APPLICATION FOR OSHPD SPECIAL SEISMIC CERTIFICATION PREAPPROVAL (OSP)

OSHPD Special Seismic Certification Preapproval (OSP)

Type:New Renewal

Manufacturer Information

Manufacturer: ASCO Power Technologies, LP
Manufacturer's Technical Representative: Adam Seid, Director, Project Management
Mailing Address: 160 Park Ave, Florham Park, NJ 07932
Telephone: 973-966-2154 \sim Email: Adam. Seid@ascopower.com

Product Information

Product Name: Power Control Systems (PCS)
Product Type: Electrical Switchgear
Product Model Number: PCS Product Series, 4000 \& 7000 with Overhead Lifting Trolley
(List all unique product identification numbers and/or partnumbers) Low thy Voltage Switchgear Systems with Square D Circuit Breakers. Seismic enhancements
General Description: made
to the test units shall be incorporated into the production units. 020
Mounting Description: Rigid Floor Mounted

Applicant Information

Applicant Company Name: The VMC Group
Contact Person: John P. Giuliano, PE
Mailing Address: 113 Main Street, Bloomingdale, NJ 07403
Telephone: 973-838-1780 Email: john.giuliano@thevmcgroup.com
I hereby agree to reimburse the Office of Statewide Health Planning and Development review fees in accordance with the California Administrative Code, 2016.

[^0]OFFICE OF STATEWIDE HEALTH PLANNING AND DEVELOPMENT FACILITIES DEVELOPMENT DIVISION

California Licensed Structural Engineer Responsible for the Engineering and Test Report(s)

Company Name: The VMC Group
Name: Mr. Kenneth Carlow
California License Number: SE2851
Mailing Address: 980 9 $^{\text {th }}$ Street, $16^{\text {th }}$ Floor, Sacramento, CA 95814
Telephone: (916) 449-9918
Email: ken.tarlow@thevmcgroup.com

Supports and Attachments Preapproval

\square Supports and attachments are preapproved under OPM-
(Separate application for OSHPD Preapproval of Manufacturer's Certification (OPM) of Supports and attachments is required)
$\boxtimes \quad$ Supports and attachments are not preapproved

Certification Method

\boxtimes Testing in accordance with:

```
区 ICC-ES AC156
```

\square Other (Please Specify):

Testing Laboratory

Company Name: Trentec

BY:Timothy J Piland

$\begin{array}{ll}\text { Contact Name: } & \text { Timothy A. Geers } \\ \text { Mailing Address: } & 4600 \text { East Tech Dr., Cincinnati, OH } 45245\end{array}$
Telephone: (513) 528-7900
Email: Ggeers@curtisswright.com

Testing Laboratory

Company Name: UC Berkeley PEER
Contact Name: Wesley Neighbour
Mailing Address: 1301 South $46^{\text {th }}$ Street, Building 420, Richmond, CA 94804
Telephone: (510) 665-3409 Email: wdn@berkeley.com

Seismic Parameters

Design in accordance with ASCE 7-10 Chapter 13: \boxtimes Yes \square No
Design Basis of Equipment or Components $\left(F_{p} / W_{p}\right)=1.50(z / h=1) ; 1.11(z / h=0)$
Sos (Design spectral response acceleration at short period, g) $=2.00(z / h=1) ; 2.46(z / h=0)$
$\mathrm{a}_{\mathrm{p}}(\mathrm{In}$-structure equipment or component amplification factor $)=2.5$
R_{p} (Equipment or component response modification factor) $=6.0$
$\Omega_{0}($ System overstrength factor) $=2.0$
$I_{p}($ Importance factor $)=1.5$
$\mathrm{z} / \mathrm{h}($ Height factor ratio) $=1$ and 0
Equipment or Component Natural Frequencies $(\mathrm{Hz})=$ See UUT Summary Tables
Overall dimensions and weight (or range thereof) $=$ See Certified Tables 1A and 1B
Equipment or Components @ grade designed in accordance with ASCE 7-10 Chapter 15: \square Yes \boxtimes No
Design Basis of Equipment or Components (V/W) =
Sos (Design spectral response acceleration at short period, g) =
$\mathrm{S}_{\mathrm{D} 1}$ (Design spectral response acceleration at 1 second period, g) $=$ \qquad
R (Response modification coefficient) =
Ω_{0} (System overstrength factor) $=$
By:Timothy JPiland
$\mathrm{C}_{\mathrm{d}}($ Deflection amplification factor $)=$
$I_{p}($ Importance factor $)=1.5$
Height to Center of Gravity above base =
Equipment or Component Natural Frequencies $(\mathrm{Hz})=$
Overall dimensions and weight (or range thereof) $=$
Tank(s) designed in accordance with ASME BPVC, 2015: \square Yes \boxtimes No

List of Attachments Supporting Special Seismic Certification

\boxtimes	Test Report(s) $\quad \square$	Drawings	\square	Calculations	\boxtimes
\square	Other(s) (Please Specify):				
\square					

OSHPD Approval (For Office Use Only) - Approval Expires on December 31, 2025

Signature:

Date: March 17, 2020
Title: SSE
Special Seismic Certification Valid Up to: Sos $(\mathrm{g})=$ See Above
\qquad
\qquad
\qquad $z / h=$ See Above

Condition of Approval (if applicable):

Table 1A - Certified Low Voltage Switchgear Systems (NEMA Type 1)

Model Number ${ }^{4}$	Main Bus Rating [Amps]	Breaker Rating [Amps]	NEMA Rating	Enclosure Dimensions [in]			Max System Weight [lbs]	UUT
				Max Height ${ }^{7}$	Max Width	Max Depth		
OH-C/C/C/C	N/A	N/A	TYPE 1	94.0	36.0	24.0	1,068	UUT-2
OH-C/C/C/C	N/A	N/A	TYPE 1	94.0	36.0	30.0	1,089	Interpolated
OH-C/C/C/C	0-10,000	N/A	TYPE 1	94.0	36.0	84.0	1,713	Interpolated
6H-B/B/B/B/B/B-3P	3,000-10,000	250-1200	TYPE 1	94.0	40.0	84.0	2,991	Interpolated
2H-B/C/C/B-3P	6,000	(2) 800	TYPE 1	94.0	26.0	72.0	3,000	UUT-1a
1H-B/S/C/S-3P	2,000-10,000	800-3,200	TYPE 1	94.0	40.0	84.0	3,345	Interpolated
1H-B/S/C/S-4P	2,000-10,000	800-3,200	TYPE 1	-94.0	40.0	84.0	3,627	Interpolated
1H-B/C/C/C-3P	2,000-10,000	800-3,200	TYPE 1	94.0	140.0	84.0	3,704	Interpolated
2H-B/B/C/S-3P	2,000-10,000	800-3,200	TYPE 1	94.0	40.0	84.0	3,733	Interpolated
3H-B/B/B/C-3P	3,000-10,000	800-3,200	TYPE 1	94.0	40.0	84.0	3,746	Interpolated
3H-B/B/C/B-3P	3,000-10,000	800-3,200	TYPE 1	94.0	40.0	84.0	3,746	Interpolated
4H-B/B/B/B-3P	3,000-10,000	800-2,000	TYPE 1	94.0	40.0	84.0	3,837	Interpolated
1H-B/X/C/C-3P	2,000-10,000	800-5,000	TYPE 1	94.0	40.0	84.0	3,941	Interpolated
1H-B/C/C/C-4P	2,000-10,000	800-3,200	TYPE 1	94.0	40.0	84.0	3,987	Interpolated
1H-B/X/C/C-3P	6,000	5,000	TYPE1	994.0 il	nd 40.0	84.0	4,000	UUT-3 ${ }^{5}$
4H-B/B/B/B-3P	10,000	(4) 800	TYPE 1	94.0	26.0	84.0	4,000	UUT-3 ${ }^{5}$
1H-S/B/C/C-3P	2,000-10,000	6,000	TYPE 1	94.0	40.0	84.0	4,006	Interpolated
2H-B/C/B/S-3P	2,000-10,000	800-3,200	TYPE1	94.02	40.0	84.0	4,123	Interpolated
2H-B/B/C/S-4P	2,000-10,000	800-3,200	TYPE 1	94.0	40.0 a	84.0	4,152	Interpolated
3H-B/B/B/C-4P	3,000-10,000	800-3,200	TYPE 1	94.0	40.0	84.0	4,201	Interpolated
3H-B/B/C/B-4P	3,000-10,000	800-3,200	TYPE 1	94.0	40.0	84.0	4,201	Interpolated
1H-B/X/C/C-4P	2,000-10,000	800-5,000	TYPE 1	94.0	46.0	84.0	4,275	Interpolated
2H-B/C/C/B-3P	2,000-10,000	800-4,000	TYPE 1	94.0	40.0	84.0	4,322	Interpolated
4H-B/B/B/B-4P	3,000-10,000	800-2,000	TYPE 1	94.0	40.0	84.0	4,385	Interpolated
1H-S/B/C/C-4P	2,000-10,000	6,000	TYPE 1	94.0	46.0	84.0	4,497	Interpolated
2H-B/C/B/S-4P	2,000-10,000	800-3,200	TYPE 1	94.0	40.0	84.0	4,687	Interpolated
2H-B/C/C/B-3P	10,000	(2) 4,000	TYPE 1	94.0	36.0	84.0	4,800	UUT-1b
2H-B/C/C/B-4P	2,000-10,000	800-4,000	TYPE 1	94.0	46.0	84.0	4,879	Extrapolated

Notes:

1. NEMA Type 1 ($0-10,000$ Amp range) section cubicles are constructed of 11 gauge Carbon Steel by ASCO.
2. The NEMA Type 3R gear is constructed using a cubicle section from Table 1A (Nema Type 1, Max. 36"W x 72"Deep, Max. 6000A Main Bus rating and 800-5000A Circuit
3. NEMA Type 3R (0-6,000 Amp range) section cubicles are constructed of 11 gauge Carbon Steel by ASCO.
4. Model Descriptors:
$B=$ Compartment that is designated only for the Circuit Breaker
C = Compartment that is designated only for Controls
$\mathrm{X}=\mathrm{A}$ Circuit Breaker compartment that is taller than standard height due to extra ventilation require
$\mathrm{S}=$ Compartment that is designated as empty (no Circuit Breaker or Controls)
H = Qty. of Breakers
5. UUT-3 consists 2 cabinets, $1 \mathrm{H}-\mathrm{B} / \mathrm{X} / \mathrm{C} / \mathrm{C}-3 \mathrm{P}$ and $4 \mathrm{H}-\mathrm{B} / \mathrm{B} / \mathrm{B} / \mathrm{B}-3 \mathrm{P}$
6. Thesmand
7. The listed height is 3 " larger due to a control wireway ontop of the cabinet which was not included in the measuring of the units in the test report.

Table 1B - Certified Low Voltage Switchgear Systems (NEMA Type 3R)

Model Number ${ }^{4}$	Main Bus Rating [Amps]	Breaker Rating [Amps]	NEMA Rating	Enclosure Dimensions [in]			Max System Weight [Ibs]	UUT
				Max Height	Max Width	Max Depth		
OH-C/C/C/C	0-6,000	N/A	TYPE 3R	101.5	40.0	84.0	2,618	Interpolated
6H-B/B/B/B/B/B-3P	6,000	(6) 1200	TYPE 3R	101.5	40.0	84.0	3,700	UUT-4
1H-B/S/C/S-3P	2,000-6,000	800-3,200	TYPE 3R	101.5	40.0	84.0	4,203	Interpolated
1H-B/S/C/S-4P	2,000-6,000	800-3,200	TYPE 3R	101.5	40.0	84.0	4,473	Interpolated
2H-B/B/C/S-3P	2,000-6,000	800-3,200	TYPE 3R	101.5	40.0	84.0	4,544	Interpolated
2H-B/C/B/S-3P	2,000-6,000	800-3,200	TYPE 3R	101.5	40.0	84.0	4,544	Interpolated
3H-B/B/B/C-3P	3,000-6,000	800-3,200	TYPE 3R	-101.5	40.0	84.0	4,552	Interpolated
3H-B/B/C/B-3P	3,000-6,000	800-3,200	TYPE 3R	101.5	$1 / 40.0$	84.0	4,552	Interpolated
1H-B/C/C/C-3P	2,000-6,000	800-3,200	TYPE 3R	101.5	40.0	84.0	4,583	Interpolated
4H-B/B/B/B-3P	3,000-6,000	800-2,000	TYPE 3R	101.5	40.0	84.0	4,638	Interpolated
1H-B/X/C/C-3P	2,000-6,000	800-5,000	TYPE 3R	101.5	40.0	84.0	4,750	Interpolated
1H-B/C/C/C-4P	2,000-6,000	800-3,200	TYPE 3R	101.5	40.0	84.0	4,860	Extrapolated

Notes:

1. NEMA Type 1 (0-10,000 Amp range) section cubicles are constructed of 11 gauge Carbon Steel by ASCO.
2. The NEMA Type 3R gear is constructed using a cubicle section from Table 1A (Nema Type 1, Max. 36"W x 72"Deep, Max. 6000A Main Bus rating and 800-5000A Circuit
3. NEMA Type 3R (0-6,000 Amp range) section cubicles are constructed of 11 gauge Carbon Steel by ASCO.
4. Model Descriptors:
$B=$ Compartment that is designated only for the Circuit Breaker
$\mathrm{C}=$ Compartment that is designated only for Controls
$\mathrm{X}=\mathrm{A}$ Circuit Breaker compartment that is taller than standard height due to extra ventilation require
$\mathrm{S}=$ Compartment that is designated as empty (no Circuit Breaker or Controls)
$H=$ Qty. of Breakers
5. UUT-3 consists 2 cabinets, $1 \mathrm{H}-\mathrm{B} / \mathrm{X} / \mathrm{C} / \mathrm{C}-3 \mathrm{P}$ and $4 \mathrm{H}-\mathrm{B} / \mathrm{B} / \mathrm{B} / \mathrm{B}-3 \mathrm{P}$
6. The maximum tested system weight is $4,800 \mathrm{lbs}$.
7. The listed height is $3^{\prime \prime}$ larger due to a control wireway ontop of the cabinet which was not included in the measuring of the units in the test report.

Table 2 - Certified Subcomponents: Breakers

Part Number	Rating [Amps]	Weight [lbs]	Manufacturer	UUT
P-FRAMEG/J/K/L	1,200	31	Square D	UUT-4
NW08N/L/H	800	223	Square D	UUT-1a, UUT-3
NW12N/L/H	1,200	223	Square D	Interpolated
NW16N/L/H	1,600	223	Square D	Interpolated
NW20N/L/H	2,000	223	Square D	Interpolated
NW08L1/H1-H3	800	223	Square D	Interpolated
NW16L1/H1-H3	1,600	223	Square D	Interpolated
NW25L/H	2,500	$277 E$	Square D	Interpolated
NW30L/H	3,000	277	Square D	Interpolated
NW20L1/H1-H3	2,000	351	Square D	Interpolated
NW40L/H	4,000	557	Square D	UUT-1b
NW50L/H	5,000	557	Square D	UUT-3
NW32L1/H1-H3	3,200	557	Square D	Extrapolated
NW40L1/H1-H3	4,000	557	Square D	Extrapolated
NW50L1/H2/H3	5,000	557	Square D	Extrapolated

Table 3-Certified Subcomponents:Transformers

Part Number	Description	Weight [Ibs]	Manufacturer	UUT
20XSUM3	Summing Transformer	32020	ITI	UUT-2
19SHT	CT / 600 V 300:5 to 3000:5	3	ITI	UUT-1a
568T	CT / $600 \mathrm{~V} 400: 5 / 1$ to 5000:5/1	4	ITI	UUT-1b
561	CT / 600 V 150:5 to 4000:5	8	ITI	Interpolated
135	CT / 600 V 150:5 to 5000:5	18	ITI	UUT-1b
142	CT / 600 V 400:5 to 6000:5	31	ITI	UUT-3
3VTN460277FF	Potential Transformer	14 DU1123 ${ }^{23}$	ITI	UUT-3
CG0500480120F	Potential Transformer, Fuse	OUIL15	Square D	UUT-1a, UUT-1b, UUT-3
S33579	Neut Current Transformer	7	Square D	Extrapolated
S34036	Neut Current Transformer	25	Square D	UUT-1a, UUT-1b, UUT-3
S48182	Neut Current Transformer	25	Square D	UUT-1a, UUT-1b, UUT-3
S48897	Neut Current Transformer	50	Square D	UUT-1b, UUT-3

Table 4-Certified Subcomponents: Meters

Part Number	Description	Weight [lbs]	Manufacturer	UUT
$629269-001$	Power Manager	9	ASCO	UUT-1a, UUT-3

Table 5 - Certified Subcomponents: Power Supplies

Part Number	Description	Weight [lbs]	Manufacturer	UUT
VIM13CW03	DC/DC Convertor	2	Vicor	Extrapolated
VIMBW301	DC/DC Convertor	2	Vicor	UUT-2, UUT-3
VIMW301	DC/DC Convertor	2	Vicor	UUT-1a, UUT-2, UUT-3

Table 6 - Certified Subcomponents: Relays / Controllers

Part Number	Weight [lbs]	- Manufacturer	UUT
267566	<1	-T ASCO	UUT-1a, UUT-2, UUT-3
246955540AHD0	2	Yokogawa	UUT-2
253PHDUNWBX	20	OSP-0070 Crompton m	UUT-2
253PVBU	2	Crompton	UUT-2
9907-175	4	Woodward	UUT-3
BE3251A1N5	3 BY:	imothy J PllabASLER	UUT-2
CAD50BD	2	Telemecanique	UUT-1a, UUT-3
LADN04	<1	Telemecanique	UUT-1a, UUT-3
RH1BUDC24V	<1 DA	E: $03 / 1 / 12020$ IDEC	UUT-2
RH2BULDC24V	<1	IDEC a	UUT-1a, UUT-2, UUT-3
RH4BULDDC24V	<1	IDEC	Interpolated
SH1B05	<1	IDEC V	UUT-2
SH2B05	<1	IDEC	UUT-2, UUT-3
SH4B05	<1	-IDEC	Interpolated
SY2S02F1	<1	IA RUH DINO IDEC	UUT-2
SY4S02F1	<1	IDEC	UUT-1a, UUT-2, UUT-3

Table 7-Certified Subcomponents: Controllers \& Controller Components

Part Number	Weight [Ibs]	Manufacturer	UUT
HE200ACM530-17	2	Horner Automation Group	UUT-1a, UUT-3
HE200CGM750-17	2	Horner Automation Group	UUT-1b
HE800DIM310-17	2	Horner Automation Group	UUT-1a, UUT-3
HE800DQM306-17	2	Horner Automation Group	UUT-1a, UUT-3
HE800ETN250-17	2	Horner Automation Group	UUT-1a, UUT-3
HE800GCM911	2	Horner Automation Group	UUT-1a, UUT-3
HE800RCS250-17	2	Horner Automation Group	UUT-1a, UUT-3
IC200CHS022	<1	Oคค- GE	UUT-1b
IC200ALG230	<1	COREOE Cn GE	Interpolated
IC200CPUE05	<1	GE	Interpolated
IC200GBI001	<1	GE	UUT-1b
IC200MDD844	<1	GE	UUT-1b
IC200MDL650	<1	GE	Interpolated
IC200MDL750	<1	OQ GE	Interpolated
IC200PWR001	<1	OSTOUTO GE	UUT-1b
IC200PWR002	<1	GE	Interpolated
IC693BEM331	<1	limothy I Dilan GE	UUT-1b
IC693CPU372	<1	miothy d ilan GE	UUT-1b
IC693PWR331	<1	GE	UUT-1b
IC695ACC302	<1	03/17/202 GE	Interpolated
IC695ETM001	<1	120 GE	Interpolated
IC695PSD140	<1	GE	Interpolated
IC695CPE400	<1	GE	Interpolated
IC695ACC403	<1	- GE	Interpolated
IC200CPUE05	<1	14 GE	Interpolated
IC695CPU315	2	\triangle Co	Interpolated
IC693CHS397	2	OUILDINO GE	UUT-1b
IC695CHS007	3	GE	Extrapolated

Table 8-Certified Subcomponents: Switches

Part Number	Description	Weight [lbs]	Manufacturer	UUT
629800-004	Ethernet Comm. Module,72E	1	ASCO	UUT-1a, UUT-2, UUT-3
MESR901	Converter, Modbus Gateway	<1	B\&B	UUT-2
985436	10A	<1	CHINT	UUT-1a, UUT-2, UUT-3
985437	10A	<1	CHINT	UUT-1a, UUT-3
985438	16A	<1	CHINT	UUT-1a, UUT-1b, UUT-2
985451	20A	<1	CHINT	UUT-2
985230	20A	<1	CHINT	Extrapolated
985439	25A	DR C <1 E	CHINT	Extrapolated
CHM1D	Fuse Holder With Built-In Puller	<1 CO	Bussman	UUT-1a, UUT-2, UUT-3
943987001	Ethernet Router,2 Port,24VDC	<1	Hirschemann	UUT-2
2642D17077	CB Control	$\square \square 2 \square \square$	Shallco	UUT-1b
CA10A231600FT1	SEL SW, 4 POS	- $1<1$	Kraus and Naimer	UUT-1a, UUT-3
CA10A232600FT1	SEL SW,5 POS	<1	Kraus and Naimer	UUT-1a, UUT-3
CA10A252600FT1	SEL SW,American Solenoid,5	OSP-<1070	Kraus and Naimer	UUT-1a, UUT-3
EDS205	Ethernet Switch,5	<1	MOXA	UUT-1a, UUT-3
EDS308	Ethernet Switch,8	1.4	MOXA	Interpolated
EDS316	Ethernet Switch,16 BY:	Imotin) 2.5 P 1 land	MOXA	Interpolated
EDS316MMST	Ethernet Switch,16	2.5	MOXA	UUT-1a, UUT-3

Table 9 - Certified Subcomponents: Displays \& Interface Monitors

Part Number	Description	Weight [lbs]	Manufacturer	UUT
HEQX651-16	12.1"LCD Display	6	Horner Automation Group	UUT-2

UNIT UNDER TEST (UUT)
Summary Sheet
UUT-1a
Q0007.0; Q0007-01-01-01

Model Line	Model Number	Manufacturer
Low Voltage Switchgear Systems	$2 \mathrm{H}-\mathrm{B} / \mathrm{C} / \mathrm{C} / \mathrm{B}-3 \mathrm{P}$	ASCO

Product Construction Summary

Rigid floor mounted, 11 GA carbon steel, painted, NEMA Type 1

Options / Subcomponent Summary

Breaker: NW08N/L/H ; Transformer: 19SHT, CG0500480120F, S34036, and S48182; Meter: 629269-001;
Power Supply: VIMW301; Relay: 267566, CAD50BD, LADN04, RH2BULDC24V, SY4S02F1; Controller: HE200ACM530-17, HE800ACM310-17, HE800DQM306-17, HE800ETN250-17, HE800GCM911, HE800RCS250-17; Switch: 985436, 985437, 985438, CHM1D, 629800-004, CA10A231600FT1, CA10A232600FT1, CA10A252600FT1, EDS205, EDS316MMST

Test Mounting Details
UUT-1a was floor-mounted onto the Shake table surface using six $(6) 1 / 2^{\prime \prime}$ Grade 5 bolts using the unit's mounting hole provisions.

All units were filled with contents and maintained structural integrity and functionality after AC-156 test.

	UNIT UNDER TEST (UUT) Summary Sheet	UUT-1b Q0007.0; Q0007-02-01-01
Model Line	Model Number	Manufacturer
Low Voltage Switchgear Systems	$2 \mathrm{H}-\mathrm{B} / \mathrm{C} / \mathrm{C} / \mathrm{B}-3 \mathrm{P}$	ASCO

Product Construction Summary

Rigid floor mounted, 11 GA carbon steel, painted, NEMA Type 1

Options / Subcomponent Summary

Breaker: VW40L/H; Transformer: 568T, 135, CG0500480120F, S34036, S48182, S48897; Controller: HE200CGM750-17, IC200CHS022, IC200GB1001, IC200MDD844, IC200PWR001, IC693BEM331, IC693CHS397, IC693CPU372, IC693PWR331; Switch: 985438, 2642D17077,

Test Mounting Details
UUT-1b was floor-mounted onto the Shake table surface using six (6) $1 / 2^{\prime \prime \prime}$ Grade 5 bolts using the unit's mounting hole provisions.

All units were filled with contents and maintained structural integrity and functionality after AC-156 test.

	UNIT UNDER TEST (UUT) Summary Sheet	UUT-2 Q0007.0; Q0007-03-01-01
Model Line	Model Number	Manufacturer
Segregated Control Systems	OH-C/C/C/C	ASCO

Product Construction Summary

Rigid floor mounted, 11 GA carbon steel, painted, NEMA Type 1

Options / Subcomponent Summary

Transformer: 20XSUM3; Power Supply: VIMBW301, VIMW301; Relay: 267566, 246955540AHD0, 253PHDUNWBX, 253PVBU, BE3251A1N5, RH1BUDC24V, RH2BULDC24V, SH1B05, SY2S02F1, SY4S02F1; Switch: 985436, 985438, 985451, CHM1D, 943987001, 629800-004, MESR901; Display \& Interface Monitor: HEQX651-16

Test Mounting Details
UUT-2 was floor-mounted onto the Shake table surface using four (4) $1 / 2^{\prime \prime}$ Grade 5 bolts using the unit's mounting hole provisions.

All units were filled with contents and maintained structural integrity and functionality after AC-156 test.

UUT-3 Summary Sheet

Model Line	Model Number	Manufacturer
Low Voltage Switchgear Systems	$4 \mathrm{H}-\mathrm{B} / \mathrm{B} / \mathrm{B} / \mathrm{B}-3 \mathrm{P} \& 1 \mathrm{H}-\mathrm{B} / \mathrm{X} / \mathrm{C} / \mathrm{C}-3 \mathrm{P}$	ASCO

Product Construction Summary
Rigid floor mounted, 11 GA carbon steel, painted, NEMA Type 1

Options / Subcomponent Summary

Breaker: NW08N/L/H, NW50L/H; Transformer: 142, 3VTN460277FF, CG0500480120F, S34036, S48182, S48897; Meter: 629269-001; Power Supply: VIMBW301, VIMW301; Relay: 267566, CAD50BD, LADN04, RH2BULDC24V, SH2B05, SY4S02F1; Controller: HE200ACM530-17, HE800DIM310-17, HE800DQM306-17, HE800ETN250-17, HE800GCM911, HE800RCS250-17; Switch: 985436, 985437, CHM1D, 629800-004, CA10A231600FT1, CA10A232600FT1,
CA10A252600FT1, EDS205, EDS316MMST

Test Mounting Details
UUT-3 was floor-mounted onto the Shake table surface using twelve(12) $1 / 2^{\prime \prime \prime}$ Grade 5 bolts using the unit's mounting hole provisions.

All units were filled with contents and maintained structural integrity and functionality after AC-156 test.

	UNIT UNDER TEST (UUT) Summary Sheet	UUT-4 STI/2014-09; UUT1
Model Line	Model Number	Manufacturer
Low Voltage Switchgear Systems	$6 \mathrm{H}-\mathrm{B} / \mathrm{B} / \mathrm{B} / \mathrm{B} / \mathrm{B} / \mathrm{B}-3 \mathrm{P}$	ASCO

Product Construction Summary

Rigid floor mounted, 11 GA carbon steel, painted, NEMA Type 3R

Options / Subcomponent Summary

Breaker: P-FRAMEG/J/K/L

UUT Properties									
Weight [lbs]	Dimensions [in]						Lowest Nat. Freq. [Hz]		
	Length	Width		Height			F-B	S-S	V
3700	84 -		9P-0010	10	101	M	4.7	14.6	18.7
UUT Highest Passed Seismic Run Information									
Building Code	Test Criteria	RV $\mathbf{S}_{\text {ds }}$	hthz/h.1	Dil ${ }^{\mathbf{I P}_{\mathbf{p}}}$		A FLX-H $^{\text {l }}$	A $_{\text {RIG-H }}$	A $_{\text {fLX-V }}$	A $_{\text {RIG-v }}$
CBC 2016	ICC-ES AC156	2.0	1.0	1.5		3.20	2.40	1.34	0.54
		2.5	0.0	1.5		2.50	1.00	1.68	0.68

> Test Mounting Details

UUT-4 was floor-mounted onto the Shake table surface using six (6) 1/2" Grade 8 bolts using the unit's mounting hole provisions.

All units were filled with contents and maintained structural integrity and functionality after AC-156 test.

[^0]: "Access to Safe, Quality Healthcare Environments that Meet California's Diverse and Dynamic Needs"

