

DEPARTMENT OF HEALTH CARE ACCESS AND INFORMATION FACILITIES DEVELOPMENT DIVISION

APPLICATION FOR HCAI PREAPPROVAL OF	OFFICE USE ONLY
MANUFACTURER'S CERTIFICATION (OPM)	APPLICATION #: OPM-0668
HCAI Preapproval of Manufacturer's Certification (OPM)	
Type: X New Renewal/Update	
Manufacturer Information	
Manufacturer: Herman Miller, Inc.	
Manufacturer's Technical Representative: Nathan Sweeney	
Mailing Address: 855 E Main Ave, Mail Stop 441, PO Box 30, Zeeland, MI 4946	41366
Telephone: (123) 456-7890 Email: nathan_sweeney@he	ermanmiller.com
LED MAN	
Product Information	P.
Product Name: Herman Miller Canvas Wall System OPM-0668	C
Product Type: Floor-Mounted Workstation	
Product Model Number: Canvas Wall System BY: Mohammad Aliaari	
General Description: Floor-Mounted Workstation	
P DATE: 3/10/2023	01/0
	2
Applicant Information	<u><>></u>
Applicant Company Name: Herman Miller, Inc.	
Contact Person: Nathan Sweeney	

"Access to Safe, Quality Healthcare Environments that Meet California's Diverse and Dynamic Needs"

Mailing Address: 855 E Main St., Mail Stop 441, PO Box 30, Zeeland, MI 494641366

Title: Codes & Standards Senior Engineer Building Codes and Product Conformance

Email: nathan_sweeney@hermanmiller.com

Telephone: (616) 260-5532

DEPARTMENT OF HEALTH CARE ACCESS AND INFORMATION FACILITIES DEVELOPMENT DIVISION

Registered Design Professonal Preparing Engineering Recommendations
Company Name: CRITICAL STRUCTURES
Name: Eric Stovner California License Number: S4204
Mailing Address: 1350 Coronado Ave., Long Beach, CA 90804
Telephone: (310) 530-3050 Email: estovner@critical-structures.com
HCAI Special Seismic Certification Preapproval (OSP)
Special Seismic Certification is preapproved under OSP OSP Number:
-2CODE
Contistantian Mathed
Certification Method
Testing in accordance with: ICC-ES AC156 FM 1950-16
Other(s) (Please Specify):
*Use of criteria other than those adopted by the California Building Standards Code, 2019 (CBSC 2019) for component supports and attachments are not permitted. For distribution system, interior partition wall, and suspended ceiling seismic bracings, test criteria other than those adopted in the CBSC 2019 may be used when approved by HCAI prior to testing.
X Analysis
Experience Data CDATE: 3/10/2023
Combination of Testing, Analysis, and/or Experience Data (Please Specify):
CANTA COSE.
HCAI Approval
Date: 3/10/2023
Name: Mohammad Aliaari Title: Senior Structural Engineer
Condition of Approval (if applicable):

"Access to Safe, Quality Healthcare Environments that Meet California's Diverse and Dynamic Needs"

SUPPORTS & ATTACHMENTS PRE-APPROVAL OPM-0668

THIS PRE-APPROVAL CONFORMS TO THE 2019 CALIFORNIA BUILDING CODE (CBC)

EQUIPMENT MANUFACTURER: MILLERKNOLL EQUIPMENT TYPE: CANVAS WALLTM SYSTEM

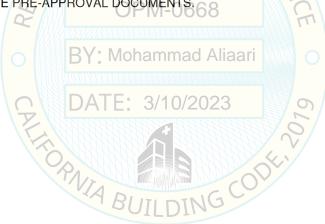
GENERAL NOTES:

- 1. THIS HCAI PRE-APPROVAL OF MANUFACTURER'S CERTIFICATION (OPM) IS BASED ON THE CBC 2019. THE DEMAND (DESIGN FORCES) FOR USE WITH THIS OPM SHALL BE BASED ON THE CBC 2019 AND ASCE 7-16.
- 2. WORKSTATION ANCHORS:
 - 2.a. EXPANSION ANCHORS: ATTACHMENT IS TO BE MADE WITH THE ANCHORS LISTED BELOW AND INSTALLED AS DESCRIBED IN THE CORRESPONDING ICC REPORT

ANCHO	CONCRETE TYPE	MIN. f'c (PSI)	ANCHOR TYPE	ICC REPORT No.	MIN. NOMINAL EMBED.	MIN. CONC. THICK	INSTALLATION TORQUE
3/8"	NORMAL WEIGHT OVER METAL DECK	5,000	HILTI KWIK BOLT TZ2-CS	ESR-4266	2"	4½"	30 FT-LBS
5/8"	NORMAL WEIGHT	4,000	HILTI KWIK BOLT TZ2-CS	ESR-4266	31/4"	5½"	40 FT-LBS

- 3. TESTING AND SPECIAL INSPECTION OF EXPANSION ANCHORS SHALL BE PERFORMED BY AN APPROVED INDEPENDENT AGENCY EMPLOYED BY THE FACILITY OWNER PER CBC 1704A & 1910A.5 AND CAC 7-149. ALL REPORTS SHALL BE SENT TO THE INSPECTOR OF RECORD, OWNER, AND THE ARCHITECT OR ENGINEER IN RESPONSIBLE CHARGE. AT LEAST 50% OF THE ANCHORS SHALL BE TESTED BY EITHER TORQUE BASED OR DIRECT PULL TENSION. IF ANY ANCHOR FAILS, TEST UNTIL TWENTY (20) CONSECUTIVE ANCHORS PASS, THEN RESUME THE INITIAL TEST FREQUENCY.
 - 3.a. TEST LOADS:
 - TORQUE BASED: 30 FT.-LBS. FOR 3/8" Ø BOLT, 40 FT.-LB. FOR 5/8" Ø BOLT.
 - DIRECT PULL TEST: 3,053 LB. TENSION LOAD ($\frac{3}{8}$ " Ø BOLT), 4,999 LB. TENSION LOAD ($\frac{5}{8}$ " Ø BOLT).
 - 3.b. ACCEPTANCE CRITERIA:
 - TORQUE BASED: ANCHORS TESTED WITH A CALIBRATED TORQUE WRENCH SHALL ATTAIN THE SPECIFIED TORQUE WITHIN 1/2 TURN OF THE NUT.
 - DIRECT PULL TEST: ANCHORS TESTED SHALL MAINTAIN THE TEST LOAD FOR A MINIMUM OF 15 SECONDS AND SHALL EXHIBIT NO DISCERNIBLE MOVEMENT DURING THE TENSION TEST, E.G. AS EVIDENCED BY LOOSENING OF THE WASHER UNDER THE NUT.
- 4. FORCES PER ASCE 7-16 SECTION 13.3.1, EQUATIONS 13.3-1, 13.3-2 & 13.3-3, WHERE
- 4.a. $a_p=1.0$, $R_p=2.5$, $\Omega_0=2.0$, AND S_{DS} AND z/h DETERMINED PER APPROPRIATE TABLE
- 5. MAXIMUM SDS IS DETERMINED FOR CONCRETE SLAB AND CONCRETE OVER METAL DECK (SEE APPROPRIATE TABLE)
- 6. THIS PRE-APPROVAL COVERS ONLY THE ANCHORAGE OF THE WORKSTATION TO THE BUILDING'S STRUCTURE.
- 7. ALL ANCHOR FORCES SHOWN ON THE DRAWINGS ARE FACTORED LOADS THAT SHALL BE USED FOR STRENGTH DESIGN.
- 8. WORK SURFACE LIVE LOADS PER BIFMA NOT CONSIDERED IN GLOBAL OVERTURNING / SLIDING ANALYSIS. EXCLUSION OF LIVE LOADS RESULTED IN WORST-CASE CONDITION.
- 9. 7 GA. CRS BRACKETS TO BE GRADE 50 CLASS 1 MINIMUM PER ASTM A653 (Fy=50 KSI, Fu=65 KSI).
- 10. INSTALLER TO AVOID DAMAGING EXISTING STEEL REINFORCEMENT IN CONCRETE.

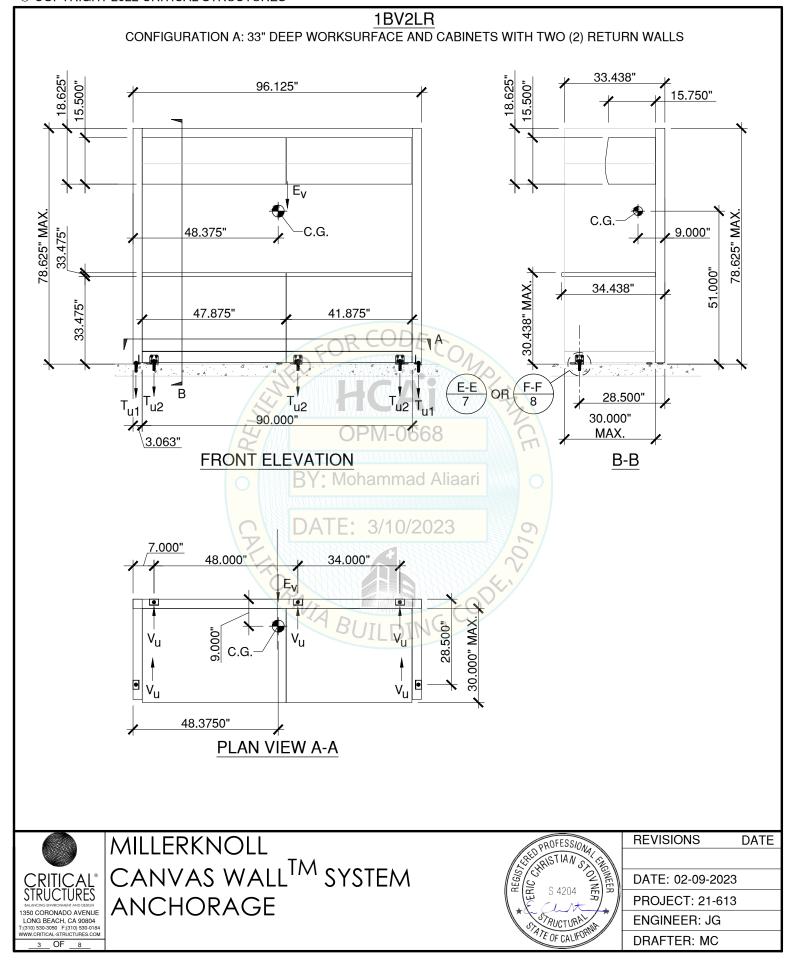
	REVISIONS	DATE
1	DATE: 02-09-2023	
	PROJECT: 21-613	
	ENGINEER: JG	
	DRAFTER: MC	

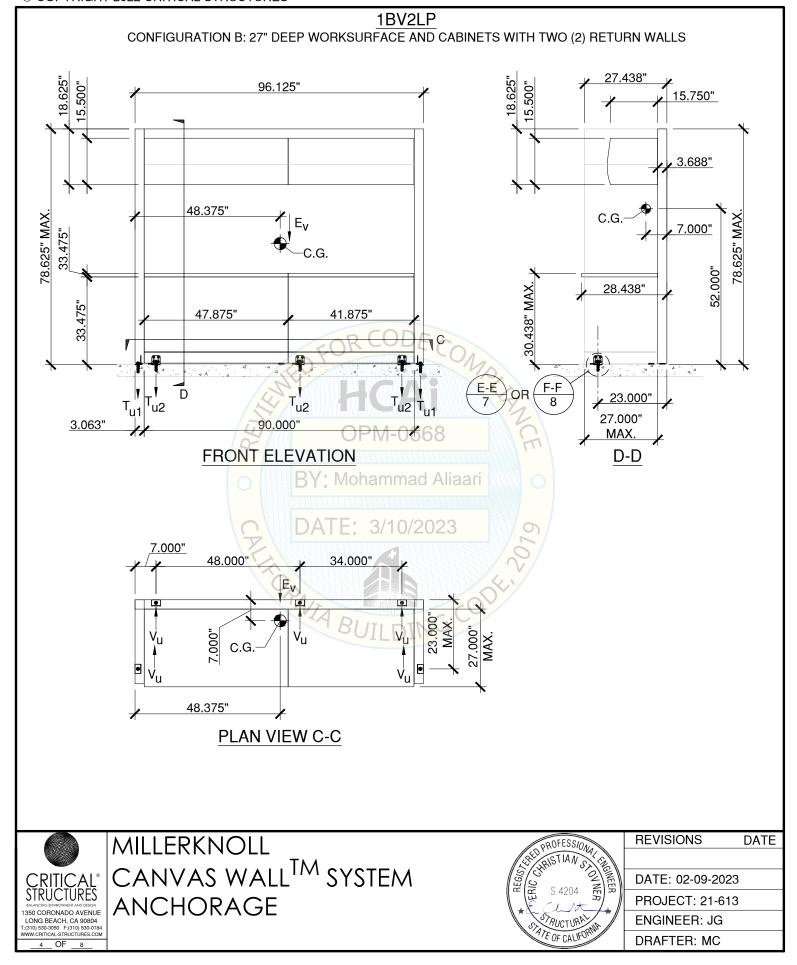

ANCHORAGE PRE-APPROVAL

THIS PRE-APPROVAL CONFORMS TO THE 2019 CALIFORNIA BUILDING CODE (CBC)

EQUIPMENT MANUFACTURER: MILLERKNOLL EQUIPMENT TYPE: CANVAS WALLTM SYSTEM

RESPONSIBILITIES OF THE STRUCTURAL ENGINEER:


- 1. VERIFY THAT PROJECT SPECIFIC VALUES OF S_{DS} & z/h RESULT IN SEISMIC FORCES (Eh, Ev) THAT DO NOT EXCEED THE VALUES ON THE DETAILS.
- VERIFY THAT THE CONCRETE SLAB TO WHICH THE EQUIPMENT IS ANCHORED MEETS THE REQUIREMENTS OF THE APPLICABLE ICC ESR AND SPECIFICATIONS ON SHEET 1.
- 3. VERIFY THAT THE ANCHORS ARE AN ADEQUATE DISTANCE FROM ANY SLAB EDGES OR OPENINGS (SEE SPECIFICATIONS ON SHEET 1).
- 4. VERIFY THAT ALL NEW OR EXISTING ANCHORS ARE AN ADEQUATE DISTANCE FROM THE ANCHORS SHOWN IN THIS PRE-APPROVAL. SEOR SHALL VERIFY THAT THERE IS NO ADVERSE INTERACTION WHERE OTHER ANCHORS ARE WITHIN 18" OR 6hef FROM THIS UNIT'S ANCHORS.
- 5. PROVIDE SUPPORTING STRUCTURE TO SUPPORT WEIGHTS AND FORCES SHOWN, IN ADDITION TO ALL OTHER LOADS. VERIFY THE ADEQUACY OF THE STRUCTURES (SUCH AS WALLS AND FLOORS) WHICH SUPPORT THE EQUIPMENT FOR THE LOADS IMPOSED ON THEM BY THE EQUIPMENT IN ADDITION TO ALL OTHER LOADS.
- 6. VERIFY THAT THE INSTALLATION IS IN CONFORMANCE WITH THE 2019 CBC, AND WITH THE DETAILS SHOWN IN THIS PRE-APPROVAL. VERIFY THAT THE ACTUAL EQUIPMENT'S WEIGHT, CG LOCATION, ANCHOR LOCATIONS, ANCHOR DETAILS, AND THE MATERIAL AND GAGE OF THE UNIT WHERE ATTACHMENTS ARE MADE AGREE WITH THE INFORMATION SHOWN ON THE PRE-APPROVAL DOCUMENTS.



REVISIONS	DATE
DATE: 02-09-2023	
PROJECT: 21-613	
ENGINEER: JG	
DRAFTER: MC	

CONFIGURATION A: 33" DEEP WORKSURFACE AND CABINETS WITH TWO (2) RETURN WALLS

SETTING A - MODULE SUMMARY:

LABEL	DECODIDATION	DADTNo	WEIGHT
LABEL	DESCRIPTION	PART No.	(LBS.)
F1A	FRAME ASSEMBLY	IBV2LR	764
S1A	48" SHELF CABINET	X3730.48	21
S2A	42" SHELF CABINET	X3730.42	19
W1A	48" WORK STATION	FTS10_3048L	43
W2A	42" WORK STATION	FTS10_3042L	37

	WORKSTATION ASSEMBLY								
LABEL	ASSEMBLY	WEIGHT (LBS.)	MODULE WEIGHT ¹ , W _w (LBS.)	WIDTH, W (IN.)	DEPTH, D (IN.)	HEIGHT, H (IN.)	No. OF BRACKETS		
A1	F1A+S1A +S2A+W1A+W2A	884	1180	ODF	33	79	5		

CONFIGURATION B: 27" DEEP WORKSURFACE AND CABINETS WITH TWO (2) RETURN WALLS

SETTING B - MODULE SUMMARY:

LABEL	DESCRIPTION	PART No.	6 WEIGHT
LADEL	DESCRIPTION	PARTINO.	(LBS.)
F1B	FRAME ASSEMBLY	. MBV2LP	Δ i ⁷ 05 ri
S1B	48" SHELF CABINET	X3730.48	21
S2B	42" SHELF CABINET	X3730.42	19
W1B	48" WORK STATION	FTS10_2448L	023 ₃₄
W2B	42" WORK STATION	FTS10_2442L	30

	WORKSTATION ASSEMBLY								
LABEL	ASSEMBLY	UNLOADED MODULE WEIGHT (LBS.)	MODULE WEIGHT ¹ , W _w (LBS.)	WIDTH, W (IN.)	DÉPTH, D (IN.)	HEIGHT, H (IN.)	No. OF BRACKETS		
B1	F1B+S1B +S2B+W1B+W2B	809	1127	96	27	79	5		

NOTES:

 THIS PRE-APPROVAL ENCOMPASSES ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS SHOWN IN ADDITION TO ALL OTHER LOADS.

PROFESSIONAL PROFE
REGISS S 4204 S 4204 S 4304 S
A PUCTURAL ON P
JATE OF CALIFORNIA

	REVISIONS	DATE
1	DATE: 02-09-2023	
$/\!\!/$	PROJECT: 21-613	
,	ENGINEER: JG	
	DRAFTER: MC	

CONFIGURATION A: MAXIMUM ANCHORAGE FORCES							
	ANCHORAGE INTO CONCRETE SLAB						
	BRACKET TO CONCRETE FLOOR BRACKET TO MODULE BASE ²						
$ z/h \text{MAX. S}_{\text{DS}} \text{MIN. THICKNESS, t}_{3} \left(\text{IN.}\right)^{4} \text{SHEAR}^{1}, V_{\text{U}} \left(\text{LB.}\right) T_{\text{U}}^{1} \left(\text{LB.}\right)^{1} T_{\text{U}}^{2} \left(\text{LB.}\right)^{1} V \left(\text{LB.}\right) T \left(\text{LB.}\right) $							
1.00	2.00	5.50	680	4306	3464	340	1519

ANCHORAGE INTO TOPSIDE OF CONCRETE OVER METAL DECK

				BRACKET TO CONCRETE FLOOR			BRACKET TO MODULE BASE ²	
z/h	MAX. S _{DS}	MIN. SLAB THICKNESS, t ₁ (IN.) ³	MIN. UPPER FLUTE, t ₂ (IN.) ³	SHEAR ¹ , V _U (LB.)	T _U 1 (LB.) ¹	T _U 2 (LB.) ¹	V (LB.)	T (LB.)
$0.9 \le z/h \le 1.0$	1.10			374	2304	2022	187	781
$0.8 \le z/h < 0.9$	1.15		3.00	365	2247	1975	182	764
$0.7 \le z/h < 0.8$	1.25			368	2272	1985	184	764
$0.6 \le z/h < 0.7$	1.35	4.50		367	2268	1974	184	763
$0.5 \le z/h < 0.6$	1.45	4.30		361	2235	1941	181	753
$0.4 \le z/h < 0.5$	1.60			363	2247	1938	181	760
$0.3 \le z/h < 0.4$	1.80			367	2282	1948	184	777
z/h < 0.3	2.00			367	2260	1915	181	773

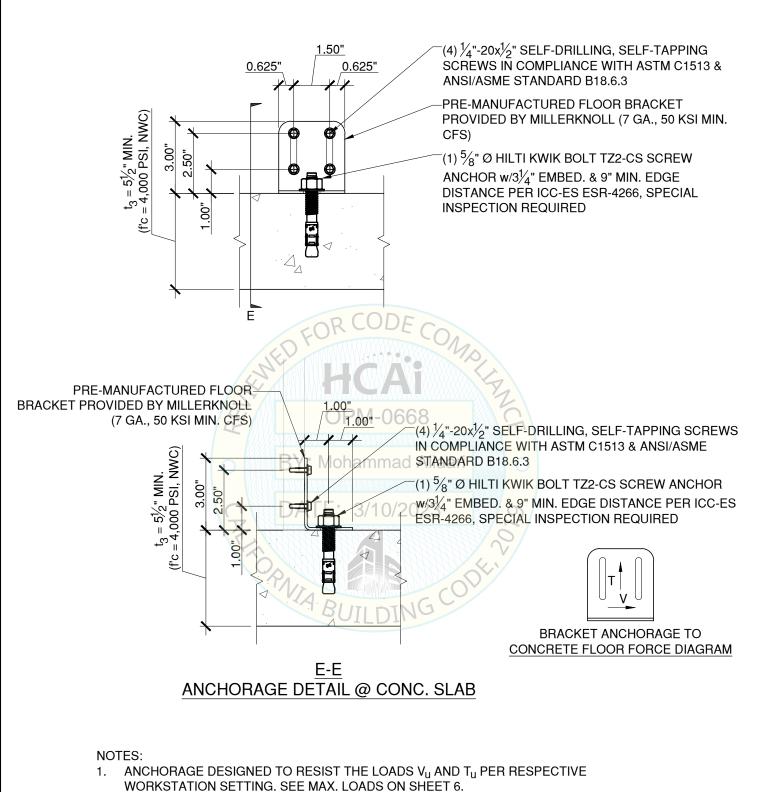
CONFIGURATION B: MAXIMUM ANCHORAGE FORCES

ANCHORAGE INTO CONCRETE SLAB

W.			BRACKET T	O CONCRETE FLOOR	BRACKET TO MODULE BASE ²		
z/h	MAX. S _{DS}	MIN. THICKNESS, t ₃ (IN.) ⁴	SHEAR ¹ , V _U (LB.)	$T_{U}^{1} (LB.)^{1}$ $T_{U}^{2} (LB.)^{1}$	V (LB.)	T (LB.)	
1.00	2.00	5.50	646	5000 3893	323	1734	

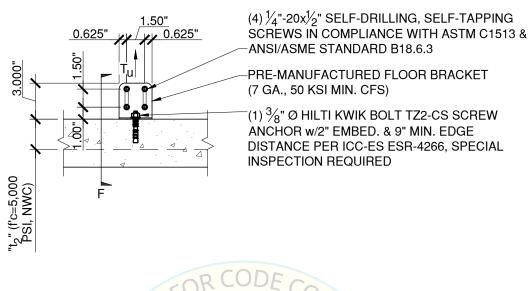
ANCHORAGE INTO TOPSIDE OF CONCRETE OVER METAL DECK

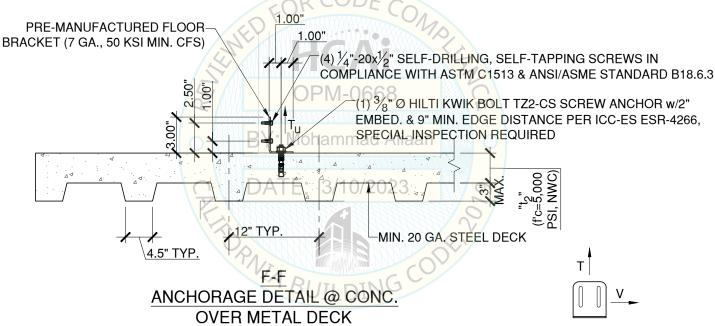
	BRACKE BRACKE			BRACKET TO	O CO <mark>NCRE</mark> TE FLOOR		BRACKET TO MODULE BASE ²	
z/h	MAX. S _{DS}	MIN. SLAB THICKNESS, t ₁ (IN.) ³	MIN. UPPER FLUTE, t ₂ (IN.) ³	SHEAR ¹ , V _U (LB.)	T _U 1 (LB.) ¹	T _U 2 (LB.) ¹	V (LB.)	T (LB.)
$0.9 \le z/h \le 1.0$	1.10		ATF: 3/10	202355	2689	2254	178	893
$0.8 \le z/h < 0.9$	1.15		MANAGES SANGES S	347	2623	2201	173	870
0.7 ≤ z/h < 0.8	1.25			350	2652	2215	175	882
0.6 ≤ z/h < 0.7	1.35	4.50	3.00	349	2647	2203	174	882
$0.5 \le z/h < 0.6$	1.45	4.50	3.00	343	2608	2167	172	870
$0.4 \le z/h < 0.5$	1.60	71		344	2621	2165	172	878
$0.3 \le z/h < 0.4$	1.80		A D.	349	2661	2180	174	896
z/h < 0.3	2.00		RITID	344	2634	2144	172	890


NOTES:

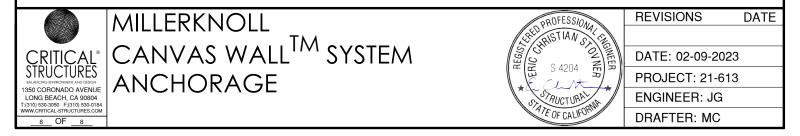
- SUPPORTS & ATTACHMENTS DESIGN PER 2019 CBC AND ASCE 7-16. STRENGTH DESIGN IS USED. FORCES PER ASCE 7-16 SECTION 13.3.1, EQUATIONS 13.3-1, 13.3-2 & 13.3-3, WHERE $a_{\rm p}\text{=}1.0,\,R_{\rm P}\text{=}2.5$ AND $\Omega_0\text{=}2.0$ FOR ANCHORAGE INTO CONCRETE.
 - HORIZONTAL FORCE (Eh) = $\Omega_{O}^{*}[0.4^{*}a_{P}^{*}S_{DS}^{*}(1+2^{*}(z/h)) / (R_{P}/I_{P})]$ VERTICAL FORCE (Ev) = $\Omega_{O}^{*}(0.2^{*}S_{DS})$
- SUPPORTS & ATTACHMENTS DESIGN PER 2019 CBC AND SCE 7-16, STRENGTH DESIGN IS USED. FORCES PER ASCE 7-16 SECTION 13.3.1, EQUATIONS 13.3-1. 13.3-2, & 13.3-3, WHERE a_0 =1.0, R_P =2.5 AND Ω_0 DOES NOT APPLY FOR ANCHORAGE INTO STEEL.
 - HORIZONTAL FORCE (Eh) = $0.4*a_P*S_{DS}*(1+2*(z/h)) / (R_P/I_P)$ VERTICAL FORCE (Ev) = 0.2*S_{DS}
- 3. FOR DESCRIPTION OF t₁ AND t₂, SEE DETAIL E-E/7.
- FOR DESCRIPTION OF t₃, SEE DETAIL F-F/8.
 STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT FORCES SHOWN, IN ADDITION TO ALL OTHER LOADS.

	REVISIONS	DATE
1	DATE: 02-09-2023	
$/\!\!/$	PROJECT: 21-613	
,	ENGINEER: JG	
	DRAFTER: MC	




WORKSTATION SETTING. SEE MAX. LOADS ON SHEET 6.

	REVISIONS	DATE
1	DATE: 02-09-2023	
	PROJECT: 21-613	
′	ENGINEER: JG	
	DRAFTER: MC	



BRACKET ANCHORAGE TO CONCRETE FLOOR FORCE DIAGRAM

NOTES:

- 1. ANCHORAGE DESIGNED TO RESIST THE LOADS Vu AND Tu PER RESPECTIVE WORKSTATION SETTING. SEE MAX. LOADS ON SHEET 6.
- 2. INSTALLATION INTO CONCRETE OVER METAL DECK LIMITED TO COMBINATIONS OF z/h AND MAXIMUM S_{DS} PER MAXIMUM ANCHORAGE FORCES TABLE.

