 1766    | 1030                                     |
| 1/2"           | 3 1/4"                       | 12"                           | 9 3/4"                   | 3200                                                                                                                                                                         | 2743    | 1600                                     |
| 5/8"           | 4"                           | 12"                           | 12"                      | 4260                                                                                                                                                                         | 3651    | 2000                                     |



- 1. CAPACITIES ARE FOR ANCHORS INSTALLED IN SAND LIGHTWEIGHT CONCRETE HAVING A MIN. COMPRESSIVE STRENGTH OF 3,000 PSI AT THE TIME OF INSTALLATION AND DETERMINED PER ICC ESR-4266 (HILTI KB-TZ2 EXPANSION ANCHOR) FOR ANCHORS IN CRACKED CONCRETE. ALLOWABLE LOADS HAVE BEEN MULTIPLIED BY THE SEISMIC REDUCTION FACTOR PER ACI 318-19 Table 17.5.3(a).
- 2. SEE SECTION 1.8 FOR TESTING REQUIREMENTS.
- 3. FOLLOW ALL WEDGE ANCHOR INSTALLATION REQUIREMENTS PER ICC ESR-4266 (2021)
- 4. MINIMUM CONCRETE THICKNESS SHALL COMPLY WITH ICC ESR-4266 (2021). REFER TO METAL DECK DIMENSIONS ABOVE.
- 5. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 6. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE. LOCATE PRESTRESSING STEEL AND AVOID DAMAGING PRESTRESSING STEEL.
- 7. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED ALLOWABLE LOADS.
- 8. SPECIAL INSPECTION SHALL BE PROVIDED PER CBC. THE SPECIAL INSPECTOR MUST BE ON THE JOBSITE CONTINUOUSLY DURING ANCHOR INSTALLATION TO VERIFY ANCHOR TYPE, ANCHOR DIMENSIONS, HOLE DIMENSIONS, ANCHOR SPACING, EDGE DISTANCES, SLAB THICKNESS, ANCHOR EMBEDMENT AND TIGHTENING TORQUE. TEST REPORT OF THE RESULTS SHALL BE SUBMITTED TO HCAL.
- 9. HANGER ROD DIAMETER SHALL BE EQUAL TO OR GREATER THAN THE ANCHOR DIAMETER.
- 10. IF ALLOWABLE LOAD FOR ONE ANCHOR IS USED, HANGER ROD MAY BE OFFSET ANYWHERE BETWEEN THE TWO ANCHORS.
- 11. APPLIED LOADS INCLUDE VERTICAL GRAVITY LOADS PLUS VERTICAL SEISMIC LOADS.
- 12. NOT USED.
- 13. STRUT HOLE SIZE SHALL BE NO LARGER THAN BOLT DIAMETER PLUS 1/16" PER AISI.
- 14. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIAMETER BY MORE THAN 1/8" PER ICC-ESR.
- 15. S-MAX (MAX SPACING BETWEEN ANCHORS ON SAME FLUTE) NOT TO EXCEED 15 INCHES





|                |                                      | 'Smin'                                |                          | Two Anchor Connection (Strength Design Seismic<br>Capacity) |                              |                                     |                          |                     | Max.<br>Allowable<br>Load on                |
|----------------|--------------------------------------|---------------------------------------|--------------------------|-------------------------------------------------------------|------------------------------|-------------------------------------|--------------------------|---------------------|---------------------------------------------|
| Anchor<br>Dia. | Min.<br>Effective<br>embed.<br>Depth | Min.<br>Spacing<br>Between<br>Anchors | Min.<br>Edge<br>Distance | Combii<br>Value (Lb                                         | ned Total A<br>os.) Vertical | llowable R<br>Support R<br>C.L (LB) | od Tension<br>od Max. Of | Design<br>fset From | Single<br>Anchor<br>(LB)                    |
|                | hef                                  | on Same<br>Flute                      |                          | CL ± 0"                                                     | CL ± 1"                      | CL ± 2"                             | CL ± 3"                  | CL ± 4"             | (Strength<br>Design<br>Seismic<br>Capacity) |
| 3/8"           | 2"                                   | 12"                                   | 6 3/4"                   | 2220                                                        | 2049                         | 1903                                | 1776                     | 1665                | 1110                                        |
| 1/2"           | 2"                                   | 12"                                   | 6 3/4"                   | 2060                                                        | 1902                         | 1766                                | 1648                     | 1545                | 1030                                        |
| 1/2"           | 3 1/4"                               | 12"                                   | 9 3/4"                   | 3200                                                        | 2954                         | 2743                                | 2560                     | 2400                | 1600                                        |
| 5/8"           | 4"                                   | 12"                                   | 12"                      | 4260                                                        | 3932                         | 3651                                | 3408                     | 3195                | 2130                                        |
| NOTES:         |                                      |                                       |                          |                                                             |                              |                                     |                          |                     |                                             |

- 1. CAPACITIES ARE FOR ANCHORS INSTALLED IN SAND LIGHTWEIGHT CONCRETE HAVING A MIN. COMPRESSIVE STRENGTH OF 3,000 PSI AT THE TIME OF INSTALLATION AND DETERMINED PER ICC ESR-4266 (HILTI KB-TZ2 EXPANSION ANCHOR) FOR ANCHORS IN CRACKED CONCRETE. ALLOWABLE LOADS HAVE BEEN MULTIPLIED BY THE SEISMIC REDUCTION FACTOR PER ACI 318-19 Table 17.5.3(a).
- 2. SEE SECTION 1.8 FOR TESTING REQUIREMENTS.
- FOLLOW ALL WEDGE ANCHOR INSTALLATION REQUIREMENTS PER ICC ESR-4266 (2021) 3.
- 4. MINIMUM CONCRETE THICKNESS SHALL COMPLY WITH ICC ESR-4266 (2021). REFER TO METAL DECK DIMENSIONS ABOVE.
- 5. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE. LOCATE PRESTRESSING STEEL AND AVOID DAMAGING 6. PRESTRESSING STEEL.
- 7. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED ALLOWABLE LOADS.
- SPECIAL INSPECTION SHALL BE PROVIDED PER CBC. THE SPECIAL INSPECTOR MUST BE ON THE JOBSITE CONTINUOUSLY 8. DURING ANCHOR INSTALLATION TO VERIFY ANCHOR TYPE, ANCHOR DIMENSIONS, HOLE DIMENSIONS, ANCHOR SPACING, EDGE DISTANCES, SLAB THICKNESS, ANCHOR EMBEDMENT AND TIGHTENING TORQUE. TEST REPORT OF THE RESULTS SHALL BE SUBMITTED TO HCAI.
- HANGER ROD DIAMETER SHALL BE EQUAL TO OR GREATER THAN THE ANCHOR DIAMETER. 9.
- 10. IF ALLOWABLE LOAD FOR ONE ANCHOR IS USED, HANGER ROD MAY BE OFFSET ANYWHERE BETWEEN THE TWO ANCHORS.
- 11. APPLIED LOADS INCLUDE VERTICAL GRAVITY LOADS PLUS VERTICAL SEISMIC LOADS.
- 12. NOT USED.
- 13. STRUT HOLE SIZE SHALL BE NO LARGER THAN BOLT DIAMETER PLUS 1/16" PER AISI.
- 14. HOLE DIAMETER THROUGH METAL DECK MAY NOT EXCEED ANCHOR HOLE DIAMETER BY MORE THAN 1/8" PER ICC-ESR.



### 4.1.2 Cast-In Anchor

**Single Anchor** "Corrugated Concrete Ceiling Structure" Normal to Lightweight Concrete Cast-in Anchor\* Steel Metal Deck (Min. 20 ga.) Optional Threaded Rod Threaded Rod Installation to Upper (Stiffner if Req'd) Flute **TOP OF CONCRETE** EDGE OF CONCRETE See Note#11: 04/10/2\$24 Upper Flute 3" Min. 11/2" Min. (TYP) (UNO) Hef 3" Max. (TYP) Powers Bang-It 1 1/8" Min. **Threaded Rod** connected directly to Cast-in Anchor

\*Type/Brand of Cast-In Anchor Specified in Sections 4.1.2.1



129 of 185

|                |                                   | Strength Design Seismic Capacity    |                                     |  |  |  |
|----------------|-----------------------------------|-------------------------------------|-------------------------------------|--|--|--|
| Anchor<br>Dia. | Min. Anchor<br>Effective<br>Depth | Upper Flute Max. Vertical Load (LB) | Lower Flute Max. Vertical Load (LB) |  |  |  |
| 3/8"           | 1 3/4"                            | 1740                                | 840                                 |  |  |  |
| 1/2"           | 2"                                | 2150                                | 1100                                |  |  |  |
| 5/8"           | 2 1/2"                            | 2720                                | 1260                                |  |  |  |
| 3/4"           | 2 1/2"                            | 2720                                | 1260                                |  |  |  |

#### 4.1.2.1 Hilti KCM-MD Cast-In Anchor



- 1. CAPACITIES ARE FOR ANCHORS INSTALLED IN 3,000 PSI SAND LIGHTWEIGHT CONCRETE.
- 2. CALIFORNIA BUILDING CODE STATES: "ALL BOLTS SHALL BE ACCURATELY AND SECURELY SET PRIOR TO PLACEMENT OF CONCRETE..." NAILS OR STRUT MAY BE USED. TYPICAL FOR ALL APPLICATIONS.
- 3. A HOLE MUST BE MADE IN THE STEEL DECK USING A STEP-DRILL, HOLE SAW, DECK PUNCH OR EQUIVALENT IN ACCORDANCE WITH THE ANCHOR DIAMETER. 1000
- 4. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED CAPACITIES.
- 5. SPECIAL INSPECTION SHALL BE PROVIDED PER CBC. THE SPECIAL INSPECTOR MUST BE ON THE JOBSITE CONTINUOUSLY DURING ANCHOR INSTALLATION TO VERIFY ANCHOR TYPE, ANCHOR DIMENSIONS, HOLE DIMENSIONS, ANCHOR SPACING, EDGE DISTANCES, SLAB THICKNESS AND ANCHOR EMBEDMENT. TEST REPORT OF THE RESULTS SHALL BE SUBMITTED TO HCAI.
- 6. MINIMUM SPACING BETWEEN INSERTS SHALL BE 3 TIMES THE EMBEDMENT DEPTH OR 6 TIMES THE ANCHOR DIAMETER (WHICH EVER IS GREATER), UNLESS NOTED OTHERWISE.
- 7. ROD COUPLING DOES NOT NEED TO BE TIGHT UP AGAINST THE UNDERSIDE OF THE DECK.
- 8. HANGER ROD DIAMETER SHALL BE EQUAL TO OR MORE THAN THE ANCHOR DIAMETER.
- 9. MINIMUM EDGE DISTANCE SHALL BE 1.5 TIMES THE EMBEDMENT DEPTH OR 6 TIMES THE ANCHOR DIAMETER WHICHEVER IS GREATER, UNLESS NOTED OTHERWISE.
- 10. FOLLOW ALL HIITI KCM-MD INSTALLATION REQUIREMENTS PER ICC-ESR 4145.

|                                                           | 3021 E Coronado St.            | S.E. #\$5877 (CA)                  | Section    |
|-----------------------------------------------------------|--------------------------------|------------------------------------|------------|
| SISUIECH                                                  | Anaheim, CA, 92806 U.S.A.      |                                    |            |
| Vibration Isolation Restraint Systems, Custom Engineering | https://isotechindustries.com/ |                                    | 4.1        |
| 4/10/2024                                                 | OPM-0601: Reviewed for (       | ode Compliance by William Stachlin | 132 of 187 |

#### **Double Anchor w/ Solid Channel**





|                |                                   | Strength Design Seismic Capacity                      |  |  |
|----------------|-----------------------------------|-------------------------------------------------------|--|--|
| Anchor<br>Dia. | Min. Anchor<br>Effective<br>Depth | Lower Flute Double Anchors Max.<br>Vertical Load (LB) |  |  |
| 3/8"           | 1 3/4"                            | 1680                                                  |  |  |
| 1/2"           | 2"                                | 2200                                                  |  |  |
| 5/8"           | 2 1/2"                            | 2520                                                  |  |  |
| 3/4"           | 2 1/2"                            | 2520                                                  |  |  |



- 1. CAPACITIES ARE FOR ANCHORS INSTALLED IN 3,000 PSI SAND LIGHTWEIGHT CONCRETE.
- 2. CALIFORNIA BUILDING CODE STATES: "ALL BOLTS SHALL BE ACCURATELY AND SECURELY SET PRIOR TO PLACEMENT OF CONCRETE..." NAILS OR STRUT MAY BE USED. TYPICAL FOR ALL APPLICATIONS.
- 3. A HOLE MUST BE MADE IN THE STEEL DECK USING A STEP-DRILL, HOLE SAW, DECK PUNCH OR EQUIVALENT IN ACCORDANCE WITH THE ANCHOR DIAMETER.
- 4. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED CAPACITIES.
- 5. SPECIAL INSPECTION SHALL BE PROVIDED PER CBC. THE SPECIAL INSPECTOR MUST BE ON THE JOBSITE CONTINUOUSLY DURING ANCHOR INSTALLATION TO VERIFY ANCHOR TYPE, ANCHOR DIMENSIONS, HOLE DIMENSIONS, ANCHOR SPACING, EDGE DISTANCES, SLAB THICKNESS AND ANCHOR EMBEDMENT. TEST REPORT OF THE RESULTS SHALL BE SUBMITTED TO HCAI.
- 6. MINIMUM SPACING BETWEEN INSERTS SHALL BE 3 TIMES THE EMBEDMENT DEPTH OR 6 TIMES THE ANCHOR DIAMETER (WHICH EVER IS GREATER), UNLESS NOTED OTHERWISE.
- 7. ROD COUPLING DOES NOT NEED TO BE TIGHT UP AGAINST THE UNDERSIDE OF THE DECK.
- 8. HANGER ROD DIAMETER SHALL BE EQUAL TO OR MORE THAN THE ANCHOR DIAMETER.
- 9. MINIMUM EDGE DISTANCE SHALL BE 1.5 TIMES THE EMBEDMENT DEPTH OR 6 TIMES THE ANCHOR DIAMETER WHICHEVER IS GREATER, UNLESS NOTED OTHERWISE.
- 10. FOLLOW ALL Hilti KCM-MD INSTALLATION REQUIREMENTS PER ICC-ESR 4145.

|           | 3021 E Coronado St.            | Ultor Bron S.E. #S5877 (CA)         | Section    |
|-----------|--------------------------------|-------------------------------------|------------|
|           | Anaheim, CA, 92806 U.S.A.      |                                     |            |
|           | https://isotechindustries.com/ |                                     | 4.1        |
| 4/10/2024 | OPM-0601: Reviewed for         | eode Compliance by William Stachlin | 134 of 187 |
|           |                                |                                     |            |

- 4.2 Concrete Slab/Beam
- 4.2.1 Post-installed Wedge Anchor





"Concrete Slab/Beam Structure" Normal to Lightweight Concrete Anchor\*\_ Threaded Rod (Stiffner Shown if Reg'd 12 ga. Solid Strut Channel, B-Line, Unistrut or equal W/ Diameter +1 1/16" Drilled Holes Cmin Smin 04/10/2024 EQ EQ Solid Channel Connection (Must Be Support Rod W/ Tolstrut Or B-Line Flat Fitting and Tolstrut or B-Line Spring Centered Between Two Anchors): Grade 5 Bolt and strut Channel Nut Nut. Must Be Centered B-Line, Unistrut or Equal Between Two Anchors

Double Anchor w/ Solid Channel

\*Type/Brand of Expansion Anchor Specified in Section 4.2.1.1



### 4.2.1.1 Hilti KB-TZ2 Anchor

| Anchor | Min.<br>Effective | C <sub>min</sub> ' Min.<br>Edge | in. Max T' Min. E<br>Spacing Mater |           | Strength Design Seismic<br>Capacity |             |
|--------|-------------------|---------------------------------|------------------------------------|-----------|-------------------------------------|-------------|
| Dia.   | embed.            | Distance                        | Between                            | Thickness | Max. Vertical Load                  |             |
|        | Depth hef         |                                 | Anchors                            |           | Single (LB)                         | Double (LB) |
| 3/8"   | 2"                | 6"                              | 24"                                | 4"        | 1580                                | 3160        |
| 1/2"   | 2"                | 6"                              | 23"                                | 4"        | 1580                                | 3160        |
| 1/2"   | 3 1/4"            | 9 3/4"                          | 11"                                | 6"        | 2630                                | 5260        |
| 5/8"   | 3 1/8"            | 9 1/2"                          | 11"                                | 5"        | 3260                                | 6520        |
| 5/8"   | 4"                | 12"                             | 10"                                | 6"        | 3620                                | 7240        |
| 3/4"   | 3 3/4"            | 11 1/4"                         | 10"                                | 6"        | 4060                                | 8120        |



- 1. CAPACITIES ARE FOR ANCHORS INSTALLED IN STONE AGGREGATE CONCRETE HAVING A MIN. COMPRESSIVE STRENGTH OF 3,000 PSI AT THE TIME OF INSTALLATION AND DETERMINED PER ICC ESR-4266 (HILTI KB-TZ2 ANCHOR) FOR ANCHORS IN CRACKED CONCRETE. ALLOWABLE LOADS HAVE BEEN MULTIPLIED BY THE SEISMIC REDUCTION FACTOR PER ACI 318-19 Table 17.5.3(a).
- 2. SEE SECTION 1.8 FOR TESTING REQUIREMENTS
- 3. FOLLOW ALL WEDGE ANCHOR INSTALLATION REQUIREMENTS PER ICC ESR-4266
- 4. WHEN INSTALLING ANCHORS IN REINFORCED CONCRETE, AVOID DAMAGING REINFORCING STEEL.
- 5. WHEN INSTALLING ANCHORS IN PRESTRESSED CONCRETE. LOCATE PRESTRESSING STEEL AND AVOID DAMAGING PRESTRESSING STEEL.
- 6. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED CAPACITIES.
- 7. SPECIAL INSPECTION SHALL BE PROVIDED PER CBC. THE SPECIAL INSPECTOR MUST BE ON THE JOBSITE CONTINUOUSLY DURING ANCHOR INSTALLATION TO VERIFY ANCHOR TYPE, ANCHOR DIMENSIONS, HOLE DIMENSIONS, ANCHOR SPACING, EDGE DISTANCES, SLAB THICKNESS, ANCHOR EMBEDMENT AND TIGHTENING TORQUE. TEST REPORT OF THE RESULTS SHALL BE SUBMITTED TO HCAI.
- 8. HANGER ROD DIAMETER SHALL BE EQUAL TO OR GREATER THAN THE ANCHOR DIAMETER.
- 9. IF CAPACITY FOR ONE ANCHOR IS USED, HANGER ROD MAY BE OFF CENTER WHEN USING TWO ANCHORS WITH STRUT.
- 10. APPLIED LOADS INCLUDE VERTICAL GRAVITY LOADS PLUS VERTICAL SEISMIC LOADS.
- 11. STRUT HOLE SIZE SHALL NOT BE LARGER THAN BOLT DIAMETER PLUS 1/16" PER AISI.

|           | 3021 E Coronado St.            | What Bern S.E. #S5877 (CA)         | Section    |
|-----------|--------------------------------|------------------------------------|------------|
| SISUIECH  | Anaheim, CA, 92806 U.S.A.      |                                    |            |
|           | https://isotechindustries.com/ |                                    | 4.2        |
| 4/10/2024 | OPM-0601: Reviewed for         | ode Compliance by William Stachlin | 137 of 187 |
|           |                                |                                    |            |

### 4.2.2 Cast-In Anchor



OPM-0601: Reviewed for Code Compliance by William Stachlir

Anaheim, CA, 92806 U.S.A.

https://isotechindustries.com/

4.2

#### 4.2.2.1 Hilti KCM-WF Cast-In Anchor

|             |                                |                                       | Strength Design Seismic Capacity |  |
|-------------|--------------------------------|---------------------------------------|----------------------------------|--|
| Anchor Dia. | Min. Effective<br>embed. Depth | T' Min. Base<br>Material<br>Thickness | Max. Vertical Load (LB)          |  |
| 3/8"        | 1 3/4"                         | 3 1/2"                                | 1640                             |  |
| 1/2"        | 2"                             | 4"                                    | 2300                             |  |
| 5/8"        | 2 1/2"                         | 5"                                    | 3120                             |  |
| 3/4"        | 2 1/2"                         | 5"                                    | 3120                             |  |



- 1. Hilti KCM-WF INSERTS MUST BE POSITIONED ON WOOD OR SIMILAR FORMWORK WITH ALL THREE NAILS IN CONTACT WITH THE FORM. THE HEAD OF THE HILTI KCM-WF MUST BE IMPACTED WITH SUFFICIENT FORCE TO DRIVE NAILS ALL THE WAY INTO THE FORMWORK UNTIL THE PLASTIC BASE SITS FLUSH AND TIGHT AGAINST THE FORM.
- 2. CAPACITIES ARE FOR 4,000 PSI NORMAL WEIGHT CONCRETE.
- 3. MINIMUM CONCRETE THICKNESS OF 3 TIMES THE EFFECTIVE EMBEDMENT DEPTH, OR THE EMBEDMENT DEPTH PLUS THREE TIMES THE DIAMETER, WHICHEVER IS GREATER, SHALL BE PROVIDED.
- 4. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED CAPACITIES.
- 5. SPECIAL INSPECTION SHALL BE PROVIDED PER CBC. THE SPECIAL INSPECTOR MUST BE ON THE JOBSITE CONTINUOUSLY DURING ANCHOR INSTALLATION TO VERIFY ANCHOR TYPE, ANCHOR DIMENSIONS, HOLE DIMENSIONS, ANCHOR SPACING, EDGE DISTANCES, SLAB THICKNESS AND ANCHOR EMBEDMENT. TEST REPORT OF THE RESULTS SHALL BE SUBMITTED TO HCAI.
- 6. MINIMUM SPACING BETWEEN THE INSERTS SHALL BE 3 TIMES THE EMBEDMENT DEPTH OR 6 TIMES THE ANCHOR DIAMETER (WHICH EVER IS GREATER), UNLESS NOTED OTHERWISE.
- 7. Hilti KCM-WF IS A CAST-IN-PLACE ANCHOR BOLT AND COMPLIES WITH ACI 318 CHAPTER 17 AND DOES NOT REQUIRE ADDITIONAL TESTING CERTIFICATION.
- 8. HANGER ROD DIAMETER SHALL BE EQUAL TO OR MORE THAN THE ANCHOR DIAMETER.
- 9. MINIMUM EDGE DISTANCE SHALL BE 1.5 TIMES THE EMBEDMENT DEPTH OR 6 TIMES THE ANCHOR DIAMETER WHICHEVER IS GREATER, UNLESS NOTED OTHERWISE.
- 10. FOLLOW ALL HILTI KCM-WF INSTALLATION REQUIREMENTS PER ICC-ESR 4145.
- 11. MINIMUM 2 SCREWS PER FLUTE

| SOTECH                                                                    | 3021 E Coronado St.<br>Anaheim, CA, 92806 U.S.A. | <u>What Barn</u> S.E. #S5877 (CA)  | Section    |
|---------------------------------------------------------------------------|--------------------------------------------------|------------------------------------|------------|
|                                                                           | https://isotechindustries.com/                   |                                    | 4.2        |
| Vibration Isolation - Restraint Systems - Custom Engineering<br>4/10/2024 | OPM-0601: Reviewed for                           | ode Compliance by William Stachlin | 139 of 187 |
|                                                                           |                                                  |                                    | 127 of 105 |

Unfilled Metal Deck – Hanger Rod Attachment

4.3 Unfilled Metal Deck







# Unfilled Metal Deck – Hanger Rod Attachment

#### 4.3.1 Hilti PPH Self-Drilling Screw

| ALLOWABLE STRENGTH DESIGN (ASD) |     |  |  |
|---------------------------------|-----|--|--|
| MAX. VERTICAL LOAD (LB)         |     |  |  |
| PERPENDICULAR PARALLEL          |     |  |  |
| 100                             | 100 |  |  |

#### NOTES:

- STRUCTURAL ENGINEER OF RECORD SHALL VERIFY ADEQUACY OF THE STRUCTURE FOR THE TABULATED ALLOWABLE 1. LOADS.
- STRUT NUTS MAY BE USED INSTEAD OF SPRING NUTS AS SHOWN. 2.
- SCREWS SHALL BE 1" MIN. LONG. 3.
- SCREWS SHALL BE SPACED AT 5/8" MINIMUM SPACING WITH 3/8" MIN. EDGE DISTANCE. 4.
- APPLIED LOADS INCLUDE VERTICAL GRAVITY LOADS PLUS VERTICAL SEISMIC LOADS. 5.
- STRUT HOLE SIZE SHALL BE NO LARGER THAN BOLT DIAMETER PLUS 1/16" PER AISI. 6.
- MINIMUM 2 SCREWS AT EACH UNISTRUT-TO-FLUTE CONNECTION, MINIMUM SCREW SPACING IS 1/2" 7.

ORNIA BUI'

DATE: 04/10/2024

ING CODE



3021 E Coronado St. Anaheim, CA, 92806 U.S.A.



Section 4.3

OPM-0601: Reviewed for Co Compliance by William Steel Beam – Hanger Rod Attachment

### 4.4 Steel Beam

10/2024

4.4.1 Welded Lug Attachment To Steel Beam



# Steel Beam – Hanger Rod Attachment

|                     | MIN. WELD SIZE       | ALLOWABLE STRENGTH<br>DESIGN (ASD) |  |
|---------------------|----------------------|------------------------------------|--|
| HANGER ROD DIAMETER | EACH SIDE OF BRACKET | MAX. VERTICAL LOAD PMAX<br>(LB)    |  |
| 3/8''               | 3/16''               | 730                                |  |
| 1/2''               | 3/16''               | 1350                               |  |
| 5/8''               | 3/16"                | 2160                               |  |
| 3/4''               | 1/4''                | 3230                               |  |
| 7/8''               | 1/4''                | 4480                               |  |
| 1"                  | 1/4''                | 4480                               |  |

- 1. CONNECTION TO STRUCTURE BEAM SUBJECT TO PRIOR APPROVAL FROM STRUCTURAL ENGINEER OR RECORD.
- 2. ATTACHMENTS ARE PROHIBITED IN PROTECTED ZONES. SEE STRUCTURAL DRAWINGS FOR LOCATIONS OF PROTECTED ZONES.






#### 4.4.2 Supplemental Steel



## Steel Beam – Hanger Rod Attachment

| MAXIMUM BEAM<br>SPAN | Рмах<br>MAXIMUM VERTICAL ALLOWABLE LOAD<br>(LB)(ASD) (TOTAL OF ALL APPLIED INDIVIDUAL<br>LOADS SHALL NOT EXCEED Рмах) |
|----------------------|-----------------------------------------------------------------------------------------------------------------------|
| 6'-0''               | 500                                                                                                                   |
| 8'-0''               | 475                                                                                                                   |

#### NOTES:

| 1.          | CONNECTION TO STRUCTURAL STEEL BEAMS SUBJECT TO APPROVAL FROM STRUCTURAL ENGINEER OF RECORD.                                                                             |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.          | NO ATTACHMENTS SHALL BE IN PROTECTED ZONES. (SEE AISC 341, CHAPTER D). SEE STRUCTURAL DRAWINGS FOR LOCATIONS OF PROTECTED ZONES.                                         |
| 3.          | WELDING SHALL BE DONE BY ELECTRIC SHIELDED ARC PROCESS USING E-70XX ELECTRODES.                                                                                          |
| 4.          | ALL WELDING SHALL BE PERFORMED BY CERTIFIED WELDER AND IN CONFORMED WITH AWS STANDARDS AND 2022 CBC.<br>CONTINUOUS INSPECTIONS ARE REQUIRED FOR ALL WELDING CONNECTIONS. |
| 5.          | ALL WELDS SHALL BE IN CONFORMANCE WITH 2022 CALIFORNIA BUILDING CODE. (CBC)                                                                                              |
| 6.          | CONTINUOUS INSPECTION IS REQUIRED FOR ALL WELDING                                                                                                                        |
| 7.          | LOADS ARE BASED ON ALLOWABLE STRENGTH DESIGN.                                                                                                                            |
|             | DATE: 04/10/2024                                                                                                                                                         |
| -           | 3021 E Coronado St. SE #SE 077 (CA)                                                                                                                                      |
| 15          | ОТЕСН Anaheim, CA, 92806 U.S.A.                                                                                                                                          |
| plation . R | Https://isotechindustries.com/ estraint Systems. Custom Engineering     OPM-0601: Reviewed for Code Compliance by William Stachlin                                       |

#### Steel Beam – Hanger Rod Attachment

#### 4.4.3 Beam Clamp



#### Steel Beam – Hanger Rod Attachment

#### NOTES:

- 1. THREADED ROD SHALL BE DIRECTLY MOUNTED THROUGH THE I-BEAM FLANGE AND FASTENED BY WASHERS AND NUTS ON BOTH SIDES (ACTING LIKE A THRU-BOLT). IN CASE DRILLING HOLES ON THE BEAM ARE NOT PERMITTED, THREADED ROD CAN BE MOUNTED THROUGH BEAM CLAMP BY NUTS AND WASHERS.
- 2. ATTACHMENTS ARE PROHIBITED IN PROTECTED ZONES. SEE STRUCTURAL DRAWINGS FOR LOCATIONS OF PROTECTED ZONES.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL VERIFY THE ADEQUACY OF THE STRUCTURE FOR THE TABULATED THREADED ROD LOAD CAPACITY.
- 4. BEAM FLANGE THICKNESS TO BE NO MORE THAN ¾ INCH









#### IRRA – 3000R Bracket

#### 5.1 IRRA-3000R Bracket



#### IRRA-3000R Rigid Restraint

#### 5.2 IRRA-3000R Rigid Restraint



## **IRRA-3000R RIGID RESTRAINT SPECIFICATIONS**

| Max. Allowable Load<br>(Tension or Compression) | Max. Strut Nut Size<br>(Component A) | Max. Anchor/Bolt Size<br>(Component B) | Approximate Weight |
|-------------------------------------------------|--------------------------------------|----------------------------------------|--------------------|
| lb.                                             | in.                                  | in.                                    | lb.                |
| 1000                                            | 1/2                                  | 5/8                                    | 3.7                |
|                                                 |                                      |                                        |                    |



3021 E Coronado St. Anaheim, CA, 92806 U.S.A.

| ulter | Ben | S.E | . #S5877 | (CA) |
|-------|-----|-----|----------|------|

Section 5.2

OPM-0601: Reviewed for Code Compliance by Willian

149 of 185



#### Pipe Spacing Charts - Single Restraint

#### 6.1 Pipe Spacing Charts (Single Restraint)

### SCHEDULE 40 (STD) STEEL PIPE FILLED WITH GAS / EMPTY

| Pi   | ре    | Weight of | Ma   | ximum | Longitu   | dinal S | Spacing ( | ft)       | Maximum Longitudinal Spacing (ft) |     |      |     |      |     |  |
|------|-------|-----------|------|-------|-----------|---------|-----------|-----------|-----------------------------------|-----|------|-----|------|-----|--|
| Diam | neter | the Pipe  |      | 30°-4 | 5° Instal | llation | Angle     |           | 46°-60° Installation Angle        |     |      |     |      |     |  |
| in   | mm    | lb/ft     |      |       | G-Fac     |         |           | G-Factors |                                   |     |      |     |      |     |  |
|      |       |           | 0.25 | 0.5   | 0.75      | 1.0     | 1.25      | 1.5       | 0.25                              | 0.5 | 0.75 | 1.0 | 1.25 | 1.5 |  |
| 1    | 25    | 1.7       | 80   | 80    | 80        | 80      | 80        | 80        | 80                                | 80  | 80   | 80  | 80   | 80  |  |
| 1.25 | 30    | 2.3       | 80   | 80    | 80        | 80      | 80        | 80        | 80                                | 80  | 80   | 80  | 80   | 80  |  |
| 1.5  | 38    | 2.7       | 80   | 80    | 80        | 80      | 80        | 80        | 80                                | 80  | 80   | 80  | 80   | 80  |  |
| 2    | 50    | 3.7       | 80   | 80    | 80        | 80      | 80        | 80        | 80                                | 80  | 80   | 80  | 80   | 80  |  |
| 2.5  | 65    | 5.8       | 80   | 80    | 80        | 80      | 80        | 80        | 80                                | 80  | 80   | 80  | 68   | 57  |  |
| 3    | 75    | 7.6       | 80   | 80    | - 80R     | 80      | D74       | 62        | 80                                | 80  | 80   | 65  | 52   | 43  |  |
| 4    | 100   | 11        | 80   | 80    | 80        | 64      | 51        | 42        | 80                                | 80  | 60   | 45  | 36   | 30  |  |
| 5    | 125   | 15        | 80   | 80    | 62        | 47      | 37        | 31        | 80                                | 66  | 44   | 33  | 26   | 22  |  |
| 6    | 150   | 19        | 80   | 74    | 49        | 37      | -29       | 24        | 80                                | 52  | 35   | 26  | 21   | 17* |  |
| 8    | 200   | 29        | 80   | 48    | 32        | 24      | 19*       | 16*       | 68                                | 34  | 22   | 17* | 13*  | 11* |  |
|      |       |           |      |       |           |         |           |           | 0.71710                           |     |      |     |      |     |  |

\*Double restraint system is recommended, see section 6.2 for detailed double restraint spacing chart.

#### **SPACE SELECTION & NOTES:**

BY: William Staehlin

1. For installation angles between 46° and 60°, the minimum allowable horizontal seismic loads (at 60°) for the rigid seismic bracing is 500 lbs. For installation angle between 30° and 45°, the minimum allowable horizontal seismic loads (at 45°) for the rigid seismic bracing is 707 lbs. These two capacities are used to calculate maximum allowable longitudinal spacing of rigid brace at corresponding installation angles.

04/10/2024

- In general, transverse spacing selected should be half the longitudinal spacing listed in tables. If suggested spacing for a certain combination (distributed weight, G-factor, installation angle) is less than 20 ft.
   (highlighted in dark grey), the same spacing can be applied to both longitudinal and transverse directions.
- 3. Detailed configurations and installations for single restraint piping system are shown in Section 2.0.
- 4. Weight of the Pipe represent the overall system weight including the weight of the empty pipe, contents, and insulation layers.
- 5. This table was only generated for G factors up to 1.5. For larger G-Factors this table is unconservative, use engineering calculations instead.
- 6. This table is based only on brace capacity. Brace spacings may need to be less than these values if governed by pipe bending or buckling. See Section 7.3.



Pipe Spacing Charts - Single Restraint

## SCHEDULE 40 (STD) STEEL PIPE INSULATED AND FILLED WITH WATER

| Pi   | ре    | Weight of |     | Maxin             | num Lor   | ngitudin  | al Spacir | ng (ft) |     | Maximum Longitudinal Spacing (ft) |             |           |      |     |  |  |
|------|-------|-----------|-----|-------------------|-----------|-----------|-----------|---------|-----|-----------------------------------|-------------|-----------|------|-----|--|--|
| Dian | neter | the Pipe  |     | 3                 | 0°-45° li | nstallati | on Angle  | 9       |     | 46                                | °-60° Insta | llation A | ngle |     |  |  |
| in   | mm    | lb/ft     |     |                   | G         | i-Factor  | S         |         |     | G-Factors                         |             |           |      |     |  |  |
|      |       |           | 0.2 | 0.5               | 0.75      | 1.0       | 1.2       | 1.5     | 0.2 | 0.5                               | 0.75        | 1.0       | 1.25 | 1.5 |  |  |
|      |       |           | 5   |                   |           |           | 5         |         | 5   |                                   |             |           |      |     |  |  |
| 1    | 25    | 2.8       | 80  | 80                | 80        | 80        | 80        | 80      | 80  | 80                                | 80          | 80        | 80   | 80  |  |  |
| 1.2  | 30    | 3.8       | 80  | 80                | 80        | 80        | 80        | 80      | 80  | 80                                | 80          | 80        | 80   | 80  |  |  |
| 5    |       |           |     |                   |           |           |           |         |     |                                   |             |           |      |     |  |  |
| 1.5  | 38    | 4.5       | 80  | 80 80 80 80 80 80 |           |           |           |         |     | 80                                | 80          | 80        | 80   | 74  |  |  |
| 2    | 50    | 6.2       | 80  | 80                | 80        | 80        | 80        | 76      | 80  | 80                                | 80          | 80        | 64   | 53  |  |  |
| 2.5  | 65    | 9.1       | 80  | 80                | 80        | 77        | 62        | 51      | 80  | 80                                | 73          | 54        | 43   | 36  |  |  |
| 3    | 75    | 12.1      | 80  | 80                | 77        | -58 P     | 46        | DE 38   | 80  | 80                                | 55          | 41        | 33   | 27  |  |  |
| 4    | 100   | 18.3      | 80  | 77                | 51        | 38        | 30        | 25      | 80  | 54                                | 36          | 27        | 21   | 18* |  |  |
| 5    | 125   | 26.6      | 80  | 53                | 35        | 26        | 21        | 17*     | 75  | 37                                | 25          | 18*       | 15*  | 12* |  |  |
| 6    | 150   | 34.8      | 80  | 40                | 27        | 20        | 16*       | 13*     | 57  | 28                                | 19*         | 14*       | 11*  | 9*  |  |  |
| 8    | 200   | 55.1      | 51  | 25                | 17*       | 12*       | 10*       | 8*      | 36  | 18*                               | 12*         | 9*        | 7*   | 6*  |  |  |
|      |       |           |     | 950               |           |           | 40 (5     | TD) ST  |     | IPF                               |             |           |      |     |  |  |

#### BY: FILLED WITH FUEL

| Pi   | pe<br>potor | Weight of | Ma  | ximun | n Longit | udinal S | Spacing | ; (ft) | М              | Maximum Longitudinal Spacing (ft) |      |        |      |     |  |
|------|-------------|-----------|-----|-------|----------|----------|---------|--------|----------------|-----------------------------------|------|--------|------|-----|--|
| Dian | ietei       | the Fipe  |     | 30 -  | +3 11156 | anation  | Angle   | 10/202 | 24             | 4070                              |      |        | jie  |     |  |
| in   | mm          | lb/ft     |     | Y.    | G-Fa     | ictors   |         | 107202 | and the second | -                                 | G-Fa | octors |      |     |  |
|      |             |           | 0.2 | 0.5   | 0.75     | 1.0      | 1.2     | 1.5    | 0.25           | 0.5                               | 0.75 | 1.0    | 1.25 | 1.5 |  |
|      |             |           | 5   |       | N.G      |          | 5       |        | ABY 4          |                                   |      |        |      |     |  |
| 1    | 25          | 2         | 80  | 80    | 80       | 80       | 80      | 80     | 80             | 80                                | 80   | 80     | 80   | 80  |  |
| 1.2  | 30          | 2.0       | 80  | 80    | 80       | A80      | 80      | 80     | 0              |                                   |      |        |      |     |  |
| 5    |             | 2.9       |     |       |          | , D(     | JILD    | DING   | 80             | 80                                | 80   | 80     | 80   | 80  |  |
| 1.5  | 38          | 3.5       | 80  | 80    | 80       | 80       | 80      | 80     | 80             | 80                                | 80   | 80     | 80   | 80  |  |
| 2    | 50          | 5         | 80  | 80    | 80       | 80       | 80      | 80     | 80             | 80                                | 80   | 80     | 80   | 66  |  |
| 2.5  | 65          | 7.6       | 80  | 80    | 80       | 80       | 74      | 62     | 80             | 80                                | 80   | 65     | 52   | 43  |  |
| 3    | 75          | 10.3      | 80  | 80    | 80       | 68       | 54      | 45     | 80             | 80                                | 64   | 48     | 38   | 32  |  |
| 4    | 100         | 15.7      | 80  | 80    | 60       | 45       | 36      | 30     | 80             | 63                                | 42   | 31     | 25   | 21  |  |
| 5    | 125         | 22.4      | 80  | 63    | 42       | 31       | 25      | 21     | 80             | 44                                | 29   | 22     | 17*  | 14* |  |
| 6    | 150         | 29.6      | 80  | 47    | 31       | 23       | 19*     | 15*    | 67             | 33                                | 22   | 16*    | 13*  | 11* |  |
| 8    | 200         | 47.7      | 59  | 29    | 19*      | 14*      | 11*     | 9*     | 41             | 20                                | 13*  | 10*    | 8*   | 6*  |  |

\*Double restraint system is recommended, see section 6.2 for detailed double restraint spacing chart. See page 154 for Notes.



3021 E Coronado St. Anaheim, CA, 92806 U.S.A.

Ulto Ber S.E. #S5877 (CA)

Section

6.1

OPM-0601: Reviewed for Co Compliance by William

|      | SCHEDULE 10 STAINLESS STEEL PIPE                                                                                                                                                                     |              |        |                                     |           |         |       |     |      |             |           |        |       |     |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|-------------------------------------|-----------|---------|-------|-----|------|-------------|-----------|--------|-------|-----|
|      | FILLED WITH GAS / EMPTY                                                                                                                                                                              |              |        |                                     |           |         |       |     |      |             |           |        |       |     |
| Pi   | Pipe         Weight of         Maximum Longitudinal Spacing (ft)         Maximum Longitudinal Spacing (ft)           Displayer         20% 45% lastellation Angle         46% 60% lastellation Angle |              |        |                                     |           |         |       |     |      |             |           |        |       |     |
| Dian | neter                                                                                                                                                                                                | the Pipe     |        | 30°-45                              | ° Install | ation A | Angle |     |      | 46°-6       | 0° Instal | lation | Angle |     |
| in   | mm                                                                                                                                                                                                   | lb/ft        |        |                                     | G-Fact    | ors     |       |     |      |             | G-Fac     | tors   |       |     |
|      |                                                                                                                                                                                                      |              | 0.25   | 0.5                                 | 0.75      | 1.0     | 1.25  | 1.5 | 0.25 | 0.5         | 0.75      | 1.0    | 1.25  | 1.5 |
| 1    | 25                                                                                                                                                                                                   | 1.4          | 80     | 80                                  | 80        | 80      | 80    | 80  | 80   | 80          | 80        | 80     | 80    | 80  |
| 1.25 | 30                                                                                                                                                                                                   | 1.8          | 80     | 80                                  | 80        | 80      | 80    | 80  | 80   | 80          | 80        | 80     | 80    | 80  |
| 1.5  | 38                                                                                                                                                                                                   | 2.1          | 80     | 80 80 80 80 80 80 80 80 80 80 80 80 |           |         |       |     |      |             |           |        |       | 80  |
| 2    | 50                                                                                                                                                                                                   | 2.6          | 80     | 80                                  | 80        | 80      | 80    | 80  | 80   | 80          | 80        | 80     | 80    | 80  |
| 2.5  | 65                                                                                                                                                                                                   | 3.5          | 80     | 80                                  | 80        | 80      | -80   | 80  | 80   | 80          | 80        | 80     | 80    | 80  |
| 3    | 75                                                                                                                                                                                                   | 4.3          | 80     | 80                                  | 80        | 80      | . 80  | 80  | 80   | 80          | 80        | 80     | 80    | 77  |
| 4    | 100                                                                                                                                                                                                  | 5.6          | 80     | 80                                  | 80        | 80      | 80    | 80  | 80   | 80          | 80        | 80     | 71    | 59  |
| 5    | 125                                                                                                                                                                                                  | 7.8          | 80     | 80                                  | 80        | 80      | 72    | 60  | 80   | 80          | 80        | 64     | 51    | 42  |
| 6    | 150                                                                                                                                                                                                  | 9.3          | 80     | 80                                  | 80        | 76_0    | 60    | 50  | 80   | 80          | 71        | 53     | 43    | 35  |
| 8    | 200                                                                                                                                                                                                  | 13.4         | 80     | 80                                  | 70        | 52      | 42    | 35  | 80   | <b>7</b> 74 | 49        | 37     | 29    | 24  |
| 9    | SPACE S                                                                                                                                                                                              | ELECTION & N | NOTES: | B                                   | Y: Wil    | lliam   | Staeh | lin |      |             |           |        |       |     |

DATE: 04/10/2024

 For installation angles between 46° and 60°, the minimum allowable horizontal seismic loads (at 60°) for the rigid seismic bracing is 500 lbs. For installation angle between 30° and 45°, the minimum allowable horizontal seismic loads (at 45°) for the rigid seismic bracing is 707 lbs. These two capacities are used to calculate maximum allowable longitudinal spacing of rigid brace at corresponding installation angles.

- In general, transverse spacing selected should be half the longitudinal spacing listed in tables. If suggested spacing for a certain combination (distributed weight, G-factor, installation angle) is less than 20 ft. (highlighted in dark grey), the same spacing can be applied to both longitudinal and transverse directions.
- 3. Detailed configurations and installations for single restraint piping system are shown in Section 2.0.
- 4. Weight of the Pipe represent the overall system weight including the weight of the empty pipe, contents, and insulation layers.
- 5. This table was only generated for G factors up to 1.5. For larger G-Factors this table is unconservative, use engineering calculations instead.
- 6. This table is based only on brace capacity. Brace spacings may need to be less than these values if governed by pipe bending or buckling. See Section 7.3.



## SCHEDULE 10 STAINLESS STEEL PIPE INSULATED AND FILLED WITH WATER

| Pi   | ipe   | Weight of | Ma   | Maximum Longitudinal Spacing (ft) |       |       |      |      |      | iximun | n Longit  | udinal   | Spacing | (ft) |
|------|-------|-----------|------|-----------------------------------|-------|-------|------|------|------|--------|-----------|----------|---------|------|
| Dian | neter | the Pipe  |      | 30°-45° Installation Angle        |       |       |      |      |      | 46°-6  | 60° Insta | allation | Angle   |      |
| in   | mm    | lb/ft     |      |                                   | G-Fac | ctors |      |      |      |        | G-Fa      | ctors    |         |      |
|      |       |           | 0.25 | 0.5                               | 0.75  | 1.0   | 1.25 | 1.5  | 0.25 | 0.5    | 0.75      | 1.0      | 1.25    | 1.5  |
| 1    | 25    | 2.5       | 80   | 80                                | 80    | 80    | 80   | 80   | 80   | 80     | 80        | 80       | 80      | 80   |
| 1.25 | 30    | 3.3       | 80   | 80                                | 80    | 80    | 80   | 80   | 80   | 80     | 80        | 80       | 80      | 80   |
| 1.5  | 38    | 3.9       | 80   | 80                                | 80    | 80    | 80   | 80   | 80   | 80     | 80        | 80       | 80      | 80   |
| 2    | 50    | 5.1       | 80   | 80                                | 80    | 80    | 80   | 80   | 80   | 80     | 80        | 80       | 78      | 65   |
| 2.5  | 65    | 6.8       | 80   | 80                                | 80    | 80    | 80   | 69   | 80   | 80     | 80        | 73       | 58      | 49   |
| 3    | 75    | 8.8       | 80   | 80                                | 80    | 80    | 64   | 53   | 80   | 80     | 75        | 56       | 45      | 37   |
| 4    | 100   | 12.9      | 80   | 80                                | 73    | 54    | 43   | - 36 | 80   | 77     | 51        | 38       | 31      | 25   |
| 5    | 125   | 19.4      | 80   | 72                                | 48    | 36    | 29   | 24   | 80   | 51     | 34        | 25       | 20      | 17*  |
| 6    | 150   | 25.1      | 80   | 56                                | 37    | 28    | 22   | 18*  | 79   | 39     | 26        | 19*      | 15*     | 13*  |
| 8    | 200   | 39.5      | 71   | 35                                | 23    | 17*   | 14*  | 11*  | 50   | 25     | 16*       | 12*      | 10*     | 8*   |

## SCHEDULE 10 STAINLESS STEEL PIPE

PV- FILLED WITH FUEL

| Pi<br>Diam | pe<br>neter | Weight of<br>the Pipe | Max  | Maximum Longitudinal Spacing (ft)<br>30°-45° Installation Angle |       |       |       | (ft) | Maximum Longitudinal Spacing (ft)<br>46°-60° Installation Angle |     |      |       |      |     |
|------------|-------------|-----------------------|------|-----------------------------------------------------------------|-------|-------|-------|------|-----------------------------------------------------------------|-----|------|-------|------|-----|
| in         | mm          | lb/ft                 |      |                                                                 | G-Fac | ctors | 10/20 | 24   |                                                                 |     | G-Fa | ctors |      |     |
|            |             |                       | 0.25 | 0.5                                                             | 0.75  | 1.0   | 1.25  | 1.5  | 0.25                                                            | 0.5 | 0.75 | 1.0   | 1.25 | 1.5 |
| 1          | 25          | 1.7                   | 80   | 80                                                              | 80    | 80    | 80    | 80   | 80                                                              | 80  | 80   | 80    | 80   | 80  |
| 1.25       | 30          | 2.4                   | 80   | 80                                                              | 80    | 80    | 80    | 80   | 80                                                              | 80  | 80   | 80    | 80   | 80  |
| 1.5        | 38          | 2.9                   | 80   | 80                                                              | 80    | 80    | 80    | 80   | 80                                                              | 80  | 80   | 80    | 80   | 80  |
| 2          | 50          | 3.9                   | 80   | 80                                                              | 80    | 80    | 80    | 80   | 80                                                              | 80  | 80   | 80    | 80   | 80  |
| 2.5        | 65          | 5.3                   | 80   | 80                                                              | 80    | 80    | 80    | 80   | 80                                                              | 80  | 80   | 80    | 75   | 62  |
| 3          | 75          | 7                     | 80   | 80                                                              | 80    | 80    | 80    | 67   | 80                                                              | 80  | 80   | 71    | 57   | 47  |
| 4          | 100         | 10.3                  | 80   | 80                                                              | 80    | 68    | 54    | 45   | 80                                                              | 80  | 64   | 48    | 38   | 32  |
| 5          | 125         | 15.2                  | 80   | 80                                                              | 62    | 46    | 37    | 31   | 80                                                              | 65  | 43   | 32    | 26   | 21  |
| 6          | 150         | 19.9                  | 80   | 71                                                              | 47    | 35    | 28    | 23   | 80                                                              | 50  | 33   | 25    | 20*  | 16* |
| 8          | 200         | 32.1                  | 80   | 44                                                              | 29    | 22    | 17*   | 14*  | 62                                                              | 31  | 20   | 15*   | 12*  | 10* |

\*Double restraint system is recommended, see section 6.2 for detailed double restraint spacing chart. See page 155 for Notes.



3021 E Coronado St. Anaheim, CA, 92806 U.S.A.

| Utor Ben | S.E. #S5877 (CA)  |
|----------|-------------------|
| 0-00     | 0.2. #00077 (077) |

Section 6.1

OPM-0601: Reviewed for C <del>Compliance</del>

## COPPER (TYPE L) PIPE INSULATED AND FILLED WITH WATER\*

| Pij  | pe    | Weight of | Ma   | ximum                      | Longitu | dinal S | pacing | (ft) | Maximum Longitudinal Spacing (ft) |                            |       |      |      |     |
|------|-------|-----------|------|----------------------------|---------|---------|--------|------|-----------------------------------|----------------------------|-------|------|------|-----|
| Diam | neter | the Pipe  |      | 30°-45° Installation Angle |         |         |        |      |                                   | 46°-60° Installation Angle |       |      |      |     |
| in   | mm    | lb/ft     |      | G-Factors                  |         |         |        |      |                                   |                            | G-Fac | tors |      |     |
|      |       |           | 0.25 | 0.5                        | 0.75    | 1.0     | 1.25   | 1.5  | 0.25                              | 0.5                        | 0.75  | 1.0  | 1.25 | 1.5 |
| 1    | 25    | 2.2       | 80   | 80                         | 80      | 80      | 80     | 80   | 80                                | 80                         | 80    | 80   | 80   | 80  |
| 1.25 | 30    | 3         | 80   | 80                         | 80      | 80      | 80     | 80   | 80                                | 80                         | 80    | 80   | 80   | 80  |
| 1.5  | 38    | 3.6       | 80   | 80                         | 80      | 80      | 80     | 80   | 80                                | 80                         | 80    | 80   | 80   | 80  |
| 2    | 50    | 5         | 80   | 80                         | 80      | 80      | 80     | 80   | 80                                | 80                         | 80    | 80   | 80   | 66  |
| 2.5  | 65    | 7.6       | 80   | 80                         | 80      | 80      | 74     | 62   | 80                                | 80                         | 80    | 65   | 52   | 43  |
| 3    | 75    | 10.2      | 80   | 80                         | 80R     | 69      | D55    | 46   | 80                                | 80                         | 65    | 49   | 39   | 32  |
| 4    | 100   | 15        | 80   | 80                         | 62      | 47      | 37     | 31   | 80                                | 66                         | 44    | 33   | 26   | 22  |

\*Copper pipes are commonly used for domestic water pipes and fan coil units, insulation required.

#### SPACE SELECTION & NOTES:

OPIVI-0601

- For installation angles between 46° and 60°, the minimum allowable horizontal seismic loads (at 60°) for the rigid seismic bracing is 500 lbs. For installation angle between 30° and 45°, the minimum allowable horizontal seismic loads (at 45°) for the rigid seismic bracing is 707 lbs. These two capacities are used to calculate maximum allowable longitudinal spacing of rigid brace at corresponding installation angles.
- In general, transverse spacing selected should be half the longitudinal spacing listed in tables. If suggested spacing for a certain combination (distributed weight, G-factor, installation angle) is less than 20 ft. (highlighted in dark grey), the same spacing can be applied to both longitudinal and transverse directions.
- 3. Detailed configurations and installations for single restraint piping system are shown in Section 2.0.
- 4. Weight of the Pipe represent the overall system weight including the weight of the empty pipe, contents, and insulation layers.
- 5. This table was only generated for G-factors up to 1.5. For larger G-factors, this table is unconservative; use engineering calculations instead.
- 6. This table is based only on brace capacity. Brace spacings may need to be less than these values if governed by pipe bending or buckling.



| 3021 E Coronado St.           |
|-------------------------------|
| Anaheim, CA, 92806 U.S.A.     |
| ttps://isotechindustries.com/ |



#### Pipe Spacing Charts - Single Restraint

|      |                   |           |      |        | F         | PVC     | PIPE   |      |                            |      |         |         |        |      |  |
|------|-------------------|-----------|------|--------|-----------|---------|--------|------|----------------------------|------|---------|---------|--------|------|--|
|      | FILLED WITH WATER |           |      |        |           |         |        |      |                            |      |         |         |        |      |  |
| Pi   | ре                | Weight of | Max  | kimum  | Longitu   | dinal S | pacing | (ft) | Max                        | imum | Longitu | dinal S | pacing | (ft) |  |
| Diam | neter             | the Pipe  |      | 30°-45 | 5° Instal | lation  | Angle  |      | 46°-60° Installation Angle |      |         |         |        |      |  |
| in   | mm                | lb/ft     |      |        | G-Fac     | tors    |        |      |                            |      | G-Fac   | tors    |        |      |  |
|      |                   |           | 0.25 | 0.5    | 0.75      | 1.0     | 1.25   | 1.5  | 0.25                       | 0.5  | 0.75    | 1.0     | 1.25   | 1.5  |  |
| 1    | 25                | 0.7       | 80   | 80     | 80        | 80      | 80     | 80   | 80                         | 80   | 80      | 80      | 80     | 80   |  |
| 1.25 | 30                | 1.1       | 80   | 80     | 80        | 80      | 80     | 80   | 80                         | 80   | 80      | 80      | 80     | 80   |  |
| 1.5  | 38                | 1.5       | 80   | 80     | 80        | 80      | 80     | 80   | 80                         | 80   | 80      | 80      | 80     | 80   |  |
| 2    | 50                | 2.2       | 80   | 80     | 80        | 80      | 80     | 80   | 80                         | 80   | 80      | 80      | 80     | 80   |  |
| 2.5  | 65                | 3.2       | 80   | 80     | 80        | 80      | 80     | 80   | 80                         | 80   | 80      | 80      | 80     | 80   |  |
| 3    | 75                | 4.6       | 80   | 80     | 80        | 80      | 80     | 80   | 80                         | 80   | 80      | 80      | 80     | 72   |  |
| 4    | 100               | 7.5       | 80   | 80     | 80        | 80      | 75     | 62   | 80                         | 80   | 80      | 66      | 53     | 44   |  |
| 5    | 125               | 11.4      | 80   | 80     | F80K      | 62      | 49     | 41   | 80                         | 80   | 58      | 43      | 35     | 29   |  |
| 6    | 150               | 16        | 80   | 80     | 58        | 44      | 35     | 29   | 80                         | 62   | 41      | 31      | 25     | 20   |  |
| 8    | 200               | 27.4      | 80   | 51     | 34        | 25      | 20     | 17*  | 72                         | 36   | 24      | 18*     | 14*    | 12*  |  |

\*Double restraint system is recommended, see section 6.2 for detailed double restraint spacing chart.

**OPM-0601** 

#### SPACE SELECTION & NOTES:

- 1. For installation angles between 46° and 60°, the minimum allowable horizontal seismic loads (at 60°) for the rigid seismic bracing is 500 lbs. For installation angle between 30° and 45°, the minimum allowable horizontal seismic loads (at 45°) for the rigid seismic bracing is 707 lbs. These two capacities are used to calculate maximum allowable longitudinal spacing of rigid brace at corresponding installation angles.
- In general, transverse spacing selected should be half the longitudinal spacing listed in tables. If suggested spacing for a certain combination (distributed weight, G-factor, installation angle) is less than 20 ft.
   (highlighted in dark grey), the same spacing can be applied to both longitudinal and transverse directions.
- 3. Detailed configurations and installations for single restraint piping system are shown in Section 2.0.
- 4. Weight of the Pipe represent the overall system weight including the weight of the empty pipe, contents, and insulation layers.
- 5. This table was only generated for G factors up to 1.5. For larger G-Factors this table is unconservative, use engineering calculations instead.
- 6. This table is based only on brace capacity. Brace spacings may need to be less than these values if governed by pipe bending or buckling.



#### Pipe Spacing Charts - Single Restraint

|                                                           | PEX PIPE          |          |      |                |           |         |       |      |                            |           |        |      |      |     |  |  |
|-----------------------------------------------------------|-------------------|----------|------|----------------|-----------|---------|-------|------|----------------------------|-----------|--------|------|------|-----|--|--|
|                                                           | FILLED WITH WATER |          |      |                |           |         |       |      |                            |           |        |      |      |     |  |  |
| Pipe Diameter Weight of Maximum Longitudinal Spacing (ft) |                   |          |      |                |           |         | Max   | imum | Longitu                    | dinal S   | pacing | (ft) |      |     |  |  |
|                                                           |                   | the Pipe |      | <b>30°-4</b> ! | 5° Instal | llation | Angle |      | 46°-60° Installation Angle |           |        |      |      |     |  |  |
| in                                                        | mm                | lb/ft    |      | G-Factors      |           |         |       |      |                            | G-Factors |        |      |      |     |  |  |
|                                                           |                   |          | 0.25 | 0.5            | 0.75      | 1.0     | 1.25  | 1.5  | 0.25                       | 0.5       | 0.75   | 1.0  | 1.25 | 1.5 |  |  |
| 3/8"                                                      | 25                | 0.195    | 80   | 80             | 80        | 80      | 80    | 80   | 80                         | 80        | 80     | 80   | 80   | 80  |  |  |
| 0.5"                                                      | 30                | 0.258    | 80   | 80             | 80        | 80      | 80    | 80   | 80                         | 80        | 80     | 80   | 80   | 80  |  |  |
| 5/8''                                                     | 38                | 0.3338   | 80   | 80             | 80        | 80      | 80    | 80   | 80                         | 80        | 80     | 80   | 80   | 80  |  |  |
| 0.75"                                                     | 50                | 0.41     | 80   | 80             | 80        | 80      | 80    | 80   | 80                         | 80        | 80     | 80   | 80   | 80  |  |  |
| 1"                                                        | 65                | 0.571    | 80   | 80             | 80        | 80      | 80    | 80   | 80                         | 80        | 80     | 80   | 80   | 80  |  |  |

#### **SPACE SELECTION & NOTES:**



- For installation angles between 46° and 60°, the minimum allowable horizontal seismic loads (at 60°) for the rigid seismic bracing is 500 lbs. For installation angle between 30° and 45°, the minimum allowable horizontal seismic loads (at 45°) for the rigid seismic bracing is 707 lbs. These two capacities are used to calculate maximum allowable longitudinal spacing of rigid brace at corresponding installation angles.
- In general, transverse spacing selected should be half the longitudinal spacing listed in tables. If suggested spacing for a certain combination (distributed weight, G-factor, installation angle) is less than 20 ft. (highlighted in dark grey), the same spacing can be applied to both longitudinal and transverse directions.
- 3. Detailed configurations and installations for single restraint piping system are shown in Section 2.0.
- 4. Weight of the Pipe represent the overall system weight including the weight of the empty pipe, contents, and insulation layers.
- 5. This table was only generated for G factors up to 1.5. For larger G-Factors this table is unconservative, use engineering calculations instead.
- 6. This table is based only on brace capacity. Brace spacings may need to be less than these values if governed by pipe bending or buckling.



3021 E Coronado St. Anaheim, CA, 92806 U.S.A. https://isotechindustries.com/

Section
6.1

OPM-0601: Reviewed for Code Compliance by William Stachlin

#### Pipe Spacing Charts - Double Restraint

#### 6.2 Pipe Spacing Chart (Double Restraint)

|                                 |                                                 |        | -    |        | -         |                  |         | -      |      |                            |                |         |          |     |  |  |  |
|---------------------------------|-------------------------------------------------|--------|------|--------|-----------|------------------|---------|--------|------|----------------------------|----------------|---------|----------|-----|--|--|--|
|                                 | SCHEDULE 40 (STD) STEEL PIPE – DOUBLE RESTRAINT |        |      |        |           |                  |         |        |      |                            |                |         |          |     |  |  |  |
|                                 |                                                 |        |      |        | FII       | LED              | WITH (  | GAS /  | EMPT | Y                          |                |         |          |     |  |  |  |
| Р                               | ipe                                             | Weight | Ma   | aximur | n Longit  | udinal           | Spacing | (ft)   |      | Maximur                    | n Longitudin   | al Spac | ing (ft) |     |  |  |  |
| Dia                             | meter                                           | of the |      | 30°-   | 45° Insta | allation         | n Angle |        |      | 46°-60° Installation Angle |                |         |          |     |  |  |  |
|                                 |                                                 | Pipe   |      |        |           |                  |         |        |      |                            |                |         |          |     |  |  |  |
| in                              | mm                                              | lb/ft  |      |        | G-Fa      | ctors            |         |        |      |                            | G-Factor       | ſS      |          |     |  |  |  |
|                                 |                                                 |        | 0.25 | 0.5    | 0.75      | 1.0              | 1.25    | 1.5    | 0.25 | 0.5                        | 0.75           | 1.0     | 1.25     | 1.5 |  |  |  |
| 5                               | 125                                             | 15.0   | 80   | 80     | 80        | 80               | 75      | 62     | 80   | 80                         | 80             | 66      | 53       | 44  |  |  |  |
| 6                               | 150                                             | 19.0   | 80   | 80     | 80        | 74               | 59      | 49     | 80   | 80                         | 70             | 52      | 42       | 35  |  |  |  |
| 8                               | 200                                             | 29.0   | 80   | 80     | 65        | 48               | 39      | 32     | 80   | 68                         | 45             | 34      | 27       | 22  |  |  |  |
| INSULATED AND FILLED WITH WATER |                                                 |        |      |        |           |                  |         |        |      |                            |                |         |          |     |  |  |  |
| in                              | mm                                              | Weight | Ma   | aximur | n Longit  | udinal           | Spacing | (ft) ( | Ò,   | Maximur                    | n Longitudin   | al Spac | ing (ft) |     |  |  |  |
|                                 |                                                 | of the |      | 30°-   | 45° Insta | allation         | Angle   |        | N/   | 46°-                       | 60° Installati | ion Ang | gle      |     |  |  |  |
|                                 |                                                 | Pipe   |      | - /;   | 2         |                  |         |        |      |                            |                |         |          |     |  |  |  |
|                                 |                                                 |        | 0.25 | 0.5    | 0.75      | 1.0              | 1.25    | 1.5    | 0.25 | 0.5                        | 0.75           | 1.0     | 1.25     | 1.5 |  |  |  |
| 2.5                             | 65                                              | 9.1    | 80   | 80     | 80        | 80               | 80      | 80     | 80   | 80                         | 80             | 80      | 80       | 73  |  |  |  |
| 3                               | 75                                              | 12.1   | 80   | 80     | 80        | 80               | 80      | 77     | 80   | 80                         | 80             | 80      | 66       | 55  |  |  |  |
| 4                               | 100                                             | 18.3   | 80   | 80     | 80        | / <b>.</b> 77/ii | 61      | 51     | 80   | 80                         | 72             | 54      | 43       | 36  |  |  |  |
| 5                               | 125                                             | 26.6   | 80   | 80     | 70        | - 53             | 42      | 35     | 80   | 75                         | 50             | 37      | 30       | 25  |  |  |  |
| 6                               | 150                                             | 34.8   | 80   | 80     | 54        | 40               | 32      | 27     | 80   | 57                         | 38             | 28      | 22       | 19  |  |  |  |
| 8                               | 200                                             | 55.1   | 80   | 51     | 34        | 25               | 020/1   | 0/1202 | 2472 | 36                         | 24             | 18      | 14       | 12  |  |  |  |
|                                 |                                                 |        |      | 1      |           | FILI             | ED WI   | TH FL  | JEL  | 201                        |                |         |          |     |  |  |  |
| in                              | mm                                              | Weight | Ma   | aximur | n Longit  | udinal           | Spacing | (ft)   | MOY_ | Maximur                    | n Longitudin   | al Spac | ing (ft) |     |  |  |  |
|                                 |                                                 | of the |      | 30°-   | 45° Insta | allation         | Angle   |        | 0    | 46°-                       | 60° Installati | ion Ang | gle      |     |  |  |  |
|                                 |                                                 | Pipe   |      |        |           | AR               |         | ING    |      |                            |                |         |          |     |  |  |  |
|                                 |                                                 |        | 0.25 | 0.5    | 0.75      | 1.0              | 1.25    | 1.5    | 0.25 | 0.5                        | 0.75           | 1.0     | 1.25     | 1.5 |  |  |  |
| 4                               | 100                                             | 15.7   | 80   | 80     | 80        | 80               | 72      | 60     | 80   | 80                         | 80             | 63      | 50       | 42  |  |  |  |
| 5                               | 125                                             | 22.4   | 80   | 80     | 80        | 63               | 50      | 42     | 80   | 80                         | 59             | 44      | 35       | 29  |  |  |  |
| 6                               | 150                                             | 29.6   | 80   | 80     | 63        | 47               | 38      | 31     | 80   | 67                         | 45             | 33      | 27       | 22  |  |  |  |
| 8                               | 200                                             | 477    | 80   | 59     | 39        | 29               | 23      | 19     | 80   | 41                         | 27             | 20      | 16       | 13  |  |  |  |

\* These tables were only generated for G factors up to 1.5. For larger G-Factors this table is unconservative, use engineering calculations instead.



3021 E Coronado St. Anaheim, CA, 92806 U.S.A. https://isotechindustries.com/

| Ulto Ben | S.E. #S5877 (CA) |
|----------|------------------|
|          |                  |

Section 6.2

OPM-0601: Reviewed for Code Compliance by William Stachlin

|                                                                                                                 | Pipe S                                                                                      | Spacing (                | Charts | - Do                           | uble R                           | lestr                                                           | aint                |                     |                      |                                                                 |                   |         |     |      |     |  |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------|--------|--------------------------------|----------------------------------|-----------------------------------------------------------------|---------------------|---------------------|----------------------|-----------------------------------------------------------------|-------------------|---------|-----|------|-----|--|
|                                                                                                                 |                                                                                             |                          | S      | CHE                            | DUL                              | E 1(                                                            | ) STA               | INLE                | SS ST                | EEL PI                                                          | PE                |         |     |      |     |  |
|                                                                                                                 | FILLED WITH GAS / EMPTY                                                                     |                          |        |                                |                                  |                                                                 |                     |                     |                      |                                                                 |                   |         |     |      |     |  |
| Weight<br>PipeWeight<br>of theMaximum Longitudinal Spacing (ft)Diameterof the<br>Pipe30°-45° Installation Angle |                                                                                             |                          |        |                                |                                  | Maximum Longitudinal Spacing (ft)<br>46°-60° Installation Angle |                     |                     |                      |                                                                 |                   |         |     |      |     |  |
| in                                                                                                              | mm                                                                                          | lb/ft                    |        |                                | G-Fac                            | ctors                                                           |                     |                     |                      |                                                                 | G-F               | actors  |     |      |     |  |
|                                                                                                                 |                                                                                             |                          | 0.25   | 0.25 0.5 0.75 1.0 1.25 1.5 0.2 |                                  |                                                                 |                     |                     | 0.25                 | 0                                                               | .5                | 0.75    | 1.0 | 1.25 | 1.5 |  |
| 8                                                                                                               | 200                                                                                         | 13.4                     | 80     | 80                             | 80                               | 80                                                              | 80                  | 70                  | 80                   | 8                                                               | 0                 | 80      | 74  | 59   | 49  |  |
|                                                                                                                 | INSULATED AND FILLED WITH WATER                                                             |                          |        |                                |                                  |                                                                 |                     |                     |                      |                                                                 |                   |         |     |      |     |  |
| P<br>Diar                                                                                                       | PipeWeight<br>of the<br>PipeMaximum Longitudinal Spacing (ft)<br>30°-45° Installation Angle |                          |        |                                |                                  |                                                                 | Maxin<br>4          | ոսm Lo<br>6°-60°    | ongitudi<br>Installa | inal Sp<br>ition A                                              | acing (fi<br>ngle | t)      |     |      |     |  |
| in                                                                                                              | mm                                                                                          | lb/ft                    |        | G-Factors CODF                 |                                  |                                                                 |                     |                     |                      |                                                                 |                   | G-Facto | ors |      |     |  |
|                                                                                                                 |                                                                                             |                          | 0.25   | 0.5                            | 0.75                             | 1.0                                                             | 1.25                | 1.5                 | · An                 | 0.25                                                            | 0.5               | 0.75    | 1.0 | 1.25 | 1.5 |  |
| 4                                                                                                               | 100                                                                                         | 12.9                     | 80     | 80                             | 80                               | 80                                                              | 80                  | 73                  |                      | 80                                                              | 80                | 80      | 77  | 62   | 51  |  |
| 5                                                                                                               | 125                                                                                         | 19.4                     | 80     | 80                             | 80                               | 72                                                              | 58                  | - 48                |                      | 80                                                              | 80                | 68      | 51  | 41   | 34  |  |
| 6                                                                                                               | 150                                                                                         | 25.1                     | 80     | -80                            | 75                               | 56                                                              | 45                  | 37                  | ~~~~~~               | 80                                                              | 79                | 53      | 39  | 31   | 26  |  |
| 8                                                                                                               | 200                                                                                         | 39.5                     | 80     | 71                             | 47                               | 35                                                              | P 28-0              | J6U 23              |                      | 80                                                              | 50                | 33      | 25  | 20   | 16  |  |
|                                                                                                                 |                                                                                             |                          |        |                                | B                                | FIL                                                             | LED V               | VITH FU             | UEL                  |                                                                 |                   |         |     |      |     |  |
| P<br>Diar                                                                                                       | ipe<br>neter                                                                                | Weight<br>of the<br>Pipe | N      |                                | um Lon<br>°-4 <mark>5° In</mark> | gitudi<br>stalla                                                | inal Spa<br>tion An | cing (ft)<br>gle/20 | 24                   | Maximum Longitudinal Spacing (ft)<br>46°-60° Installation Angle |                   |         |     |      |     |  |
| in                                                                                                              | mm                                                                                          | lb/ft                    |        | 12                             | G                                | -Facto                                                          | ors                 |                     | <i>HHHH</i>          | 101                                                             |                   | G-Facto | ors |      |     |  |
|                                                                                                                 |                                                                                             |                          | 0.25   | 0.5                            | 0.75                             | 1.0                                                             | 1.25                | 1.5                 | 388X                 | 0.25                                                            | 0.5               | 0.75    | 1.0 | 1.25 | 1.5 |  |
| 5                                                                                                               | 125                                                                                         | 15.2                     | 80     | 80                             | 80                               | 80                                                              | 74                  | 62                  |                      | 80                                                              | 80                | 80      | 65  | 52   | 43  |  |
| 6                                                                                                               | 150                                                                                         | 19.9                     | 80     | 80                             | 80                               | 71                                                              | 56                  | 47                  | CY                   | 80                                                              | 80                | 67      | 50  | 40   | 33  |  |
| 8                                                                                                               | 200                                                                                         | 32.1                     | 80     | 80                             | 58                               | 44                                                              | 35                  | DI 29               |                      | 80                                                              | 62                | 41      | 31  | 24   | 20  |  |





| Section |  |
|---------|--|
| 6.2     |  |

161 of 187

OPM-0601: Reviewed for Code Compliance by William Stachlin

#### **Pipe Spacing Charts - Double Restraint**

|      | PVC PIPE          |              |        |                                   |      |     |      |     |      |                            |                                   |       |      |     |  |  |  |
|------|-------------------|--------------|--------|-----------------------------------|------|-----|------|-----|------|----------------------------|-----------------------------------|-------|------|-----|--|--|--|
|      | FILLED WITH WATER |              |        |                                   |      |     |      |     |      |                            |                                   |       |      |     |  |  |  |
| Pi   | ipe               | Weight of    | Ma     | Maximum Longitudinal Spacing (ft) |      |     |      |     |      |                            | Maximum Longitudinal Spacing (ft) |       |      |     |  |  |  |
| Diar | neter             | the Pipe     |        | 30°-45° Installation Angle        |      |     |      |     |      | 46°-60° Installation Angle |                                   |       |      |     |  |  |  |
| in   | mm                | lb/ft        |        | G-Factors                         |      |     |      |     |      |                            | G-Fa                              | ctors |      |     |  |  |  |
|      |                   |              | 0.25   | 0.5                               | 0.75 | 1.0 | 1.25 | 1.5 | 0.25 | 0.5                        | 0.75                              | 1.0   | 1.25 | 1.5 |  |  |  |
| 5    | 125               | 11.4         | 80     | 80                                | 80   | 80  | 80   | 80  | 80   | 80                         | 80                                | 80    | 70   | 58  |  |  |  |
| 6    | 150               | 16           | 80     | 80                                | 80   | 80  | 70   | 58  | 80   | 80                         | 80                                | 62    | 50   | 41  |  |  |  |
| 8    | 200               | 27.4         | 80     | 80                                | 68   | 51  | 41   | 34  | 80   | 72                         | 48                                | 36    | 29   | 24  |  |  |  |
| :    | SPACE S           | ELECTION & N | NOTES: |                                   |      |     |      |     | •    |                            |                                   |       |      |     |  |  |  |

1. For installation angles between 46° and 60°, the minimum allowable horizontal seismic loads (at 60°) for double rigid seismic bracing is 1000 lbs. For installation angle between 30° and 45°, the minimum allowable horizontal seismic loads (at 45°) for double rigid seismic bracing is 1414 lbs. These two capacities are used to calculate maximum allowable longitudinal spacing of rigid brace at corresponding installation angles.

- 2. In general, transverse spacing selected should be half the longitudinal spacing listed in tables. If suggested spacing for a certain combination (distributed weight, G-factor, installation angle) is less than 20 ft (highlighted in dark grey), the same spacing can be applied to both longitudinal and transverse directions.
- 3. Detailed configurations and installations for double restraint piping system are shown in Section 2.0.

ROPNIA BUI

- 4. Weight of the Pipe represent the overall system weight including the weight of the empty pipe, contents, and insulation layers.
- 5. This table is based only on brace capacity. Brace spacings may need to be less than these values if governed by pipe bending or buckling.

DING CODE



3021 E Coronado St. Anaheim, CA, 92806 U.S.A.



<del>OPM-0601: Reviewed for C</del>o Compliance

#### 6.3 Duct Spacing Charts (Single Restraint)

|           |      |       | ACII     |             |                           | 1 (511                            | NOLL                       | NLO | INAI             | IN I ) |      |     |  |  |
|-----------|------|-------|----------|-------------|---------------------------|-----------------------------------|----------------------------|-----|------------------|--------|------|-----|--|--|
| Weight of | Ma   | ximum | Longitu  | ıdinal S    | pacing                    | Maximum Longitudinal Spacing (ft) |                            |     |                  |        |      |     |  |  |
| the Duct  |      | 30°-4 | 5° Insta | llation     | Angle                     |                                   | 46°-60° Installation Angle |     |                  |        |      |     |  |  |
| lb/ft     |      |       | G-Fac    | ctors       |                           |                                   | G-Factors                  |     |                  |        |      |     |  |  |
|           | 0.25 | 0.5   | 0.75     | 1.0         | 1.25                      | 1.5                               | 0.25                       | 0.5 | 0.75             | 1.0    | 1.25 | 1.5 |  |  |
| 5.0       | 80   | 80    | 80       | 80          | 80                        | 80                                | 80                         | 80  | 80               | 80     | 80   | 66  |  |  |
| 6.0       | 80   | 80    | 80       | 80          | 80                        | 78                                | 80                         | 80  | 80               | 80     | 66   | 55  |  |  |
| 7.0       | 80   | 80    | 80       | 80          | 80                        | 67                                | 80                         | 80  | 80               | 71     | 57   | 47  |  |  |
| 8.0       | 80   | 80    | 80       | 80          | 70                        | 58                                | 80                         | 80  | 80               | 62     | 50   | 41  |  |  |
| 9.0       | 80   | 80    | 80       | 78          | 62                        | 52                                | 80                         | 80  | 74               | 55     | 44   | 37  |  |  |
| 10.0      | 80   | 80    | 80       | 70          | 56                        | 47                                | 80                         | 80  | 66               | 50     | 40   | 33  |  |  |
| 11.0      | 80   | 80    | 80       | 64          | 2 510                     | D42                               | 80                         | 80  | 60               | 45     | 36   | 30  |  |  |
| 12.0      | 80   | 80    | 78       | 58          | 47                        | 39                                | 80                         | 80  | 55               | 41     | 33   | 27  |  |  |
| 13.0      | 80   | 80    | 72       | 54          | 43                        | 36                                | 80                         | 76  | 51               | 38     | 30   | 25  |  |  |
| 14.0      | 80   | 80    | 67       | 50          | 40                        | -33                               | 80                         | 71  | 47               | 35     | 28   | 23  |  |  |
| 15.0      | 80   | 80    | 62       | 47          | 37                        | 31                                | 80                         | 66  | 44               | 33     | 26   | 22  |  |  |
| 16.0      | 80   | 80    | 58       | 44          | <b>P</b> <sub>35</sub> -0 | 629                               | 80                         | 62  | 41               | 31     | 25   | 20  |  |  |
| 17.0      | 80   | 80    | 55       | 41          | 33                        | 27                                | 80                         | 58  | <mark>3</mark> 9 | 29     | 23   | 19* |  |  |
| 18.0      | 80   | 78    | 52       | 39/         | illian                    | St <b>ae</b> hl                   | n 80                       | 55  | <mark>37</mark>  | 27     | 22   | 18* |  |  |
| 19.0      | 80   | 74    | 49       | 37          | 29                        | 24                                | 80                         | 52  | <mark>3</mark> 5 | 26     | 21   | 17* |  |  |
| 20.0      | 80   | 70    | 47       | <u>∧ 35</u> | 28 /                      | 1 0 23 0                          | 80                         | 50  | 33               | 25     | 20   | 16* |  |  |
| 25.0      | 80   | 56    | 37       | 28          | 22                        | 18*                               | 80                         | 40  | 26               | 20     | 16*  | 13* |  |  |
| 30.0      | 80   | 47    | 31       | 23          | 18*                       | 15*                               | 66                         | 33  | 22               | 16*    | 13*  | 11* |  |  |
| 35.0      | 80   | 40    | 26       | 20          | 16*                       | 13*                               | 57                         | 28  | 19*              | 14*    | 11*  | 9*  |  |  |
| 40.0      | 70   | 35    | 23/      | 17*         | 14*                       | 11*                               | 50                         | 25  | 16*              | 12*    | 10*  | 8*  |  |  |

## DUCT SPACING CHART (SINGLE RESTRAINT)

\*Double restraint system is recommended, see section 6.4 for detailed double restraint spacing chart.

#### **SPACE SELECTION & NOTES:**

- 1. This table was only generated for G factors up to 1.5. For larger G-Factors this table is unconservative, use engineering calculations instead.
- 2. Brace spacing of a duct is selected bases on distributed weight of the duct (lbs/ft), for intermediate values, interpolations are accepted. If select directly, use the spacing corresponds to higher weight boundary. For distributed weight of commonly used rectangular/round duct, see section 7.2.



#### **Duct Spacing Charts - Single Restraint**

#### **SPACE SELECTION & NOTES (Continued):**

- 3. For installation angles between 46° and 60°, the minimum allowable horizontal seismic loads (at 60°) for the rigid seismic bracing is 500 lbs. For installation angle between 30° and 45°, the minimum allowable horizontal seismic loads (at 45°) for the rigid seismic bracing is 707 lbs. These two capacities are used to calculate maximum allowable longitudinal spacing of rigid brace at corresponding installation angles.
- In general, transverse spacing selected should be half the longitudinal spacing listed in tables. If suggested spacing for a certain combination (distributed weight, G-factor, installation angle) is less than 20 ft.
   (highlighted in dark grey), the same spacing can be applied to both longitudinal and transverse directions.
- 5. Detailed configurations and installations for single restraint duct system are shown in Section 2.0.
- 6. This table was only generated for G factors up to 1.5. For larger G-Factors this table is unconservative, use engineering calculations instead.
- 7. This table is based only on brace capacity. Brace spacings may need to be less than these values if governed by duct bending or buckling.





#### 6.4 Duct Spacing Charts (Double Restraint)

|               | DUC     | T SP  | ACIN      | G Cl    | HART     | (DO             | UBLE                              | RES | STRA             | INT) |      |     |  |
|---------------|---------|-------|-----------|---------|----------|-----------------|-----------------------------------|-----|------------------|------|------|-----|--|
| Weight of     | Ma      | ximum | Longitu   | dinal S | pacing ( | ft)             | Maximum Longitudinal Spacing (ft) |     |                  |      |      |     |  |
| the Duct      |         | 30°-4 | 5° Instal | lation  | Angle    |                 | 46°-60° Installation Angle        |     |                  |      |      |     |  |
| lb/ft         |         |       | G-Fac     | tors    |          |                 | G-Factors                         |     |                  |      |      |     |  |
|               | 0.25    | 0.5   | 0.75      | 1.0     | 1.25     | 1.5             | 0.25                              | 0.5 | 0.75             | 1.0  | 1.25 | 1.5 |  |
| 12.0          | 80      | 80    | 80        | 80      | 80       | 78              | 80                                | 80  | 80               | 80   | 66   | 55  |  |
| 13.0          | 80      | 80    | 80        | 80      | 80       | 72              | 80                                | 80  | 80               | 76   | 61   | 51  |  |
| 14.0          | 80      | 80    | 80        | 80      | 80       | 67              | 80                                | 80  | 80               | 71   | 57   | 47  |  |
| 15.0          | 80      | 80    | 80        | 80      | 75       | 62              | 80                                | 80  | 80               | 66   | 53   | 44  |  |
| 16.0          | 80      | 80    | 80        | 80      | 70       | 58              | 80                                | 80  | 80               | 62   | 50   | 41  |  |
| 17.0          | 80      | 80    | 80        | 80      | 2 660    | D55             | 80                                | 80  | 78               | 58   | 47   | 39  |  |
| 18.0          | 80      | 80    | 80        | 78      | 62       | 52              | 80                                | 80  | 74               | 55   | 44   | 37  |  |
| 19.0          | 80      | 80    | 80        | 74      | 59       | 49              | 80                                | 80  | 70               | 52   | 42   | 35  |  |
| 20.0          | 80      | 80    | 80        | 70      | 56       | -47             | 80                                | 80  | 66               | 50   | 40   | 33  |  |
| 25.0          | 80      | 80    | 75        | 56      | 45       | 37              | 80                                | 80  | 53               | 40   | 32   | 26  |  |
| 30.0          | 80      | 80    | 62        | 47      | 370      | 6 <sub>31</sub> | 80                                | 66  | 44               | 33   | 26   | 22  |  |
| 35.0          | 80      | 80    | 53        | 40      | 32       | 26              | 80                                | 57  | 38               | 28   | 22   | 19  |  |
| 40.0          | 80      | 70    | 478       | 35Vi    | lliag S  | Staghl          | in 80                             | 50  | <mark>3</mark> 3 | 25   | 20   | 16  |  |
| SPACE SELECTI | ON & N( | OTES: |           |         | • 04/*   | 0/20            | 24                                |     |                  |      |      |     |  |

- 1. This table was only generated for G factors up to 1.5. For larger G-Factors this table is unconservative, use engineering calculations instead.
- 2. Brace spacing of a duct is selected based on distributed weight of the duct (lbs/ft), for intermediate values, interpolations are accepted. If select directly, use the spacing corresponds to higher weight boundary. For distributed weight of commonly used rectangular/round duct, see section 7.2.
- 3. For installation angles between 46° and 60°, the minimum allowable horizontal seismic loads (at 60°) for the DOUBLED rigid seismic bracing is 1000 lbs. For installation angle between 30° and 45°, the minimum allowable horizontal seismic loads (at 45°) for the DOUBLED rigid seismic bracing is 1414 lbs. These two capacities are used to calculate maximum allowable longitudinal spacing of rigid brace at corresponding installation angles.
- 4. In general, transverse spacing selected should be half the longitudinal spacing listed in tables. If suggested spacing for a certain combination (distributed weight, g-factor, installation angle) is less than 20 ft. (highlighted in dark grey), the same spacing can be applied to both longitudinal and transverse directions.
- 5. Detailed configurations and installations for double restraint duct system are shown in Section 2.0.
- 6. This table is based only on brace capacity. Brace spacings may need to be less than these values if governed by duct bending or buckling.



Pipe/Conduit, Raceway, & Cable Tray Trapeze Supported System Spacing Charts - Single Restraint

6.5 Pipe /Conduit, Raceway, & Cable Tray Trapeze Supported System Spacing Charts (Single Restraint)

## PIPE/CONDUIT, RACEWAY, & CABLE TRAY TRAPEZE SUPPORTED SYSTEM SPACING CHART

|            |      |       |          | 2114     |                   | JINAI               |                                   |     |      |     |      |     |  |  |
|------------|------|-------|----------|----------|-------------------|---------------------|-----------------------------------|-----|------|-----|------|-----|--|--|
| Weight of  | Ma   | ximum | Longitu  | idinal S | pacing (          | (ft)                | Maximum Longitudinal Spacing (ft) |     |      |     |      |     |  |  |
| the System |      | 30°-4 | 5° Insta | llation  | Angle             |                     | 46°-60° Installation Angle        |     |      |     |      |     |  |  |
| lb/ft      |      |       | G-Fac    | ctors    |                   |                     | G-Factors                         |     |      |     |      |     |  |  |
|            | 0.25 | 0.5   | 0.75     | 1.0      | 1.25              | 1.5                 | 0.25                              | 0.5 | 0.75 | 1.0 | 1.25 | 1.5 |  |  |
| 5          | 80   | 80    | 80       | 80       | 80                | 80                  | 80                                | 80  | 80   | 80  | 80   | 66  |  |  |
| 6          | 80   | 80    | 80       | 80       | 80                | 78                  | 80                                | 80  | 80   | 80  | 66   | 55  |  |  |
| 7          | 80   | 80    | 80       | 80       | 80                | 67                  | 80                                | 80  | 80   | 71  | 57   | 47  |  |  |
| 8          | 80   | 80    | 80       | 80       | 70                | - 58                | 80                                | 80  | 80   | 62  | 50   | 41  |  |  |
| 9          | 80   | 80    | 80       | 78       | 62                | 52                  | 80                                | 80  | 74   | 55  | 44   | 37  |  |  |
| 10         | 80   | 80    | 80       | 70       | 56                | 47                  | 80                                | 80  | 66   | 50  | 40   | 33  |  |  |
| 11         | 80   | 80    | 80       | 64       | >\\ <u>5</u> 1()  | 6042                | 80                                | 80  | 60   | 45  | 36   | 30  |  |  |
| 12         | 80   | 80    | 78       | 58       | 47                | 39                  | 80                                | 80  | 55   | 41  | 33   | 27  |  |  |
| 13         | 80   | 80    | 72       | . 54/il  | lia43 S           | ta <sup>36</sup> li | 80                                | 76  | 51   | 38  | 30   | 25  |  |  |
| 14         | 80   | 80    | 67       | 50       | 40                | 33                  | 80                                | 71  | 47   | 35  | 28   | 23  |  |  |
| 15         | 80   | 80    | 62       | 47       | 37                | 31                  | 80                                | 66  | 44   | 33  | 26   | 22  |  |  |
| 16         | 80   | 80    | 58       | 44       | G <del>5</del> /1 | 0/2902              | 480                               | 62  | 41   | 31  | 25   | 20  |  |  |
| 17         | 80   | 80    | 55       | 41       | 33                | 27                  | 80                                | 58  | 39   | 29  | 23   | 19* |  |  |
| 18         | 80   | 78    | 52       | 39       | 31                | 26                  | 80                                | 55  | 37   | 27  | 22   | 18* |  |  |
| 19         | 80   | 74    | 49       | 37       | 29                | 24                  | 80                                | 52  | 35   | 26  | 21   | 17* |  |  |
| 20         | 80   | 70    | 47       | 35       | 28                | 23                  | 80                                | 50  | 33   | 25  | 20   | 16* |  |  |
| 25         | 80   | 56    | 37       | 28       | 22                | 118*                | 80                                | 40  | 26   | 20  | 16*  | 13* |  |  |
| 30         | 80   | 47    | 31       | 23       | 18*               | 15*                 | 66                                | 33  | 22   | 16* | 13*  | 11* |  |  |
| 35         | 80   | 40    | 26       | 20       | 16*               | 13*                 | 57                                | 28  | 19*  | 14* | 11*  | 9*  |  |  |
| 40         | 70   | 35    | 23       | 17*      | 14*               | 11*                 | 50                                | 25  | 16*  | 12* | 10*  | 8*  |  |  |
| 45         | 62   | 31    | 20       | 15*      | 12*               | 10*                 | 44                                | 22  | 14*  | 11* | 8*   | 7*  |  |  |
| 50         | 56   | 28    | 18*      | 14*      | 11*               | 9*                  | 40                                | 20  | 13*  | 10* | 8*   | 6*  |  |  |
| 55         | 51   | 25    | 17*      | 12*      | 10*               | 8*                  | 36                                | 18  | 12*  | 9*  | 7*   | 6*  |  |  |
| 60         | 47   | 23    | 15*      | 11*      | 9*                | 7*                  | 33                                | 16* | 11*  | 8*  | 6*   | 5*  |  |  |
| 65         | 43   | 21    | 14*      | 10*      | 8*                | 7*                  | 30                                | 15* | 10*  | 7*  | 6*   | 5*  |  |  |
| 70         | 40   | 20    | 13*      | 10*      | 8*                | 6*                  | 28                                | 14* | 9*   | 7*  | 5*   | 4*  |  |  |

SINCLE DESTRAINT

See Page 168 for Notes



3021 E Coronado St. Anaheim, CA, 92806 U.S.A.

Ulter Ber S.E. #S5877 (CA)

Section

6.5

OPM-0601: Reviewed for Co Compliance by Pipe/Conduit, Raceway, & Cable Tray Trapeze Supported System Spacing Charts - Single Restraint

## PIPE/CONDUIT, RACEWAY, & CABLE TRAY TRAPEZE SUPPORTED SYSTEM SPACING CHART

#### SINGLE RESTRAINT (Continued)

| Weight of  | Ma                                                                                                                                                                                                                                                                                                                                                                                                                                       | ximum | Longitu  | idinal S | pacing | ft) | Max  | kimum | Longitu   | dinal S | pacing | (ft) |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|----------|--------|-----|------|-------|-----------|---------|--------|------|
| the System |                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30°-4 | 5° Insta | llation  | Angle  |     |      | 46°-6 | 0° Instal | lation  | Angle  |      |
| lb/ft      | Maximum Longitudinal Spacing (ft)<br>30°-45° Installation Angle<br>G-Factors         0.25       0.5       0.75       1.0       1.25       1.         37       18*       12*       9*       7*       6         35       17*       11*       8*       7*       5         33       16*       11*       8*       6*       5         31       15*       10*       7*       6*       5         29       14*       9*       7*       5*       4 |       |          |          |        |     |      |       | G-Fac     | tors    |        |      |
|            | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5   | 0.75     | 1.0      | 1.25   | 1.5 | 0.25 | 0.5   | 0.75      | 1.0     | 1.25   | 1.5  |
| 75         | 37                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18*   | 12*      | 9*       | 7*     | 6*  | 26   | 13*   | 8*        | 6*      | 5*     | 4*   |
| 80         | 35                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17*   | 11*      | 8*       | 7*     | 5*  | 25   | 12*   | 8*        | 6*      | 5*     | 4*   |
| 85         | 33                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16*   | 11*      | 8*       | 6*     | 5*  | 23   | 11*   | 7*        | 5*      | 4*     | 3*   |
| 90         | 31                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15*   | 10*      | 7*       | 6*     | 5*  | 22   | 11*   | 7*        | 5*      | 4*     | 3*   |
| 95         | 29                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14*   | 9*       | -7*R     | (5*)   | 04* | 21   | 10*   | 7*        | 5*      | 4*     | 3*   |
| 100        | 28                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14*   | 9*       | 7*       | 5*     | 4*  | 20   | 10*   | 6*        | 5*      | 4*     | 3*   |
| 105        | 26                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13*   | 8*       | 6*       | 5*     | 4*  | 19   | 9*    | 6*        | 4*      | 3*     | 3*   |

\*Double restraint system is recommended, see section 6.6 for detailed double restraint spacing chart.

#### SPACE SELECTION & NOTES:/

OPM-0601

#### **BY:** William Staehlin

- 1. Brace spacing for cable tray, conduit, trapeze supported system are selected base on distributed weight of these units (lbs/ft), for intermediate values, interpolations are accepted. If select directly, use the spacing corresponds to higher weight boundary. 2.04/10/2024
- 2. For installation angles between 46° and 60°, the minimum allowable horizontal seismic loads (at 60°) for the rigid seismic bracing is 500 lbs. For installation angle between 30° and 45°, the minimum allowable horizontal seismic loads (at 45°) for the rigid seismic bracing is 707 lbs. These two capacities are used to calculate maximum allowable longitudinal spacing of rigid brace at corresponding installation angles.
- In general, transverse spacing selected should be half the longitudinal spacing listed in tables. If suggested spacing for a certain combination (distributed weight, G-factor, installation angle) is less than 20 ft. (highlighted in dark grey), the same spacing can be applied to both longitudinal and transverse directions.
- 4. Detailed configurations and installations for single restraint system are shown in Section 2.0.
- 5. This table was only generated for G factors up to 1.5. For larger G-Factors this table is unconservative, use engineering calculations instead.
- 6. This table is based only on brace capacity. Brace spacings may need to be less than these values if governed by pipe bending or buckling.



Pipe/Conduit, Raceway, & Cable Tray Trapeze Supported System Spacing Charts - Double Restraint

6.6 Pipe /Conduit, Raceway, & Cable Tray Trapeze Supported System Spacing Charts (Double Restraint)

## PIPE/CONDUIT, RACEWAY, & CABLE TRAY TRAPEZE SUPPORTED SYSTEM SPACING CHART

| Weight of  | Ma   | ximum  | Longitu   | dinal S          | pacing ( | ft)     | Maximum Longitudinal Spacing (ft) |     |                  |     |      |     |  |  |  |
|------------|------|--------|-----------|------------------|----------|---------|-----------------------------------|-----|------------------|-----|------|-----|--|--|--|
| the System |      | 30°-45 | 5° Instal | lation           | Angle    |         | 46°-60° Installation Angle        |     |                  |     |      |     |  |  |  |
| lb/ft      |      |        | G-Fac     | tors             |          |         | G-Factors                         |     |                  |     |      |     |  |  |  |
|            | 0.25 | 0.5    | 0.75      | 1.0              | 1.25     | 1.5     | 0.25                              | 0.5 | 0.75             | 1.0 | 1.25 | 1.5 |  |  |  |
| 12         | 80   | 80     | 80        | 80               | 80       | 78      | 80                                | 80  | 80               | 80  | 66   | 55  |  |  |  |
| 13         | 80   | 80     | 80        | 80               | 80       | 72      | 80                                | 80  | 80               | 76  | 61   | 51  |  |  |  |
| 14         | 80   | 80     | 80        | 80               | 80       | 67      | 80                                | 80  | 80               | 71  | 57   | 47  |  |  |  |
| 15         | 80   | 80     | 80        | 80               | 75       | 62      | 80                                | 80  | 80               | 66  | 53   | 44  |  |  |  |
| 16         | 80   | 80     | 80        | 80               | 70       | 58      | 80                                | 80  | 80               | 62  | 50   | 41  |  |  |  |
| 17         | 80   | 80     | 80        | 80               | 0.66_0   | 6(55)   | 80                                | 80  | 78               | 58  | 47   | 39  |  |  |  |
| 18         | 80   | 80     | 80        | 78               | 62       | 52      | 80                                | 80  | 74               | 55  | 44   | 37  |  |  |  |
| 19         | 80   | 80     | 80        | ∕ <b>.74</b> ∖/i | 59       | staehli | n <sup>80</sup>                   | 80  | 70               | 52  | 42   | 35  |  |  |  |
| 20         | 80   | 80     | 80        | 70               | 56       | 47      | 80                                | 80  | <mark>6</mark> 6 | 50  | 40   | 33  |  |  |  |
| 25         | 80   | 80     | 75        | 56               | 45       | 37      | 80                                | 80  | 53               | 40  | 32   | 26  |  |  |  |
| 30         | 80   | 80     | 62        | 47E              | 37/1     | 03202   | 2480                              | 66  | 44               | 33  | 26   | 22  |  |  |  |
| 35         | 80   | 80     | 53        | 40               | 32       | 26      | 80                                | 57  | 38               | 28  | 22   | 19  |  |  |  |
| 40         | 80   | 70     | 47        | 35               | 28       | 23      | 80                                | 50  | 33               | 25  | 20   | 16  |  |  |  |
| 45         | 80   | 62     | 41        | 31               | 25       | 20      | 80                                | 44  | 29               | 22  | 17   | 14  |  |  |  |
| 50         | 80   | 56     | 37        | 28               | 22       | 18      | 80                                | 40  | 26               | 20  | 16   | 13  |  |  |  |
| 55         | 80   | 51     | 34        | 25               |          | D KAI ( | 72                                | 36  | 24               | 18  | 14   | 12  |  |  |  |
| 60         | 80   | 47     | 31        | 23               | 18       | 15      | 66                                | 33  | 22               | 16  | 13   | 11  |  |  |  |
| 65         | 80   | 43     | 29        | 21               | 17       | 14      | 61                                | 30  | 20               | 15  | 12   | 10  |  |  |  |
| 70         | 80   | 40     | 26        | 20               | 16       | 13      | 57                                | 28  | 19               | 14  | 11   | 9   |  |  |  |
| 75         | 75   | 37     | 25        | 18               | 15       | 12      | 53                                | 26  | 17               | 13  | 10   | 8   |  |  |  |
| 80         | 70   | 35     | 23        | 17               | 14       | 11      | 50                                | 25  | 16               | 12  | 10   | 8   |  |  |  |
| 85         | 66   | 33     | 22        | 16               | 13       | 11      | 47                                | 23  | 15               | 11  | 9    | 7   |  |  |  |
| 90         | 62   | 31     | 20        | 15               | 12       | 10      | 44                                | 22  | 14               | 11  | 8    | 7   |  |  |  |
| 95         | 59   | 29     | 19        | 14               | 11       | 9       | 42                                | 21  | 14               | 10  | 8    | 7   |  |  |  |
| 100        | 56   | 28     | 18        | 14               | 11       | 9       | 40                                | 20  | 13               | 10  | 8    | 6   |  |  |  |

#### DOUBLE RESTRAINT

See Page 170 for Notes



3021 E Coronado St. Anaheim, CA, 92806 U.S.A.

Ulter Ben S.E. #S5877 (CA) Section

6.6

OPM-0601: Reviewed for Co Compliance b

# Pipe/Conduit, Raceway, & Cable Tray Trapeze Supported System Spacing Charts - Double Restraint

#### **SPACE SELECTION & NOTES:**

- 1. For cable tray, conduit, trapeze supported system with weight less than 20 lbs/ft, not carrying toxic, highly toxic, or flammable gasses and not used for smoke control, no restraint system is required.
- 2. Brace spacing of cable tray, conduit, trapeze supported system is selected base on distributed weight of the system (lbs/ft), for intermediate values, interpolations are accepted. If select directly, use the spacing corresponds to higher weight boundary.
- 3. For installation angles between 46° and 60°, the minimum allowable horizontal seismic loads (at 60°) for double rigid seismic bracing is 1000 lbs. For installation angle between 30° and 45°, the minimum allowable horizontal seismic loads (at 45°) for double rigid seismic bracing is 1414 lbs. These two capacities are used to calculate maximum allowable longitudinal spacing of rigid brace at corresponding installation angles.
- In general, transverse spacing selected should be half the longitudinal spacing listed in tables. If suggested spacing for a certain combination (distributed weight, G-factor, installation angle) is less than 20 ft. (highlighted in dark grey), the same spacing can be applied to both longitudinal and transverse directions.
- 5. Detailed configurations and installations for double restraint system are shown in Section 2.0.
- 6. This table was only generated for G factors up to 1.5. For larger G-Factors this table is unconservative, use engineering calculations instead.



Ulto Ben

Compliance h

S.E. #S5877 (CA)



| Section     |  |
|-------------|--|
| 6.6         |  |
| 400 - ( 407 |  |



#### Weight of Pipes and Contents

#### 7.1 Weight of Pipes and Contents

|          |                  |                 | Р            | IPE/CC            | ONTER       | NT WE               | IGHT  |                     |        |          |            |
|----------|------------------|-----------------|--------------|-------------------|-------------|---------------------|-------|---------------------|--------|----------|------------|
| Pipe     |                  | Emp             | oty Pipe We  | eight (lbs/f      | C           | Insulation<br>(Ibs) |       |                     |        |          |            |
| Diameter |                  |                 | Mate         | rial              |             |                     |       | Type of             | Conter | nt       |            |
| (inch)   | Sch. 40<br>steel | Sch. 10<br>s.s. | Copper       | PVC               | PEX         | Cast<br>Iron        | Water | Fuel                | Gas    | Drainage | (If Req'd) |
| 3/8      |                  |                 |              |                   | 0.05        |                     | 0.15  |                     |        |          |            |
| 1/2      |                  |                 |              |                   | 0.06        |                     | 0.2   |                     |        |          |            |
| 5/8      |                  |                 |              |                   | 0.08        |                     | 0.25  |                     |        |          |            |
| 3/4      |                  |                 |              |                   | 0.11        |                     | 0.3   |                     |        |          |            |
| 1        | 1.7              | 1.4             | 0.84         | 0.32 R            | 0.17        | DECA                | 0.4   | 0.34                | 0.0    | 0.20     | 0.7        |
| 1.25     | 2.3              | 1.8             | 1.04         | 0.43              | TAXXXXXXXXX |                     | 0.7   | 0.60                | 0.0    | 0.35     | 0.8        |
| 1.5      | 2.7              | 2.1             | 1.36         | 0.55              | WHW         |                     | 0.9   | 0.77                | 0.0    | 0.45     | 0.9        |
| 2        | 3.7              | 2.6             | 2.06         | 0.68              |             |                     | 1.5   | 1.28                | 0.0    | 0.75     | 1.0        |
| 2.5      | 5.8              | 3.5             | 2.92         | 1.07              |             |                     | 2.1   | 1.79                | 0.0    | 1.05     | 1.2        |
| 3        | 7.6              | 4.3             | 4.00         | 1.41              | 'IVI-06     | 503.4               | 3.2   | 2.72                | 0.0    | 1.60     | 1.3        |
| 4        | 11.0             | 5.6             | 6.51         | 2.01              |             | 7.1                 | 5.5   | 4.68                | 0.0    | 2.75     | 1.8        |
| 5        | 15.0             | 7.8             | 9.67         | <b>B</b> 2.73/Vil | liam St     | taensin             | 8.7   | 7.40                | 0.0    | 4.35     | 2.9        |
| 6        | 19.0             | 9.3             | <u>13.87</u> | 3.53              |             | 11.8                | 12.5  | <mark>10.</mark> 63 | 0.0    | 6.25     | 3.3        |
| 8        | 29.0             | 13.4            |              | 5.39              | 04/10       | 7/4714              | 22.0  | 18.7                | 0.0    | 11.0     | 4.1        |
| NO       | TE:              |                 | ALIFO        |                   |             |                     | Š     |                     |        |          |            |

1. The distributed operating weight  $(w_P)$  in lbs/ft is calculated as the combined weight of the empty pipe contents, and insulation (if required). Weight details regarding size & material of pipe, type of contents, and insulation are shown in the table above.

- 2. The 0.85 specific gravity was used for fuel.
- 3. The 0.5 specific gravity was used for drainage.

4. For 1-4 inches pipes, insulation weight is based on 1-inch-thick calcium silicate insulation. For 5-8 inches pipes, insulation weight is based on 1.5-inch-thick calcium silicate insulation.



#### 7.2 Weight of Ducts (Gauge Numbers)

Distributed weight of duct can be calculated as (perimeter) x (sheet metal weight):



|                     |       | REC               | TANGU             | lar d            | UCT W      | /EIGHT      | -     |       |       |
|---------------------|-------|-------------------|-------------------|------------------|------------|-------------|-------|-------|-------|
| Rectangular         |       |                   |                   | Distribut        | ed Weigh   | t (lbs/ft)  |       |       |       |
| Duct                |       |                   | Gaug              | e Numbe          | rs (Unit W | eight lbs/s | qft.) |       |       |
| Perimeter<br>(inch) | 26    | 24                | 22                | 20               | 18         | 14          | 12    | 11    | 10    |
|                     | 0.906 | 1.156             | 1.406             | 1.656            | 2.156      | 3.281       | 4.531 | 5.000 | 5.781 |
| 40                  | 3.0   | 3.9               | 4.7               | 5.5              | 7.2        | 10.9        | 15.1  | 16.7  | 19.3  |
| 50                  | 3.8   | 4.8               | 5.9               | 6.9              | 9.0        | 13.7        | 18.9  | 20.8  | 24.1  |
| 60                  | 4.5   | 5.8               | 7.0               | 8.3              | 10.8       | 16.4        | 22.7  | 25.0  | 28.9  |
| 70                  | 5.3   | 6.7               | 8.2               | 9.7              | 12.6       | 19.1        | 26.4  | 29.2  | 33.7  |
| 80                  | 6.0   | 7.7               | 9.4               | 11.0             | 14.4       | 21.9        | 30.2  | 33.3  | 38.5  |
| 90                  | 6.8   | 8.7               | 10.5              | 12.4             | 16.2       | 24.6        | 34.0  | 37.5  | 43.4  |
| 100                 | 7.6   | 9.6               | 11.7              | 13.8             | 18.0       | 27.3        | 37.8  | 41.7  | 48.2  |
| 110                 | 8.3   | 10.6              | 12.9 R            | 15.2             | 19.8       | 30.1        | 41.5  | 45.8  | 53.0  |
| 120                 | 9.1   | 11.6              | 14.1              | 16.6             | 21.6       | 32.8        | 45.3  | 50.0  | 57.8  |
| 130                 | 9.8   | 12.5              | 15.2              | 17.9             | 23.4       | 35.5        | 49.1  | 54.2  | 62.6  |
| 140                 | 10.6  | 13.5              | 16.4              | 19.3             | 25.2       | 38.3        | 52.9  | 58.3  | 67.4  |
| 150                 | 11.3  | 14.5              | 17.6              | 20.7             | 27.0       | 41.0        | 56.6  | 62.5  | 72.3  |
| 160                 | 12.1  | 15.4              | 18.7 <sup>P</sup> | 1V22.10U         | 28.7       | 43.7        | 60.4  | 66.7  | 77.1  |
| 170                 | 12.8  | 16.4              | 19.9              | 23.5             | 30.5       | 46.5        | 64.2  | 70.8  | 81.9  |
| 180                 | 13.6  | <b>17.3</b>       | B 21.1            | ap <u>4.</u> sta | eh32.3     | 49.2        | 68.0  | 75.0  | 86.7  |
| 190                 | 14.3  | <mark>18.3</mark> | 22.3              | 26.2             | 34.1       | 51.9        | 71.7  | 79.2  | 91.5  |
| 200                 | 15.1  | 19.3              | D 23.4            | 027/60/          | 235.9      | 54.7        | 75.5  | 83.3  | 96.4  |
| 210                 | 15.9  | 20.2              | 24.6              | 29.0             | 37.7       | 57.4        | 79.3  | 87.5  | 101.2 |
| 220                 | 16.6  | 21.2              | 25.8              | 30.4             | 39.5       | 60.2        | 83.1  | 91.7  | 106.0 |
| 230                 | 17.4  | 22.2              | 26.9              | 31.7             | 41.3       | 62.9        | 86.8  | 95.8  | 110.8 |
| 240                 | 18.1  | 23.1              | 28.1              | 33.1             | 43.1       | 65.6        | 90.6  | 100.0 | 115.6 |
| 250                 | 18.9  | 24.1              | 29.3              | /34.51           | 44.9       | 68.4        | 94.4  | 104.2 | 120.4 |



3021 E Coronado St. Anaheim, CA, 92806 U.S.A.

Anaheim, CA, 92806 U.S.A. https://isotechindustries.com/

<u>Ultor Bon</u> S.E. #S5877 (CA)

73 of 187

## ROUND DUCT WEIGHT

| Round              |       |        |                    | Distribu               | ted Weigh            | t (lbs/ft)  |       |       |       |
|--------------------|-------|--------|--------------------|------------------------|----------------------|-------------|-------|-------|-------|
| Duct               |       |        | Gau                | ge Numbe               | rs (Unit W           | eight lbs/s | qft.) |       |       |
| Diameter<br>(inch) | 26    | 24     | 22                 | 20                     | 18                   | 14          | 12    | 11    | 10    |
| (inch)             | 0 906 | 1 156  | 1 406              | 1 656                  | 2 156                | 3 281       | 4 531 | 5 000 | 5 781 |
| 3                  | 0.7   | 0.9    | 1.1                | 1.3                    | 1.7                  | 2.6         | 3.6   | 3.9   | 4.5   |
| 4                  | 0.9   | 1.2    | 1.5                | 1.7                    | 2.3                  | 3.4         | 4.7   | 5.2   | 6.1   |
| 5                  | 1.2   | 1.5    | 1.8                | 2.2                    | 2.8                  | 4.3         | 5.9   | 6.5   | 7.6   |
| 6                  | 1.4   | 1.8    | 2.2                | 2.6                    | 3.4                  | 5.2         | 7.1   | 7.9   | 9.1   |
| 7                  | 1.7   | 2.1    | 2.6                | 3.0                    | 4.0                  | 6.0         | 8.3   | 9.2   | 10.6  |
| 8                  | 1.9   | 2.4    | 2.9                | 3.5                    | 4.5                  | 6.9         | 9.5   | 10.5  | 12.1  |
| 9                  | 2.1   | 2.7    | - 3.3              | 3.9                    | (5.1                 | 7.7         | 10.7  | 11.8  | 13.6  |
| 10                 | 2.4   | 3.0    | 3.7                | 4.3                    | 5.6                  | 8.6         | 11.9  | 13.1  | 15.1  |
| 12                 | 2.8   | 3.6    | 4.4                | 5.2                    | 6.8                  | 10.3        | 14.2  | 15.7  | 18.2  |
| 14                 | 3.3   | 4.2    | 5.2                | 6.1                    | 7.9                  | 12.0        | 16.6  | 18.3  | 21.2  |
| 16                 | 3.8   | 4.8    | 5.9P               | /-0801                 | 9.0                  | 13.7        | 19.0  | 20.9  | 24.2  |
| 18                 | 4.3   | 5.4    | 6.6                | 7.8                    | 10.2                 | 15.5        | 21.4  | 23.6  | 27.2  |
| 20                 | 4.7   | 6.1 B  | <b>Y∙ ∛M</b> illia | im <mark>87</mark> ael | hlin <sup>11.3</sup> | 17.2        | 23.7  | 26.2  | 30.3  |
| 22                 | 5.2   | 6.7    | 8.1                | 9.5                    | 12.4                 | 18.9        | 26.1  | 28.8  | 33.3  |
| 24                 | 5.7   | 7.3    | 8.8                |                        | 13.5                 | 20.6        | 28.5  | 31.4  | 36.3  |
| 26                 | 6.2   | 7.9 07 | - 19.6             | J4/11.3/Z              | 0214.7               | 22.3        | 30.8  | 34.0  | 39.4  |
| 28                 | 6.6   | 8.5    | 10.3               | 12.1                   | 15.8                 | 24.1        | 33.2  | 36.7  | 42.4  |
| 30                 | 7.1   | 9.1    | 11.0               | 13.0                   | 16.9                 | 25.8        | 35.6  | 39.3  | 45.4  |
| 32                 | 7.6   | 9.7    | 11.8               | 13.9                   | 18.1                 | 27.5        | 38.0  | 41.9  | 48.4  |
| 34                 | 8.1   | 10.3   | 12.5               | 14.7                   | G 19.2               | 29.2        | 40.3  | 44.5  | 51.5  |
| 36                 | 8.5   | 10.9   | 13.3               | 15.6                   | 20.3                 | 30.9        | 42.7  | 47.1  | 54.5  |
| 38                 | 9.0   | 11.5   | 14.0               | 16.5                   | 21.4                 | 32.6        | 45.1  | 49.7  | 57.5  |
| 40                 | 9.5   | 12.1   | 14.7               | 17.3                   | 22.6                 | 34.4        | 47.4  | 52.4  | 60.5  |
| 44                 | 10.4  | 13.3   | 16.2               | 19.1                   | 24.8                 | 37.8        | 52.2  | 57.6  | 66.6  |
| 48                 | 11.4  | 14.5   | 17.7               | 20.8                   | 27.1                 | 41.2        | 56.9  | 62.8  | 72.6  |
| 52                 | 12.3  | 15.7   | 19.1               | 22.5                   | 29.4                 | 44.7        | 61.7  | 68.1  | 78.7  |
| 56                 | 13.3  | 16.9   | 20.6               | 24.3                   | 31.6                 | 48.1        | 66.4  | 73.3  | 84.8  |
| 60                 | 14.2  | 18.2   | 22.1               | 26.0                   | 33.9                 | 51.5        | 71.2  | 78.5  | 90.8  |
| 64                 | 15.2  | 19.4   | 23.6               | 27.7                   | 36.1                 | 55.0        | 75.9  | 83.8  | 96.9  |
| 68                 | 16.1  | 20.6   | 25.0               | 29.5                   | 38.4                 | 58.4        | 80.7  | 89.0  | 102.9 |



|        | ROUND DUCT WEIGHT (CONTINUED) |                                       |       |       |       |       |       |       |       |  |  |  |  |  |
|--------|-------------------------------|---------------------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--|--|
| Round  |                               | Distributed Weight (lbs/ft)           |       |       |       |       |       |       |       |  |  |  |  |  |
| Duct   |                               | Gauge Numbers (Unit Weight Ibs/sqft.) |       |       |       |       |       |       |       |  |  |  |  |  |
| (inch) | 26                            | 24                                    | 22    | 20    | 18    | 14    | 12    | 11    | 10    |  |  |  |  |  |
|        | 0.906                         | 1.156                                 | 1.406 | 1.656 | 2.156 | 3.281 | 4.531 | 5.000 | 5.781 |  |  |  |  |  |
| 72     | 17.1                          | 21.8                                  | 26.5  | 31.2  | 40.6  | 61.8  | 85.4  | 94.2  | 109.0 |  |  |  |  |  |
| 76     | 18.0                          | 23.0                                  | 28.0  | 32.9  | 42.9  | 65.3  | 90.2  | 99.5  | 115.0 |  |  |  |  |  |
| 80     | 19.0                          | 24.2                                  | 29.4  | 34.7  | 45.2  | 68.7  | 94.9  | 104.7 | 121.1 |  |  |  |  |  |
| 84     | 19.9                          | 25.4                                  | 30.9  | 36.4  | 47.4  | 72.2  | 99.6  | 110.0 | 127.1 |  |  |  |  |  |





#### Design by Analysis for Critical Pipes ASME 7.3

As limited by yield strength of the piping system, maximum brace spacing should satisfy the following equation, as provided by ASME B31.9-2020, Section B-3.4:

$$\frac{P \times D}{4t} + 0.75i \ \frac{M_{sustained} + M_{seismic}}{Z} \le 1.33 \ S$$

Where

*P* = System Operating Pressure (psi)

*D* = Pipe Inner Diameter(in)

t = Pipe wall thickness including allowance for corrosion

i =Stress intensification factor from ASME B31.1

*M<sub>sustained</sub>* = Pipe moment due to gravity force acting concurrently with seismic load

ORNIA BUI

**BY:** William Staehlin

DATE: 04/10/2024

ING CODE

 $M_{seismic}$  = Pipe moment due to seismic force

Z = Pipe section modulus

S = Allowable Stress per ASME B31.1-2022, Appendix A



3021 E Coronado St. Anaheim, CA, 92806 U.S.A.



| sec | τιοη |  |
|-----|------|--|
| 7   | 2    |  |

OPM-0601: Reviewed for Co Compliance

#### 7.3.1 Pipe Stress Calculation Design Example

#### Section B-3.4 (Design by Analysis)





#### Design by Analysis for Critical Pipes ASME

#### ASME B31.1-2022 Appendix D

Unreinforced Fabricated Tee or Extruded Outlet (Worst Cases)

$$r = \frac{D_{outer} - 1.0 \cdot t_{nominal}}{2} = 2.132 in$$
 (Mean Radius of Pipe)  
$$h = \frac{t_n}{r} = 0.111 \qquad i = \frac{0.9}{h^{2/3}} = 3.892$$

#### Note:

Miter Bends, Reinforced Fabricated Tees, Branch Connections, Corrugated not Considered.

Section B-3.4 (Design by Analysis)  

$$F_{bending} = 1.33 \cdot S - \frac{P.D}{4t} = 17.039 \, kst$$

$$M_{allowable} = \frac{F_{bending} \cdot Z}{0.75 \cdot i} = 14.41 \, in \cdot kip$$

$$\beta_D = 1.0$$

$$W_{gravity.ASD} = \beta_D \cdot W_{full.pipe} = 18.3 \, plf$$

$$W_{vertical.seismic.ASD} = F_{pv} \cdot W_{full.pipe} = 6.405 \, plf$$

$$W_{horizontal.seismic.ASD} = G \cdot W_{full.pipe} = 9.15 \, plf$$

$$M_{sustained} = \frac{W_{gravity.ASD} \cdot S_{hanger}^2}{8} = 5.38 \, in \cdot kip$$
(Simply supported or middle support on two-span beam)  

$$M_{seismic.horizontal.allowable} = \sqrt{M_{allowable}^2 - (M_{sustained} + M_{seismic.vertical})^2} = 12.446 \, in \cdot kip$$

$$S_{brace.allowable} = \sqrt{\frac{8 \cdot M_{seismic.ASD} - (M_{allowable})^2}{W_{horizontal.seismic.ASD}}} = 30.113 \, ft$$
(Simply supported or middle support on two-span beam)

#### Note:

It is assumed that equation B-3.4c has been satisfied.



7.3.2 Max Transverse Brace Spacing Based On Pipe Size And G Force

|               | GRADE A STEEL    |                                   |                                                           |                                                            |                |                    |              |                |                                            |                   |                 |                |        |        |         |
|---------------|------------------|-----------------------------------|-----------------------------------------------------------|------------------------------------------------------------|----------------|--------------------|--------------|----------------|--------------------------------------------|-------------------|-----------------|----------------|--------|--------|---------|
|               |                  |                                   | ,                                                         | Water P                                                    | ipe            | <b>S</b> allow     | ,= <b>11</b> | <b>.7 k</b> si | i                                          |                   |                 |                |        |        |         |
| NPS           | PIPE<br>SCHEDULE | MAX<br>WEIGHT<br>PER              | MAX<br>GRAVITY<br>SUPPORT                                 | MAX TR                                                     | ANSV           | ERSE BR            | RACES        | SPACII         | NG BA<br>G Foi                             | SED O             | N PIP           | E SIZE A       | AND (  | g forc | CE (FT) |
|               |                  | (IBS/FT)                          | (FT)                                                      | 0.25                                                       | 05             | 0.75               | 1            | 1              | 25                                         | 15                | 17              | 5 2            | )      | 2 25   | 25      |
| 1             | 40               | 2.8                               | 7                                                         | 22                                                         | 16             | 13                 | 1 ·<br>1 ·   | . 1            | .23<br>10                                  | 1.J<br>Q          | 2.7             | 2 ک<br>ج       | -<br>2 | 2.25   | 2.5     |
| 1 1/4         | 40               | 3.8                               | 7                                                         | 24                                                         | 17             | 14                 | 12           | 2              | 11                                         | 10                | 9               | ر<br>ع         | ,<br>} | 8      | 7       |
| 1 1/2         | 40               | 4.5                               | 8                                                         | 25                                                         | 17             | 14                 | 12           | 2              | <br>11                                     | 10                | 9               | 8              | 3      | 8      | 8       |
| 2             | 40               | 6.2                               | 8                                                         | 27                                                         | 19             | 15                 | 13           | 3 :            | 12                                         | 11                | 10              | 9              | )      | 9      | 8       |
| 2 1/2         | 40               | 9.1                               | 10                                                        | 34                                                         | 24             | 20                 | 1            | 7              | 15                                         | 14                | 13              | 1              | 2      | 11     | 11      |
| 3             | 40               | 12.1                              | 11                                                        | 36                                                         | 25             | 20                 | (1)          | 31             | 16                                         | 14                | 13              | 1              | 2      | 12     | 11      |
| 4             | 40               | 18.3                              | 11                                                        | 38                                                         | 27             | 22                 | 19           |                | 17                                         | 15                | 14              | . 1            | 3      | 12     | 12      |
| 5             | 40               | 26.6                              | 12                                                        | 39                                                         | 27             | 22                 | 19           | 9              | 17                                         | 16                | 14              | . 1            | 3      | 13     | 12      |
| 6             | 40               | 34.8                              | 13                                                        | 41                                                         | 29             | 23                 | 20           | <b>)</b>       | 18                                         | 16                | 15              | 1              | 4      | 13     | 13      |
| 8             | 40               | 55.1                              | 14                                                        | 44                                                         | ⊃31            | 06251              | 22           | 2              | 19                                         | 18                | 16              | 1              | 5      | 14     | 14      |
|               |                  |                                   |                                                           |                                                            |                |                    |              |                | П                                          |                   |                 |                |        |        |         |
|               |                  |                                   |                                                           | DV• Wi                                                     | Ilian          | Stae               | hlin         |                |                                            |                   |                 |                |        |        |         |
|               |                  |                                   |                                                           |                                                            | man            |                    | -11 -        |                |                                            |                   |                 |                |        |        |         |
|               |                  |                                   |                                                           | Gas PI                                                     | pe 3           | allow <sup>=</sup> | =11./        | KSI            |                                            |                   |                 |                |        |        |         |
|               |                  |                                   |                                                           | DATE                                                       | : 04           | 10/2               | 024          |                | 0                                          |                   |                 |                |        |        |         |
| NPS           | PIPE SCHEI       | MA<br>DULE PI                     | X WEIGHT<br>ER FOOT<br>LBS/FT)                            | MAX<br>GRAVI<br>SUPPO                                      | (<br>TY<br>PRT | MAX                | ( TRAI       | NSVER          | SE BR                                      | ACE SI<br>ID G FC | PACIN<br>DRCE ( | G BASI<br>(FT) | ed oi  | N PIPE | SIZE    |
|               |                  | · ·                               | 203,117                                                   | SPACING                                                    | i (FT)         | DIA                | G            | 0.75           |                                            | 4.05              |                 | 4 75           | •      | 2.25   |         |
|               |                  |                                   |                                                           | 5                                                          | OIL            | 0.25               | 0.5          | 0.75           | 1                                          | 1.25              | 1.5             | 1.75           | 2      | 2.25   | 2.5     |
| 1             | 40               |                                   | 1./                                                       | 9                                                          |                | 29                 | 20           | 1/             | 14                                         | 13                | 12              | 11             | 10     | 9      | 9       |
| 1 1/4         | 40               |                                   | 2.3                                                       | 9                                                          |                | 31                 | 22           | 18             | 15                                         | 14                | 12              | 12             | 11     | 10     | 10      |
| 1 1/2         | 40               |                                   | 2.7                                                       | 10                                                         |                | 33                 | 23           | 19             | 16                                         | 14                | 13              | 12             | 11     | 11     | 10      |
| 2             | 40               |                                   | 3.7                                                       | 10                                                         |                | 35                 | 24           | 20             | 17                                         | 15                | 14              | 13             | 12     | 11     | 11      |
| 2 1/2         | 40               |                                   | 5.8                                                       | 13                                                         |                | 43                 | 30           | 25             | 21                                         | 19                | 17              | 16             | 15     | 14     | 13      |
| 3             | 40               |                                   | 7.6                                                       | 14                                                         |                | 45                 | 32           | 26             | 22                                         | 20                | 18              | 17             | 16     | 15     | 14      |
| 4             | 40               |                                   | 11                                                        | 15                                                         |                | 49                 | 34           | 28             | 24                                         | 21                | 20              | 18             | 17     | 16     | 15      |
| 5             | 40               |                                   | 15                                                        | 16                                                         |                | 52                 | 37           | 30             | 26                                         | 23                | 21              | 19             | 18     | 17     | 16      |
| 6             | 40               |                                   | 19                                                        | 17                                                         |                | 56                 | 39           | 32             | 28                                         | 25                | 23              | 21             | 19     | 18     | 17      |
| -             |                  |                                   |                                                           |                                                            |                |                    |              | -              |                                            |                   |                 |                |        |        |         |
|               |                  |                                   |                                                           |                                                            |                |                    |              |                |                                            |                   |                 |                | 50     | ction  | n       |
| W             | SOT              | ECH                               | 3021 E Cor                                                | ronado St.                                                 |                | ulle               | Br           | _              | S.E. 7                                     | #S5877            | (CA)            |                | 50     | cuor   | •       |
| Vibration Iso | SOTI<br>NDUST    | ECH<br>RIES<br>Custom Engineering | 3021 E Cor<br>Anaheim, CA,<br>https://isotechi<br>OPM-060 | ronado St.<br>92806 U.S.A.<br>ndustries.com<br>1: Reviewed | n∕<br>for€o    | de Compli          | Brook h      | V Willior      | − S.E. <del>i</del><br><del>n Stac</del> ł | #S5877            | (CA)            |                |        | 7.3    |         |

#### Design by Analysis for Critical Pipes ASME

#### Notes:

- 1. Assume P(system operating pressure) = 400 psi $t_{corrosion.allowance} = 0.0625 in$  $F_{pv} = 0.350$
- 2. FOR LONGITUDINAL AND ALL-DIRECTIONAL BRACE SPACING, TRIPLE THE VALUES IN THE ABOVE TABLE. BRACE AND/OR CONNECTION CAPACITY MAY GOVERN MAXIMUM SPACING IN SOME CASES.
- 3. BRACE SPAINGS ARE BASED ON STEEL PIPE CONFORMING TO ASTM SPECIFICATION A53, TYPE E, GRADE A WITH MINIMUM  $F_y = 30 \ ksi$  and  $S_A = 11.7 \ ksi$  at maximum operating pressure AND TEMPERATURE OF 400 PSI AND 650° F, RESPECTIVELY.




# **GRADE B STEEL**

Water Pipe Sallow=14.6 ksi

| NPS                                                          | PIPE                                                                                           | MAX<br>WEIGHT<br>PER                                                                                 | MAX<br>GRAVITY<br>SUPPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ΜΑΧ Τ                                                                   | RANSVI                                                                           | ERSE BRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CE SPA                                                                      | CING BA                                                                                      | SED ON                                                              | I PIPE SIZ                                                              | E AND                                                            | g forci                                                    | E (FT)                                                    |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|
|                                                              | SCHEDULE                                                                                       | FOOT                                                                                                 | SPACING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             | G Fo                                                                                         | rce                                                                 |                                                                         |                                                                  |                                                            |                                                           |
|                                                              |                                                                                                | (LBS/FT)                                                                                             | (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.25                                                                    | 0.5                                                                              | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                           | 1.25                                                                                         | 1.5                                                                 | 1.75                                                                    | 2                                                                | 2.25                                                       | 2.5                                                       |
| 1                                                            | 40                                                                                             | 2.8                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26                                                                      | 18                                                                               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13                                                                          | 11                                                                                           | 10                                                                  | 10                                                                      | 9                                                                | 8                                                          | 8                                                         |
| 1 1/4                                                        | 40                                                                                             | 3.8                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28                                                                      | 20                                                                               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14                                                                          | 12                                                                                           | 11                                                                  | 10                                                                      | 10                                                               | 9                                                          | 9                                                         |
| 1 1/2                                                        | 40                                                                                             | 4.5                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28                                                                      | 20                                                                               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14                                                                          | 12                                                                                           | 11                                                                  | 10                                                                      | 10                                                               | 9                                                          | 9                                                         |
| 2                                                            | 40                                                                                             | 6.2                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                      | 21                                                                               | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                          | 13                                                                                           | 12                                                                  | 11                                                                      | 10                                                               | 10                                                         | 9                                                         |
| 2 1/2                                                        | 40                                                                                             | 9.1                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39                                                                      | 28                                                                               | $C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F 19                                                                        | 17                                                                                           | 16                                                                  | 15                                                                      | 14                                                               | 13                                                         | 12                                                        |
| 3                                                            | 40                                                                                             | 12.1                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41                                                                      | 29                                                                               | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20                                                                          | 18                                                                                           | 16                                                                  | 15                                                                      | 14                                                               | 13                                                         | 13                                                        |
| 4                                                            | 40                                                                                             | 18.3                                                                                                 | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43                                                                      | 30                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21                                                                          | 19                                                                                           | 17                                                                  | 16                                                                      | 15                                                               | 14                                                         | 13                                                        |
| 5                                                            | 40                                                                                             | 26.6                                                                                                 | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45                                                                      | 32                                                                               | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22                                                                          | 20                                                                                           | 18                                                                  | 17                                                                      | 16                                                               | 15                                                         | 14                                                        |
| 6                                                            | 40                                                                                             | 34.8                                                                                                 | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47                                                                      | <b>3</b> 3P                                                                      | VI- <b>27</b> 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23                                                                          | 21                                                                                           | 19                                                                  | 18                                                                      | 16                                                               | 15                                                         | 15                                                        |
| 8                                                            | 40                                                                                             | 55.1                                                                                                 | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                      | 36                                                                               | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25                                                                          | 22                                                                                           | 20                                                                  | 19                                                                      | 18                                                               | 16                                                         | 16                                                        |
|                                                              |                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>DV</b>                                                               | • Willi:                                                                         | am Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ehlin                                                                       | C Luci                                                                                       |                                                                     |                                                                         |                                                                  |                                                            |                                                           |
|                                                              |                                                                                                |                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ga                                                                      | as Pipe                                                                          | Sallow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sub>w</sub> =14.                                                           | 6 KSI                                                                                        |                                                                     |                                                                         |                                                                  |                                                            |                                                           |
| NPS                                                          | PIPE                                                                                           | MAX<br>WEIGHT<br>PER                                                                                 | MAX<br>GRAVITY<br>SUPPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ga                                                                      | rransv                                                                           | erse BRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | w=14.                                                                       |                                                                                              | ASED O                                                              | N PIPE SI                                                               | ZE ANI                                                           | D G FORC                                                   | E (FT)                                                    |
| NPS                                                          | PIPE<br>SCHEDULE                                                                               | MAX<br>WEIGHT<br>PER<br>FOOT<br>(LBS/FT)                                                             | MAX<br>GRAVITY<br>SUPPORT<br>SPACING<br>(FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ga<br>MAX                                                               | as Pipe                                                                          | e S <sub>allov</sub><br>O4/10<br>ERSE BRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v=14.                                                                       | ACING B                                                                                      | ASED O                                                              | <b>N PIPE SI</b><br>1.75                                                | <b>ZE ANI</b><br>2                                               | <b>D G FORC</b><br>2.25                                    | 2.5                                                       |
| NPS<br>1                                                     | PIPE<br>SCHEDULE                                                                               | MAX<br>WEIGHT<br>PER<br>FOOT<br>(LBS/FT)<br>1.7                                                      | MAX<br>GRAVITY<br>SUPPORT<br>SPACING<br>(FT)<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ga<br>MAX<br>0.25<br>34                                                 | as Pipe<br>TRANSV                                                                | CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CALLON<br>CA | v=14.                                                                       | G FC                                                                                         | ASED O<br>orce<br>1.5<br>13                                         | N PIPE SI<br>1.75<br>12                                                 | <b>ZE ANI</b><br>2<br>12                                         | <b>D G FORC</b><br>2.25<br>11                              | 2.5<br>10                                                 |
| NPS<br>1<br>1 1/4                                            | PIPE<br>SCHEDULE<br>40<br>40                                                                   | MAX<br>WEIGHT<br>PER<br>FOOT<br>(LBS/FT)<br>1.7<br>2.3                                               | MAX<br>GRAVITY<br>SUPPORT<br>SPACING<br>(FT)<br>9<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ga<br>MAX<br>0.25<br>34<br>36                                           | as Pipe<br>TRANSV<br>4 0.5<br>24<br>25                                           | Callov<br>CA/10<br>CERSE BR/<br>0.75<br>19<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v=14.                                                                       | 6 KSI<br>ACING B<br>1.25<br>15<br>16                                                         | ASED O<br>orce<br>1.5<br>13<br>14                                   | N PIPE SI<br>1.75<br>12<br>13                                           | <b>ZE ANI</b><br>2<br>12<br>12                                   | <b>D G FORC</b><br>2.25<br>11<br>12                        | 2.5<br>10<br>11                                           |
| NPS<br>1<br>1 1/4<br>1 1/2                                   | PIPE<br>SCHEDULE<br>40<br>40<br>40                                                             | MAX<br>WEIGHT<br>PER<br>FOOT<br>(LBS/FT)<br>1.7<br>2.3<br>2.7                                        | MAX<br>GRAVITY<br>SUPPORT<br>SPACING<br>(FT)<br>9<br>10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ga<br>MAX<br>0.25<br>34<br>36<br>37                                     | 0.5<br>24<br>25<br>26                                                            | Callov<br>PERSE BRA<br>0.75<br>19<br>20<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v=14.<br>ACE SP.<br>1<br>17<br>18<br>18                                     | 6 KSI<br>ACING B<br>6 Fc<br>1.25<br>15<br>16<br>16                                           | ASED O<br>orce<br>1.5<br>13<br>14<br>15                             | N PIPE SI<br>1.75<br>12<br>13<br>14                                     | 2 ANI<br>2<br>12<br>12<br>13                                     | 2.25<br>11<br>12<br>12                                     | 2.5<br>10<br>11<br>11                                     |
| NPS<br>1<br>1 1/4<br>1 1/2<br>2                              | PIPE<br>SCHEDULE<br>40<br>40<br>40<br>40<br>40                                                 | MAX<br>WEIGHT<br>PER<br>FOOT<br>(LBS/FT)<br>1.7<br>2.3<br>2.7<br>3.7                                 | MAX<br>GRAVITY<br>SUPPORT<br>SPACING<br>(FT)<br>9<br>10<br>11<br>11<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ga<br>MAX<br>0.25<br>34<br>36<br>37<br>39                               | 0.5<br>24<br>25<br>26<br>28                                                      | 0.75<br>0.75<br>19<br>20<br>21<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | v=14.                                                                       | 6 KSI<br>ACING B<br>1.25<br>15<br>16<br>16<br>17                                             | ASED O<br>Drce<br>1.5<br>13<br>14<br>15<br>16                       | N PIPE SI<br>1.75<br>12<br>13<br>14<br>15                               | 2 ANI<br>2<br>12<br>12<br>13<br>14                               | 2.25<br>11<br>12<br>12<br>13                               | 2.5<br>10<br>11<br>11<br>12                               |
| NPS<br>1<br>1 1/4<br>1 1/2<br>2<br>2 1/2                     | PIPE<br>SCHEDULE<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                     | MAX<br>WEIGHT<br>PER<br>FOOT<br>(LBS/FT)<br>1.7<br>2.3<br>2.7<br>3.7<br>5.8                          | MAX<br>GRAVITY<br>SUPPORT<br>SPACING<br>(FT)<br>9<br>10<br>11<br>12<br>12<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ga<br>MAX<br>0.25<br>34<br>36<br>37<br>39<br>49                         | 0.5<br>24<br>25<br>26<br>28<br>35                                                | C.75<br>0.75<br>19<br>20<br>21<br>22<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | v=14.                                                                       | 6 KSI<br>ACING B<br>1.25<br>15<br>16<br>16<br>16<br>17<br>22                                 | ASED O<br>Drce<br>1.5<br>13<br>14<br>15<br>16<br>20                 | N PIPE SI<br>1.75<br>12<br>13<br>14<br>15<br>18                         | 2<br>12<br>12<br>13<br>14<br>17                                  | 2.25<br>11<br>12<br>12<br>13<br>16                         | 2.5<br>10<br>11<br>11<br>12<br>15                         |
| NPS<br>1<br>1 1/4<br>1 1/2<br>2<br>2 1/2<br>3                | PIPE<br>SCHEDULE<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                               | MAX<br>WEIGHT<br>PER<br>FOOT<br>(LBS/FT)<br>1.7<br>2.3<br>2.7<br>3.7<br>5.8<br>7.6                   | MAX<br>GRAVITY<br>SUPPORT<br>SPACING<br>(FT)<br>9<br>10<br>11<br>12<br>14<br>12<br>14<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.25<br>34<br>36<br>37<br>39<br>49<br>52                                | 0.5<br>24<br>25<br>26<br>28<br>35<br>37                                          | 0.75<br>19<br>20<br>21<br>22<br>28<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v=14.<br>ACE SP.<br>1<br>17<br>18<br>18<br>19<br>24<br>26                   | 6 KSI<br>ACING B<br>6 Fc<br>1.25<br>15<br>16<br>16<br>16<br>17<br>22<br>23                   | ASED O<br>0<br>1.5<br>13<br>14<br>15<br>16<br>20<br>21              | N PIPE SI<br>1.75<br>12<br>13<br>14<br>15<br>18<br>19                   | 2<br>12<br>12<br>13<br>14<br>17<br>18                            | 2.25<br>11<br>12<br>12<br>13<br>16<br>17                   | 2.5<br>10<br>11<br>11<br>12<br>15<br>16                   |
| NPS<br>1<br>1 1/4<br>1 1/2<br>2<br>2 1/2<br>3<br>4           | PIPE<br>SCHEDULE<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                   | MAX<br>WEIGHT<br>PER<br>FOOT<br>(LBS/FT)<br>1.7<br>2.3<br>2.7<br>3.7<br>5.8<br>7.6<br>11             | MAX<br>GRAVITY<br>SUPPORT<br>SPACING<br>(FT)<br>9<br>10<br>11<br>12<br>12<br>14<br>15<br>15<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ga<br>MAX<br>0.25<br>34<br>36<br>37<br>39<br>49<br>52<br>55             | 0.5<br>24<br>25<br>26<br>28<br>35<br>37<br>39                                    | 0.75<br>19<br>20<br>21<br>22<br>28<br>30<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | v=14.<br>ACE SP.<br>1<br>17<br>18<br>18<br>19<br>24<br>26<br>27             | 6 KSI<br>ACING B<br>6 F<br>1.25<br>15<br>16<br>16<br>17<br>22<br>23<br>25                    | ASED O<br>1.5<br>13<br>14<br>15<br>16<br>20<br>21<br>22             | N PIPE SI<br>1.75<br>12<br>13<br>14<br>15<br>18<br>19<br>21             | 2 ANI<br>2<br>12<br>13<br>14<br>17<br>18<br>19                   | 2.25<br>11<br>12<br>12<br>13<br>16<br>17<br>18             | 2.5<br>10<br>11<br>11<br>12<br>15<br>16<br>17             |
| NPS<br>1<br>1 1/4<br>1 1/2<br>2<br>2 1/2<br>3<br>4<br>5      | PIPE<br>SCHEDULE<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40       | MAX<br>WEIGHT<br>PER<br>FOOT<br>(LBS/FT)<br>1.7<br>2.3<br>2.7<br>3.7<br>5.8<br>7.6<br>11<br>15       | MAX         Max <thmax< th=""> <thmax< th=""> <thmax< th=""></thmax<></thmax<></thmax<> | Ga<br>MAX<br>0.25<br>34<br>36<br>37<br>39<br>49<br>52<br>55<br>55<br>59 | 0.5<br>24<br>25<br>26<br>28<br>35<br>37<br>39<br>42                              | C.75<br>19<br>20<br>21<br>22<br>28<br>30<br>32<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | v=14.<br>ACE SPA<br>1<br>17<br>18<br>18<br>19<br>24<br>26<br>27<br>29       | 6 KSI<br>ACING B<br>1.25<br>15<br>16<br>16<br>16<br>17<br>22<br>23<br>25<br>26               | ASED O<br>1.5<br>13<br>14<br>15<br>16<br>20<br>21<br>22<br>24       | N PIPE SI<br>1.75<br>12<br>13<br>14<br>15<br>18<br>19<br>21<br>22       | 2<br>12<br>12<br>13<br>14<br>17<br>18<br>19<br>21                | 2.25<br>11<br>12<br>12<br>13<br>16<br>17<br>18<br>19       | 2.5<br>10<br>11<br>11<br>12<br>15<br>16<br>17<br>18       |
| NPS<br>1<br>1 1/4<br>1 1/2<br>2<br>2 1/2<br>3<br>4<br>5<br>6 | PIPE<br>SCHEDULE<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | MAX<br>WEIGHT<br>PER<br>FOOT<br>(LBS/FT)<br>1.7<br>2.3<br>2.7<br>3.7<br>5.8<br>7.6<br>11<br>15<br>19 | MAX         Max <thmax< th=""> <thmax< th=""> <thmax< th=""></thmax<></thmax<></thmax<> | Ga<br>MAX<br>0.25<br>34<br>36<br>37<br>39<br>49<br>52<br>55<br>59<br>64 | as Pipe<br>TRANSV<br>4 0.5<br>24<br>25<br>26<br>28<br>35<br>37<br>39<br>42<br>45 | Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Callov<br>Ca | v=14.<br>ACE SP.<br>1<br>17<br>18<br>18<br>19<br>24<br>26<br>27<br>29<br>32 | 6 KSI<br>ACING B<br>6 Fc<br>1.25<br>15<br>16<br>16<br>16<br>17<br>22<br>23<br>25<br>26<br>28 | ASED O<br>1.5<br>13<br>14<br>15<br>16<br>20<br>21<br>22<br>24<br>26 | N PIPE SI<br>1.75<br>12<br>13<br>14<br>15<br>18<br>19<br>21<br>22<br>24 | 2 ANI<br>2<br>12<br>12<br>13<br>14<br>17<br>18<br>19<br>21<br>22 | 2.25<br>11<br>12<br>12<br>13<br>16<br>17<br>18<br>19<br>21 | 2.5<br>10<br>11<br>11<br>12<br>15<br>16<br>17<br>18<br>20 |
| NPS<br>1<br>1 1/4<br>1 1/2<br>2 1/2<br>3<br>4<br>5<br>6      | PIPE<br>SCHEDULE<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40       | MAX<br>WEIGHT<br>PER<br>FOOT<br>(LBS/FT)<br>1.7<br>2.3<br>2.7<br>3.7<br>5.8<br>7.6<br>11<br>15<br>19 | MAX<br>GRAVITY<br>SUPPORT<br>SPACING<br>(FT)<br>9<br>10<br>11<br>12<br>14<br>15<br>17<br>18<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ga<br>MAX<br>0.25<br>34<br>36<br>37<br>39<br>49<br>52<br>55<br>59<br>64 | as Pipe<br>TRANSV<br>0.5<br>24<br>25<br>26<br>28<br>35<br>37<br>39<br>42<br>45   | 0.75<br>19<br>20<br>21<br>22<br>28<br>30<br>32<br>34<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | v=14.<br>ACE SP.<br>1<br>17<br>18<br>18<br>19<br>24<br>26<br>27<br>29<br>32 | 6 KSI<br>ACING B<br>6 Fc<br>1.25<br>15<br>16<br>16<br>17<br>22<br>23<br>25<br>26<br>28       | ASED O<br>1.5<br>13<br>14<br>15<br>16<br>20<br>21<br>22<br>24<br>26 | N PIPE SI<br>1.75<br>12<br>13<br>14<br>15<br>18<br>19<br>21<br>22<br>24 | 2 ANI<br>2<br>12<br>13<br>14<br>17<br>18<br>19<br>21<br>22       | 2.25<br>11<br>12<br>12<br>13<br>16<br>17<br>18<br>19<br>21 | 2.5<br>10<br>11<br>11<br>12<br>15<br>16<br>17<br>18<br>20 |
| NPS<br>1<br>1 1/4<br>1 1/2<br>2 1/2<br>3<br>4<br>5<br>6      | PIPE<br>SCHEDULE<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40       | MAX<br>WEIGHT<br>PER<br>FOOT<br>(LBS/FT)<br>1.7<br>2.3<br>2.7<br>3.7<br>5.8<br>7.6<br>11<br>15<br>19 | MAX<br>GRAVITY<br>SUPPORT<br>SPACING<br>(FT)<br>9<br>10<br>11<br>12<br>14<br>15<br>17<br>18<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ga<br>MAX<br>0.25<br>34<br>36<br>37<br>39<br>49<br>52<br>55<br>59<br>64 | as Pipe<br>TRANSV<br>0.5<br>24<br>25<br>26<br>28<br>35<br>37<br>39<br>42<br>45   | C.75<br>19<br>20<br>21<br>22<br>28<br>30<br>32<br>34<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | v=14.<br>ACE SPA<br>1<br>17<br>18<br>18<br>19<br>24<br>26<br>27<br>29<br>32 | 6 KSI<br>ACING B<br>1.25<br>15<br>16<br>16<br>16<br>17<br>22<br>23<br>25<br>26<br>28         | ASED O<br>1.5<br>13<br>14<br>15<br>16<br>20<br>21<br>22<br>24<br>26 | N PIPE SI<br>1.75<br>12<br>13<br>14<br>15<br>18<br>19<br>21<br>22<br>24 | 2<br>12<br>12<br>13<br>14<br>17<br>18<br>19<br>21<br>22          | 2.25<br>11<br>12<br>12<br>13<br>16<br>17<br>18<br>19<br>21 | 2.5<br>10<br>11<br>11<br>12<br>15<br>16<br>17<br>18<br>20 |



3021 E Coronado St. Anaheim, CA, 92806 U.S.A.

Ulter Ben

Anaheim, CA, 92806 U.S.A. https://isotechindustries.com/ S.E. #S5877 (CA)

Section

# 7.3

OPM-0601: Reviewed for Code Compliance by William Stachlin

## Design by Analysis for Critical Pipes ASME

#### Notes:

- 1. Assume P(system operating pressure) = 400 psi $t_{corrosion.allowance} = 0.0625 in$  $F_{pv} = 0.350$
- 2. FOR LONGITUDINAL AND ALL-DIRECTIONAL BRACE SPACING, TRIPLE THE VALUES IN THE ABOVE TABLE. BRACE AND/OR CONNECTION CAPACITY MAY GOVERN MAXIMUM SPACING IN SOME CASES.
- 3. BRACE SPAINGS ARE BASED ON STEEL PIPE CONFORMING TO ASTM SPECIFICATION A53, TYPE E, GRADE A WITH MINIMUM  $F_y = 30 \ ksi$  and  $S_A = 11.7 \ ksi$  at maximum operating pressure AND TEMPERATURE OF 400 PSI AND 650° F, RESPECTIVELY.







# Appendix A. Design by Rule for Noncritical Pipes ASME

As limited by yield strength of the piping system, maximum brace spacing should not exceed the span length given by the following equations, as provided by ASME B31.9-2020, Section B-3.3:

$$L_{max} = 1.94 \times \frac{L_T}{a^{0.25}}$$
 OR  $L_{max} = 0.01 \times L_T \times \sqrt{\frac{S_y}{a}}$ 

Where

a= peak spectral acceleration, largest in any of the three directions, including in-structure amplification

 $L_{max}$  = maximum permitted pipe span between lateral seismic restraints, ft

 $L_T$  = reference span, the recommended span between weight supports, from ASME B31.1, Table 121.5 (reproduced in Section 7.3 Tables), ft

 $S_y$  = material yield strength at operating temperature, psi

#### Notes:

- 1. Maximum brace spacing is based on ASME B31.9-2020 Design by Rule equation.
- 2. In general, maximum longitudinal spacing can be twice as much as the transverse spacing listed in tables.
- 3. Spacing limits listed in this section shall not be used for critical pipes.
- 4. Noncritical pipe defined as: piping that may not be operable or leak-tight during or following an earthquake.
- 5. Critical pipe defined as: piping that must remain leak-tight or operable during or following an earthquake.
- 6. For critical pipes the pipe brace spacing must be determined "By Analysis" per ASME B31.9-2020, see section 7.3



3021 E Coronado St. Anaheim, CA, 92806 U.S.A. https://isotechindustries.com/

| Ultor Ban | S.E. #S5877 (CA) |
|-----------|------------------|
|-----------|------------------|

Section **A** 

|                  |                                    | GR     | ADE A S          | TEEL              |                              |        |       |
|------------------|------------------------------------|--------|------------------|-------------------|------------------------------|--------|-------|
|                  |                                    | WATE   | R PIPE ( $S_v =$ | = 30 <i>ksi</i> ) |                              |        |       |
| Pipe<br>Diameter | Maximum Gravity<br>Support Spacing |        | Maxim            | um Transverse S   | Spacing (L <sub>T</sub> ) (f | t)     |       |
| (in)             | (ft)                               |        | Р                | eak Spectral Acc  | eleration                    |        |       |
|                  |                                    | 0.25 g | 0.5 g            | 0.75 g            | 1 g                          | 1.25 g | 1.5 g |
| 1                | 7                                  | 19     | 16               | 14                | 13                           | 12     | 12    |
| 1.25             | 7                                  | 19     | 16               | 14                | 13                           | 12     | 12    |
| 1.5              | 9                                  | 24     | 20               | 18                | 17                           | 16     | 15    |
| 2                | 10                                 | 27     | 23               | 20                | 19                           | 18     | 17    |
| 2.5              | 11                                 | 30     | 25               | 22                | 21                           | 20     | 19    |
| 3                | 12                                 | 32     | 27               | 25                | 23                           | 22     | 20    |
| 4                | 14                                 | 38     | 32               | 29                | 27                           | 25     | 24    |
| 5                | 16                                 | 43     | 36               | 33                | 31                           | 29     | 27    |
| 6                | 17                                 | 46     | 39               | 35                | 32                           | 31     | 29    |
| 8                | 19                                 | 52     | 43               | 39                | 36                           | 34     | 33    |
|                  |                                    | GAS    | PIPE ( $S_y = 3$ | 30 ksi)           |                              |        |       |
| Pipe<br>Diameter | Maximum Gravity<br>Support Spacing |        | Maxim            | um Transverse S   | Spacing (L <sub>T</sub> ) (f | it)    |       |
| (in)             | (ft)                               |        | Р                | eak Spectral Acc  | eleration                    |        |       |
|                  |                                    | 0.25 g | 0.5 g            | 0.75 g            | 1 g                          | 1.25 g | 1.5 g |
| 1                | 9                                  | 24     | 20               | 18                | 17                           | 16     | 15    |
| 1.25             | 10                                 | 27     | 23               | 20                | 19                           | 18     | 17    |
| 1.5              | 12                                 | 32     | 27               | 25                | 23                           | 22     | 20    |
| 2                | 13                                 | 35     | 29               | 27                | 25                           | 23     | 22    |
| 2.5              | 14                                 | 38     | 32               | 29                | 27                           | 25     | 24    |

#### NOTES:

Maximum gravity support spacing is based on MSS SP-58 Table 4, limited to 20 feet. Pipe weights used are based on standard schedule including water and insulation (refer to section 7.1). Pipes with thicker walls and / or filled with vapor or gas may use spacings as tabulated. Grade A steel has a yield strength of 207 MPa or 30,000 psi.



3021 E Coronado St. Anaheim, CA, 92806 U.S.A. https://isotechindustries.com/

|--|



| GRADE | <b>B STEEL</b> |
|-------|----------------|
|-------|----------------|

WATER PIPE ( $S_y = 35 \ ksi$ )

| Pipe<br>Diameter | Maximum Gravity<br>Support Spacing |        | Max   | imum Transv | erse Spacir  | ng (L⊤) (ft) |       |
|------------------|------------------------------------|--------|-------|-------------|--------------|--------------|-------|
| (in)             | (ft)                               |        |       | Peak Spectr | al Accelerat | ion          |       |
|                  |                                    | 0.25 g | 0.5 g | 0.75 g      | 1 g          | 1.25 g       | 1.5 g |
| 1                | 7                                  | 19     | 16    | 14          | 13           | 12           | 12    |
| 1.25             | 7                                  | 19     | 16    | 14          | 13           | 12           | 12    |
| 1.5              | 9                                  | 24     | 20    | 18          | 17           | 16           | 15    |
| 2                | 10                                 | 27     | 23    | 20          | 19           | 18           | 17    |
| 2.5              | 11                                 | 30     | 25    | 22          | 21           | 20           | 19    |
| 3                | 12                                 | 32     | 27    | 25          | 23           | 22           | 21    |
| 4                | 14                                 | 38     | 32    | 29          | 27           | 25           | 24    |
| 5                | 16                                 | 43     | 36    | 33          | 31           | 29           | 28    |
| 6                | 17                                 | 46     | 39    | 35          | 32           | 31           | 29    |
| 8                | 19                                 | 52     | 43    | 39          | 36           | 34           | 33    |

## GAS PIPE ( $S_y = 35 \ ksi$ )

| Pipe<br>Diameter | Maximum Gravity<br>Support Spacing |        | Max   | kimum Transv | verse Spacir | ng (L⊤) (ft) |       |
|------------------|------------------------------------|--------|-------|--------------|--------------|--------------|-------|
| (in)             | (ft)                               |        |       | Peak Spectr  | al Accelerat | ion          |       |
|                  |                                    | 0.25 g | 0.5 g | 0.75 g       | 1 g          | 1.25 g       | 1.5 g |
| 1                | 9                                  | 24     | 20    | 18           | 17           | 16           | 15    |
| 1.25             | 10                                 | 27     | 23    | 20           | 19           | 18           | 17    |
| 1.5              | 12                                 | 32     | 27    | 25           | 23           | 22           | 21    |
| 2                | 13                                 | 35     | 29    | 27           | 25           | 23           | 22    |
| 2.5              | 14                                 | 38     | 32    | 29           | 27           | 25           | 24    |
| 3                | 15                                 | 41     | 34    | 31           | 29           | 27           | 26    |
| 4                | 17                                 | 46     | 39    | 35           | 32           | 31           | 29    |
| 5                | 19                                 | 52     | 43    | 39           | 36           | 34           | 33    |
| 6                | 20                                 | 54     | 46    | 41           | 38           | 36           | 35    |
|                  |                                    |        |       |              |              |              |       |
| NOTES:           |                                    |        |       |              |              |              |       |

Maximum gravity support spacing is based on MSS SP-58 Table 4, limited to 20 feet. Pipe weights used are based on standard schedule including water and insulation (refer to section 7.1). Pipes with thicker walls and / or filled with vapor or gas may use spacings as tabulated. Grade B steel has a yield strength of 241 MPa or 35,000 psi.



3021 E Coronado St. Anaheim, CA, 92806 U.S.A. https://isotechindustries.com/

| A) |
|----|
| ,  |

Appendix A

# **COPPER-TYPE L DRAWN TUBE**

## WATER PIPE ( $S_y = 30 \ ksi$ )

| Pipe<br>Diameter | Maximum Gravity<br>Support Spacing |        | Max   | timum Transv | verse Spacin | ıg (L⊤) (ft) |       |
|------------------|------------------------------------|--------|-------|--------------|--------------|--------------|-------|
| (in)             | (ft)                               |        |       | Peak Spectr  | al Accelerat | ion          |       |
|                  |                                    | 0.25 g | 0.5 g | 0.75 g       | 1 g          | 1.25 g       | 1.5 g |
| 1                | 6                                  | 16     | 13    | 12           | 11           | 11           | 10    |
| 1.25             | 7                                  | 19     | 16    | 14           | 13           | 12           | 12    |
| 1.5              | 8                                  | 21     | 18    | 16           | 15           | 14           | 13    |
| 2                | 8                                  | 21     | 18    | 16           | 15           | 14           | 13    |
| 2.5              | 9                                  | 24     | 20    | 18           | 17           | 16           | 15    |
| 3                | 10                                 | 27     | 23    | 20           | 19           | 18           | 17    |
| 4                | 10                                 | 27     | 23    | 20           | 19           | 18           | 17    |

#### NOTES:

Maximum gravity support spacing is based on MSS SP-58 Table 4, limited to 10 feet. Pipe weights used are based on standard schedule including water and insulation (refer to section 7.1). Pipes with thicker walls and / or filled with vapor or gas may use spacings as tabulated.



3021 E Coronado St. Anaheim, CA, 92806 U.S.A. https://isotechindustries.com/

| S.E. #S5877 (CA) |
|------------------|
|------------------|



185 of 185