"Equitable Healthcare Accessibility for California"
Office of Statewide Health Planning and Development
Facilities Development Division
www.oshpd.co.gov/fdd
400 R Street. Suite 200, Sacramento, California 95811-6213
Phone (916) 440-8300

APPLICATION FOR PREAPPROVAL SPECIAL SEISMIC CERTIFICATION OF EQUIPMENT AND COMPONENTS

For Office Use Only

APPLICATION NO.
OSP - 0153-10

\square

Carrier Corporation - Commercial
1.0

Unitary Systems
Manufacturer

Mike Froehlich

Manufacturer's Technical Representative
7310 West Morris Street, PO Box 70, Indianapolis, IN 46206-0070
(315) 432-6703

Telephone
CARRIER WeatherMaster and WeatherMaker
2.0 Roof Top Units: 48 and 50 series

Product Name
Models: 48TC (3-25 Cooling Tons), 50TC (3-25 Cooling Tons), 50TCQ (3-20 Cooling Tons)
Product model No (List all unique product identification numbers and/or serial numbers)
General Description: Small and Medium Constant Volume Rooftop Units with Refrigerant R-410A. The certification is only valid for installation on rigid base mounted sheet metal curbs with components listed in attachments. The certification is valid only for enclosure type "single wall carbon steel with fiberglass insulation backing".

Carrier Corporation - Commercial Unitary Systems

Applicant Company Name
3.0

6304 Thompson Road Building TR-4, Door 25, East Syracuse, NY 13057

Mike Froehlich
Contact Person

Mailing Address
(315) 432-6703

Telephone

Mike.Froehlich@carrier.utc.com
E-mail Address

I hereby agree to reimburse the Office of Statewide Health Planning and Development for the actual costs incurred by the department for review.

Signature of Applicant
Staff Engineer, Mechanical

3/16/11

Date
Carrier Corporation
"Equitable Healthcare Accessibility for California"
Office of Statewide Health Planning and Development

California Licensed Structural Engineer Review and Acceptance of the Report

5.0

Scott R. Hooker	Company Name	
		3937 / Structural
Contact Name600 Q St. Suite 200, Sacramento, CA 95811		
(916) 443-0303	Mailing Address	shooker@bbse.com
Telephone		E-mail Address

Anchorage Pre-Approval

6.0
\square Anchorage is pre-approved under OPA-
(Separate application for anchorage pre-approval is required)
$\boxtimes \quad$ Anchorage is not Pre-approved
Certification Method
70.
$\square \quad$ Testing in accordance with: $\quad \square$ ICC-ES AC-156 Other (Please Specify):
$\square \quad$ Analysis
$\square \quad$ Experience data
$\square \quad$ Combination of Testing, Analysis, and/or Experience Data (Please Specify):

8.0	ting Laboratory (if applicable)	Mark Pitman
	University at Buffalo, SEESL	
	Company Name	Contact Name
	Department of Civil, Structural, and Environmental Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260-4300	
	Mailing Address	
	(716) 645-5400	mpitman@eng.buffalo.edu
	Telephone	E-mail:

"Equitable Healthcare Accessibility for California"
Office of Statewide Health Planning and Development

```
    Approval Parameters
9.0
    Design in accordance with ASCE 7-05 Chapter 13: }\\mathrm{ Yes }\square\mathrm{ No
    Design Basis of Equipment or Components ( }\mp@subsup{F}{p}{}\mp@subsup{W}{p}{})=1.5
    S (Spectral response acceleration at short period) =2.00g
    ap}(In-structure equipment or component amplification factor) =2.5
    R
    I
    z/h (Height factor ratio)=1.0
    Equipment or Component fundamental period(s) =See Table 1.
    Building period limits (if any) =N/A
    Overall dimensions and weight (or range thereof) =See attached tables.
    Equipment or Components @ grade designed in accordance with ASCE 7-05 Chapter 15: }\square\mathrm{ Yes \ No
    Design Basis of Equipment or Components (VM) =
        SDS (Spectral response acceleration at short period) =
        S1 (Spectral response acceleration at 1 second period) =
        R (Response modification coefficient)=1.0
        \Omega
        Cod
        Ip (Importance factor)=1.5
        Height to Center of Gravity above base =
        Equipment or Component fundamental period(s) = Sec
        Overall dimensions and weight (or range thereof)=
    Tank(s) designed in accordance with ASME BPVC, 2007: }\square\mathrm{ Yes }\\mathrm{ No
```

10.0 List of attachments supporting the special seismic certification of equipment or components:

\boxtimes	Test Report	\square	Drawings	\boxtimes
\square	Calculations	\square	Others (Please Specify):	

CARRIER CORPORATION ROOFTOP UNIT MODEL \#'s: 50TC, 50TCQ, AND 48TC Shake Table Testing

Figure 1. UUT 1 on the shake table

Figure 2. UUT 2 on the shake table

Figure 3. UUT 3 on the shake table

Table 1. Shake Table Tested Units Summary**

*Frequencies are for units tested prior to AC156.
** Tested at Univ. at Buffalo Report No: UB CSEE/SEESL-2010-17

Special Seismic Certification
OSHPD Preapproval Carrier $48 \mathrm{TC}, 50 \mathrm{TC}$, 50 TCQ Product Line

Table 1a. Tested Equipment Major-Component List

Compressor					
Model Number	UUT	Nominal Tons	Model Number(s)	Manufacturer	Interpolated/ Included With Test
50TC-A04H3A6-0F2C0	1	3	ZP31K5E-TFD-130	Copeland	Tested
50TCQD12H3A6-0F2C0	2	10	ZP54K5E-TFD-130 ZP51K5E-TFD-130	Copeland	Tested
48TCFD28H3G6-0F2C0	3	25	ZP137K5E-TFD-130 ZP137K5E-TFD-130	Copeland	Tested

Heat Cell (50 Series Electric, 48 Series Gas Heat)					
Model Number	UUT	Nominal Tons	Model Number	Manufacturer	Interpolated/ Included With Test
50TC-A04H3A6-OF2CO	1	3	CRHEATER_009A	Carrier	Tested
50TCQD12H3A6-0F2C0	2	10	CRHEATER_015A +013A	Carrier	Tested
48TCFD28H3G6-0F2C0	3	25	50HE400800	Carrier	Tested

Condenser					
Model Number	UUT	Nominal Tons	Model Number	Manufacturer* *	Interpolated/ Included With Test
50TC-A04H3A6-OF2C0	1	3	48 TM400050	Carrier	Tested
50TCQD12H3A6-0F2C0	2	10	$48 T M 400207$	Carrier	Tested
48TCFD28H3G6-OF2C0	3	25	50HE400867	Delphi	Tested

*Round Tube Plate Fin Coils by Carrier and Novation (Microchannel) by Delphi

Evaporator					
Model Number	UUT	Nominal Tons	Model Number	Manufacturer	Interpolated / Included With Test
50TC-A04H3A6-0F2CO	1	3	48TM400003	Carrier	Tested
50 TCQD12H3A6-0F2C0	2	10	48TM401916	Carrier	Tested
48TCFD28H3G6-0F2CO	3	25	50HE400117	Carrier	Tested
Refrigerant Expansion Device					
Model Number	UUT	Nominal Tons	Model Number	Manufacturer	Interpolated / Included With Test
$50 \mathrm{TC}-\mathrm{A04H3A6-0F2CO}$	1	3	99 CC 404834	Carrier - Acutrol*	Tested
50TCQD12H3A6-0F2C0	2	10	$99 \mathrm{CC405504}$	Carrier - Acutrol*	Tested
48TCFD28H3G6-0F2CO	3	25	$99 \mathrm{CC404854}$	Carrier - Acutrol*	Tested
*Acutrol is a Carrier Registered Trademark					
Control Box					
Model Number	UUT	Nominal Tons	Model Number	Manufacturer	Interpolated / Included With Test
$50 \mathrm{TC}-\mathrm{A04H3A6-0F2CO}$	1	3	48TMCSRSP-1600	Whitepath	Tested
50TCQD12H3A6-0F2C0	2	10	48TMCSRMH-2610	Whitepath	Tested
48TCFD28H3G6-0F2C0	3	25	50HECMRAY-600	Whitepath	Tested

Condenser Fan Motor (s)				Interpolated/ Included With Test	
Model Number	UUT	Nominal Tons	Model Number	Manufacturer *	Tel
50TC-A04H3A6-O2C0	1	3	5KCP39HGS239S	Regal Beloit	Tested
50TCQD12H3A6-0F2C0	2	10	5KCP39MFY68S	Regal Beloit	Tested
48TCFD28H3G6-0F2C0	3	25	5KCP39KFV110S	Regal Beloit	Tested

Evaporator Fan Motor				Interpolated/ Included With Test	
Model Number	UUT	Nominal Tons	Model Number	Manufacturer *	Tested
50TC-A04H3AG-0F2CO	1	3	5 K49MN4500Z	Regal Beloit	Tested
50TCQD12H3A6-0F2CO	2	10	5 K49QN4536	Regal Beloit	Tested
48TCFD28H3G6-0F2CO	3	25	$850115 J 3$	AO Smith	Tested

Carrier 48TC, 50TC, 50TCQ Product Line

48TC Model Nomenclature

Special Seismic Certification
 OSHPD Preapproval

Carrier 48TC, 50TC, 50TCQ Product Line

50TC Model Option List - Cooling Unit with Option Field Installed Electric Heat

Unit Type $50=$ Cooling/Elec Heat RTU with Puron refrigerant	$\begin{array}{l\|l} 1 & 2 \\ \hline 5 & 0 \\ \hline \end{array}$	$\frac{3}{T}$	C	5	A	0	6	A	101	11	12	13	${ }^{14}$	15	$\begin{array}{llll}16 & 17 & 18\end{array}$			
															0	A	0	
																		Brand / Packaging $\begin{aligned} & 0=\text { Standard } \\ & 1=\text { LTL } \end{aligned}$

Tier / Model
TC = WeatherMaker Series

Heat Size

- = No heat

Electrical Options
$A=$ None
C = Non-fused disc
$D=$ Thru the base
F = Non-fuced \& thru the base

Service Options

$0=$ None
$1=$ Un-powered convenience outlet
$2=$ Powered convenience outlet
$\mathrm{A}=$ None
$B=$ Temp Economizer w/ Barometric Relief
$\mathrm{D}=$ Temperature Economizer w/PE F = Enthalpy Economizer w/ Baro Relief $\mathrm{H}=$ Enthalpy Economizer w/PE $\mathrm{K}=2$ - Pooition Damper $\mathrm{P}=$ Manual Outdoor Air Damper

Base Unit Controle

0 = Electromechanical
$1=$ PremierLink DDC controller
2 = RTU Open multi protocol controller

Design Rev

Factory assigned

Voltage

$1=575 / 3 / 60$
$3=208-230 / 1 / 60$
$5=208-230 / 3 / 60$
$6=460 / 3 / 60$
Models w/Round Tube Plate Fin (RTPF) condenser coils
Models w/Round Tube Plate Fin
(Outdoor - Indoor - Hail Guard)
$\mathrm{A}=\mathrm{A} / \mathrm{Cu}-\mathrm{Al} / \mathrm{Cu}$
$\mathrm{B}=$ Precoat $\mathrm{Al} / \mathrm{Cu}-\mathrm{Al} / \mathrm{Cu}$
$\mathrm{C}=\mathrm{E} \operatorname{coat} \mathrm{Al} / \mathrm{Cu}-\mathrm{Al} / \mathrm{Cu}$
$\mathrm{D}=\mathrm{E}$ coat $\mathrm{Al} / \mathrm{Cu}-\mathrm{E}$ coat $\mathrm{Al} / \mathrm{Cu}$
$\mathrm{E}=\mathrm{Cu} / \mathrm{Cu}-\mathrm{Al} / \mathrm{Cu}$
$\mathrm{F}=\mathrm{Cu} / \mathrm{Cu}-\mathrm{Cu} / \mathrm{Cu}$
$\mathrm{M}=\mathrm{Al} / \mathrm{Cu}-\mathrm{Al} / \mathrm{Cu}-$ Louvered Hail Guards
$\mathrm{N}=$ Precoat $\mathrm{A} / / \mathrm{Cu}-\mathrm{A} / / \mathrm{Cu}-$ Louvered Hail Guards
$\mathrm{P}=\mathrm{E}$ coat $\mathrm{A} / \mathrm{Cu}-\mathrm{Al} / \mathrm{Cu}$ - Louvered Hail Guards
$\mathrm{Q}=\mathrm{E}$ coat $\mathrm{Al} / \mathrm{Cu}-\mathrm{E}$ coat $\mathrm{Al} / \mathrm{Cu}$ - Louvered Hail Guards
$\mathrm{R}=\mathrm{Cu} / \mathrm{Cu}-\mathrm{Al} / \mathrm{Cu}$ - Louvered Hail Guards
$\mathrm{S}=\mathrm{Cu} / \mathrm{Cu}-\mathrm{Cu} / \mathrm{Cu}-$ Louvered Hail Guards
Models w/All aluminum, Novation condenser coils
(Outdoor - Indoor - Hail Guard)
$\mathrm{G}=\mathrm{Al} / \mathrm{Al}-\mathrm{Al} / \mathrm{Cu}$
$\mathrm{H}=\mathrm{A} / / \mathrm{Al}-\mathrm{Cu} / \mathrm{Cu}$
$J=A l / A I-E-$ coat $A I / C u$
$K=E-\operatorname{coat} A I / A I-A I / C u$
$\mathrm{L}=\mathrm{E}-$ coat $\mathrm{Al} / \mathrm{Al}-\mathrm{E}-$ coat $\mathrm{Al} / \mathrm{Cu}$
$\mathrm{T}=\mathrm{Al} / \mathrm{Al}-\mathrm{Al} / \mathrm{Cu}$ - Louvered Hail Guards
$\mathrm{U}=\mathrm{AL} / \mathrm{Al}-\mathrm{Cu} / \mathrm{Cu}-$ Louvered Hail Guards
$\mathrm{V}=\mathrm{Al} / \mathrm{Al}-\mathrm{E}-$ coat $\mathrm{Al} / \mathrm{Cu}-$ Louvered Hail Guards
W $=\mathrm{E}$-coat Al/Al - Al/Cu - Louvered Hail Guards $X=E-c o a t A l / A l-E-c o a t ~ A l / C u ~-~ L o u v e r e d ~ H a i l ~ G u a r d s ~$

50TCQ Model Option List - HEATPUMP with optional field installed electric heat

Seneor Options

A = None
$B=R A$ smoke detector
C = SA smoke detector
$\mathrm{D}=\mathrm{RA}$ \& SA smoke detector
$\mathrm{E}=\mathrm{CO}_{2}$ sensor
$\mathrm{F}=\mathrm{RA}$ amoke detector $\& \mathrm{CO}_{2}$
$\mathrm{G}=\mathrm{SA}$ smoke detector \& CO_{2}
$\mathrm{H}=\mathrm{RA} \& \mathrm{SA}$ smoke detector \& CO_{2}

Indoor Fan Options

$1=$ Standard Static Option, Vertical
$2=$ Medium Static Option, Vertical
$3=$ High Static Option, Vertical
B = Medium Static High Efficiency Motor/Vertical Supply, Return Air Flow
C =High Static, High Efficiency Motor/Vertical Supply, Return Air Flow

5 = Standard Static Option, Horizontal
$6=$ Medium Static Option, Horizontal
$7=$ High Static Option, Horizontal
F = Medium Static High Efficiency Motor/Horizontal Supply, Return Air Flow
G = High Static, High Efficiency Motor/Horizontal Supply, Return Air Flow

Base Unit Controls
$0=$ Electromechanical
$1=$ PremierLink DDC controller
2 = RTU Open multi protocol controlle:

Design Rev

Factory assigned

Voltage

$1=575 / 3 / 60$
$3=208-230 / 1 / 60$
$5=208-230 / 3 / 60$
$6=460 / 3 / 60$
Models w/Round Tube Plate Fin (RTPF) condenser coile
(Outdoor - Indoor - Hail Guard)
$\mathrm{A}=\mathrm{Al} / \mathrm{Cu}-\mathrm{Al} / \mathrm{Cu}$
$\mathrm{B}=$ Preooat $\mathrm{Al} / \mathrm{Cu}-\mathrm{Al} / \mathrm{Cu}$
$\mathrm{C}=\mathrm{E}$ coat $\mathrm{Al} / \mathrm{Cu}-\mathrm{Al} / \mathrm{Cu}$
$\mathrm{D}=\mathrm{E} \operatorname{coat} \mathrm{Al} / \mathrm{Cu}-\mathrm{E}$ coat $\mathrm{Al} / \mathrm{Cu}$
$\mathrm{E}=\mathrm{Cu} / \mathrm{Cu}-\mathrm{Al} / \mathrm{Cu}$
$\mathrm{F}=\mathrm{Cu} / \mathrm{Cu}-\mathrm{Cu} / \mathrm{Cu}$
$\mathrm{F}=\mathrm{Cu} / \mathrm{Cu}-\mathrm{Cu} / \mathrm{Cu}$
$\mathrm{M}=\mathrm{Al} / \mathrm{Cu}-\mathrm{Al} / \mathrm{Cu}$ - Louvered Hail Guardo
$\mathrm{N}=$ Precoat $\mathrm{Al} / \mathrm{Cu}-\mathrm{A} / / \mathrm{Cu}$ - Louvered Hail Guarde
$\mathrm{N}=$ Precoat $\mathrm{Al} / \mathrm{Cu}-\mathrm{Al} / \mathrm{Cu}$ - Louvered Hail Guarde
$\mathrm{P}=\mathrm{E}$ coat $\mathrm{Al} / \mathrm{Cu}-\mathrm{Al} / \mathrm{Cu}$ - Louvered Hail Guards
$\mathrm{P}=\mathrm{E}$ coat $\mathrm{Al} / \mathrm{Cu}-\mathrm{Al} / \mathrm{Cu}-$ Louvered Hail Guards
$\mathrm{Q}=\mathrm{E}$ coat $\mathrm{Al} / \mathrm{Cu}-\mathrm{E}$ coat $\mathrm{Al} / \mathrm{Cu}-$ Louvered Hail Guards $\mathrm{A}=\mathrm{Cu} / \mathrm{Cu}-\mathrm{Al} / \mathrm{Cu}-$ Louvered Hail Guards
$\mathrm{S}=\mathrm{Cu} / \mathrm{Cu}-\mathrm{Cu} / \mathrm{Cu}-$ Louvered Hail Guards
Modela w/All aluminum, Novation condenser coila
(Outdoor - Indoor - Hail Guard)
$\mathrm{G}=\mathrm{Al} / \mathrm{Al}-\mathrm{Al} / \mathrm{Cu}$
$\mathrm{H}=\mathrm{Al} / \mathrm{Al}-\mathrm{Cu} / \mathrm{Cu}$
$J=A I / A I-E-\operatorname{coat} A I / C u$
$\mathrm{K}=\mathrm{E}-\operatorname{coat} \mathrm{A} / \mathrm{AL}-\mathrm{A} / \mathrm{Cu}$
$\mathrm{L}=\mathrm{E}-$ coat $\mathrm{Al} / \mathrm{Al}-\mathrm{E}-$ coat $\mathrm{Al} / \mathrm{Cu}$
$\mathrm{T}=\mathrm{Al/Al}-\mathrm{Al} / \mathrm{Cu}-$ Louvered Hail Guards
$\mathrm{U}=\mathrm{Al} / \mathrm{Al}-\mathrm{Cu} / \mathrm{Cu}-$ Louvered Hail Guards
$\mathrm{V}=\mathrm{Al} / \mathrm{Al}-\mathrm{E}$-coat $\mathrm{Al} / \mathrm{Cu}-$ Louvered Hail Guards
W = E-coat Al/Al - Al/Cu - Louvered Hail Guards $X=E-$ coal $A 1 / A I-E-$ coat $A I / C u$ - Louvered Hail Guards

Special Seismic Certification OSHPD Preapproval

Carrier 48TC, 50TC, 50TCQ Product Line

Table 2. Approved Unit List
 Carrier 48TC, 50TC, 50TCQ Product Line

Table 3a. 48TC Major-Component List

Compressor					
Model Number	Nominal Tons	Smallest	Largest	Manufacturer	Interpolated / Included With Test
$48 \mathrm{TC}^{* * 04}$	3	ZP31K5E	na	Copeland	Interpolated
$48 \mathrm{TC}{ }^{* *} 05$	4	ZP42K5E	na	Copeland	Interpolated
48TC**06	5	ZP54K5E	na	Copeland	Interpolated
$48 \mathrm{TC}{ }^{* *} 07$	6	ZP61KCE	na	Copeland	Interpolated
$48 \mathrm{TC**08}$	7.5	ZP83KCE	na	Copeland	Interpolated
$48 \mathrm{TC} * * 09$	8.5	ZP90KCE	na	Copeland	Interpolated
48 TC**12	10	ZP103KCE	na	Copeland	Interpolated
$48 \mathrm{TC} * 14$	12.5	ZP61KCE	ZP61KCE	Copeland	Interpolated
$48 \mathrm{TC} * 16$	15	ZP83KCE	ZP76KCE	Copeland	Interpolated
$48 \mathrm{TC} * 17$	15	ZP90KCE	ZP103KCE	Copeland	Interpolated
48 TC**20	17.5	ZP90KCE	ZP103KCE	Copeland	Interpolated
$48 \mathrm{TC}^{* * 24}$	20	ZP137KCE	ZP90KCE	Copeland	Interpolated
$48 \mathrm{TC} * * 28$	25	ZP137KCE	ZP137KCE	Copeland	Tested

Heat Cell						
Model Number	Nominal Tons	Smallest (MBTUH Input)	Largest (MBTUH Input)	Manufacturer		Interpolated/ Included With Test
:---:						
48TC*04						
48TC**05						
48TC*06						
48 TC $^{* * 07}$						

Condenser					
Model Number	Nominal Tons	Face Area (SqFt)	Rows	Manufacturer*	Interpolated/ Included With Test
$48 \mathrm{TC}^{* *} 04$	3	14.6	1	Carrier	Interpolated
48 TC**05	4	16.5	2	Carrier	Interpolated
$48 \mathrm{TC}^{* *} 06$	5	16.5	2	Carrier	Interpolated
$48 \mathrm{TC}^{* *} 07$	6	21.3	2	Carrier	Interpolated
48 TC**08	7.5	20.5	2	Carrier	Interpolated
$48 \mathrm{TC}^{* * 09}$	8.5	21.4	2	Carrier	Interpolated
$48 \mathrm{TC}^{* * 12}$	10	25.1	2	Carrier	Interpolated
$48 \mathrm{TC}^{* * 14}$	12.5	25.1	3	Carrier	Interpolated
$48 \mathrm{TC}^{* * 16}$	15	46.2	2	Carrier	Interpolated
$48 \mathrm{TC} * 17$	15	42.8	2	Carrier or Delphi	Interpolated
48TC**20	17.5	42.8	2	Carrier or Delphi	Interpolated
$48 \mathrm{TC}^{* * 24}$	20	42.5	2	Carrier or Delphi	Interpolated
$48 \mathrm{TC}^{* *} 28$	25	54.2	2	Carrier or Delphi	Tested

* Round Tube Plate Fin Coils by Carrier and Novation (Microchannel) by Delphi

Carrier 48TC, 50TC, 50TCQ Product Line
Table 3a. 48TC Major-Component List (Cont'd)

Table 3a. 48TC Major-Component List (Cont'd) Condenser Fan Motor (s)

Table 3b. 50TC Major-Component List

Compressor					
Model Number	Nominal Tons	System 1	System 2	Manufacturer	Interpolated / Included With Test
50TC**04	3	ZP31K5E	na	Copeland	Tested
$50 T \mathrm{~T}^{* *} 05$	4	ZP42K5E	na	Copeland	Interpolated
50TC**06	5	ZP54K5E	na	Copeland	Interpolated
50TC**07	6	ZP61KCE	na	Copeland	Interpolated
$50 T$ **08 $^{\text {a }}$	7.5	ZP83KCE	na	Copeland	Interpolated
50TC**09	8.5	ZP90KCE	na	Copeland	Interpolated
50TC**12	10	ZP103KCE	na	Copeland	Interpolated
50TC**14	12.5	ZP61KCE	ZP61KCE	Copeland	Interpolated
50TC**16	15	ZP83KCE	ZP76KCE	Copeland	Interpolated
$50 T C^{* * 17}$	15	ZP90KCE	ZP103KCE	Copeland	Interpolated
50TC**20	17.5	ZP90KCE	ZP103KCE	Copeland	Interpolated
$50 \mathrm{TC**24}$	20	ZP137KCE	ZP90KCE	Copeland	Interpolated
50TC**28	25	ZP137KCE	ZP137KCE	Copeland	Interpolated

Electric Heater					
Model Number	Nominal Tons	Smallest (KW)	Largest (KW)	Manufacturer	Interpolated / Included With Test
$50 \mathrm{TC}^{* *} 04$	3	4.4	16	Carrier	Tested
50TC**05	4	4.4	23	Carrier	Interpolated
50TC**06	5	6	26.5	Carrier	Interpolated
$50 T C * * 07$	6	6	26.5	Carrier	Interpolated
$507 \mathrm{TC}^{* * 08}$	7.5	10.4	42.4	Carrier	Interpolated
50TC**09	8.5	10.4	42.4	Carrier	Interpolated
$50 \mathrm{TC**12}$	10	10.4	50	Carrier	Interpolated
50TC**14	12.5	16.5	50	Carrier	Interpolated
50TC**16	15	16.5	50	Carrier	Interpolated
$50 \mathrm{TC}^{* * 17}$	15	25	75	Carrier	Interpolated
50TC**20	17.5	25	75	Carrier	Interpolated
50TC**24	20	25	75	Carrier	Interpolated
50TC**28	25	25	75	Carrier	Interpolated

Condenser					
Model Number	Nominal Tons	$\begin{aligned} & \text { Face Area } \\ & (S q F t) \\ & \hline \end{aligned}$	Rows	Manufacturer*	Interpolated/ Included With Test
50TC**04	3	14.6	1	Carrier	Tested
50TC**05	4	16.5	2	Carrier	Interpolated
50TC**06	5	16.5	2	Carrier	Interpolated
50TC**07	6	21.3	2	Carrier	Interpolated
50TC**08	7.5	20.5	2	Carrier	Interpolated
50TC**09	8.5	21.4	2	Carrier	Interpolated
50TC**12	10	25.1	2	Carrier	Interpolated
50TC**14	12.5	25.1	3	Carrier	Interpolated
50TC**16	15	46.2	2	Carrier	Interpolated
50TC**17	15	42.8	2	Carrier or Delphi	Interpolated
50TC**20	17.5	42.8	2	Carrier or Delphi	Interpolated
50TC**24	20	42.5	2	Carrier or Delphi	Interpolated
50TC**28	25	54.2	2	Carrier or Delphi	Interpolated

[^0]Table 3b. 50TC Major-Component List (Cont'd)

Evaporator					
Model Number	Nominal Tons	Face Area (SqFt)	Rows	Manufacturer	Interpolated/ Included With Test
50TC**04	3	5.5	2	Carrier	Tested
50 TC**05 $^{\text {a }}$	4	5.5	2	Carrier	Interpolated
50 TC **06	5	5.5	4	Carrier	Interpolated
$50 \mathrm{TC} * * 07$	6	7.3	4	Carrier	Interpolated
50TC**08	7.5	8.9	3	Carrier	Interpolated
50TC**09	8.5	11.1	3	Carrier	Interpolated
$50 \mathrm{TC} * 12$	10	11.1	4	Carrier	Interpolated
$50 \mathrm{TC}^{* * 14}$	12.5	11.1	4	Carrier	Interpolated
50TC**16	15	17.5	3	Carrier	Interpolated
$50 \mathrm{TC**17}$	15	19.6	4	Carrier	Interpolated
50TC**20	17.5	19.6	4	Carrier	Interpolated
50TC**24	20	22.0	4	Carrier	Interpolated
50TC**28	25	23.1	4	Carrier	Interpolated

Refrigerant Expansion Device					
Model Number	Nominal Tons	Indoor	Outdoor	Manufacturer	Interpolated/ Included With Test
50TC**04	3	Acutrol*	na	Carrier	Tested
50TC**05	4	Acutrol*	na	Carrier	Interpolated
$50 \mathrm{TC}{ }^{* *} 06$	5	Acutrol*	na	Carrier	Interpolated
$50 \mathrm{TC}^{* *} 07$	6	Acutrol*	na	Carrier	Interpolated
50TC**08	7.5	Acutrol*	na	Carrier	Interpolated
50TC**09	8.5	Acutrol*	na	Carrier	Interpolated
50TC**12	10	Acutrol*	na	Carrier	Interpolated
$50 \mathrm{TC} * 14$	12.5	Acutrol*	na	Carrier	Interpolated
50TC**16	15	Acutrol*	na	Carrier	Interpolated
$50 \mathrm{TC} * 17$	15	Acutrol*	na	Carrier	Interpolated
50TC**20	17.5	Acutrol*	na	Carrier	Interpolated
50TC**24	20	Acutrol*	na	Carrier	Interpolated
50TC**28	25	Acutrol*	na	Carrier	Interpolated

${ }^{*}$ Acutrol is a Carrier Registered Trademark

Control Box					
Model Number	Nominal Tons	ElectroMechanical	PremierLink /RTU-Open	Manufacturer	Interpolated/ Included With Test
50TC**04	3	X	X	Whitepath	Tested
50TC**05	4	X	X	Whitepath	Interpolated
50TC**06	5	X	X	Whitepath	Interpolated
50TC**07	6	X	X	Whitepath	Interpolated
50TC**08	7.5	X	X	Whitepath	Interpolated
50TC**09	8.5	X	X	Whitepath	Interpolated
$50 \mathrm{TC**12}$	10	X	X	Whitepath	Interpolated
50TC**14	12.5	X	X	Whitepath	Interpolated
50 TC $^{* * 16}$	15	X	X	Whitepath	Interpolated
$50 \mathrm{TC}^{* * 17}$	15	X	X	Whitepath	Interpolated
50TC**20	17.5	X	X	Whitepath	Interpolated
50TC**24	20	X	X	Whitepath	Interpolated
50TC**28	25	X	X	Whitepath	Interpolated

Special Seismic Certification
OSHPD Preapproval
Carrier 48TC, 50TC, 50TCQ Product Line

Table 3b. 50TC Maior-Component List (Cont'd)

Condenser Fan Motor (s)					
Model Number	Nominal Tons	HP	\#	Manufacturer*	Interpolated/ Included With Test
$50 \mathrm{TC}^{* * 04}$	3	1/4	1	Regal Beloit	Tested
50TC**05	4	1/4	1	Regal Beloit	Interpolated
50TC**06	5	1/4	1	Regal Beloit	Interpolated
$50 \mathrm{TC}{ }^{* *} 07$	6	1/4	1	Regal Beloit	Interpolated
50TC**08	7.5	1/4	2	Regal Beloit	Interpolated
50TC**09	8.5	1/4	2	Regal Beloit	Interpolated
$50 \mathrm{TC}^{* * 12}$	10	1/4	2	Regal Beloit	Interpolated
$50 \mathrm{TC}^{* * 14}$	12.5	1.0	1	Regal Beloit	Interpolated
50TC**16	15	1/4	3	Regal Beloit	Interpolated
$50 \mathrm{TC}^{* * 17}$	15	1/4	3	Regal Beloit	Interpolated
50TC**20	17.5	1/4	3	Regal Beloit	Interpolated
$50 \mathrm{TC}^{* *} 24$	20	1/4	4	Regal Beloit	Interpolated
$50 \mathrm{TC}^{* * 28}$	25	1/4	4	Regal Beloit	Interpolated

Evaporator Fan Motor					
Model Number	Nominal Tons	Smallest HP	$\begin{gathered} \text { Largest } \\ H P \\ \hline \end{gathered}$	Manufacturer*	Interpolated/ Included With Test
50TC**04	3	1.2	2.4	Regal Beloit	Tested
50TC**05	4	1.2	2.4	Regal Beloit	Interpolated
50TC**06	5	1.2	2.9	Regal Beloit	Interpolated
50TC**07	6	2.4	3.7	Regal Beloit	Interpolated
50TC**08	7.5	1.7	4.7	Regal Beloit	Interpolated
50TC**09	8.5	1.7	3.7	Regal Beloit	Interpolated
$50 \mathrm{TC}^{* * 12}$	10	2.4	4.7	Regal Beloit	Interpolated
50TC**14	12.5	2.9	4.7	Regal Beloit	Interpolated
50TC**16	15	2.9	6.1	Regal Beloit/AO Smith	Interpolated
50TC**17	15	2.2	4.9	Regal Beloit	Interpolated
50TC**20	17.5	3.3	6.5	Regal Beloit/AO Smith	Interpolated
50TC**24	20	4.9	8.7	Regal Beloit/AO Smith	Interpolated
50TC**28	25	4.9	8.7	Regal Beloit/AO Smith	Interpolated

Carrier $48 \mathrm{TC}, 50 \mathrm{TC}, 50 \mathrm{TCQ}$ Product Line

Table 3c. 50TCQ Major-Component List
Compressor

Model Number	Nominal Tons	System 1	System 2	Manufacturer	Interpolated/ Included With Test
$50 T C Q * 04$	3	ZP34K5E	na	Copeland	Interpolated
50TCQ*05	4	ZP42K5E	na	Copeland	Interpolated
$50 \mathrm{TCQ} * 06$	5	ZP54K5E	na	Copeland	Interpolated
$50 \mathrm{TCQ*} 07$	6	ZP61KCE	na	Copeland	*Interpolated
$50 T C Q * 08$	7.5	ZP39K5E	ZP39K5E	Copeland	*Interpolated
50TCQ*09	8.5	ZP44K5E	ZP42K5E	Copeland	*Interpolated
$50 T C Q * 12$	10	ZP51K5E	ZP54K5E	Copeland	Tested
50TCQ*14	12.5	ZP67KCE	ZP67KCE	Copeland	*Interpolated
$50 T C Q * 17$	15	ZP83KCE	ZP83KCE	Copeland	*Interpolated
$50 T C Q * 24$	20	ZP103KCE	ZP120KCE	Copeland	*Interpolated

* Interpolated from other size compressors tested on the non Heat Pump units.
$\left.\begin{array}{|l|c|c|c|c|c|}\hline \text { Electric Heater } & \text { Model Number } & \text { Nominal Tons } & \begin{array}{c}\text { Smallest } \\ \text { (KW) }\end{array} & \begin{array}{c}\text { Largest } \\ \text { (KW) }\end{array} & \text { Manufacturer }\end{array} \begin{array}{c}\text { Interpolated/ } \\ \text { Inded With } \\ \text { Test }\end{array}\right]$
*KW

Condenser					
Model Number	Nominal Tons	Face Area (Sq Ft)	Rows	Manufacturer*	Interpolated/ Included With Test
50TCQ*04	3	14.6	1	Carrier	Interpolated
50TCQ*05	4	12.7	2	Carrier	Interpolated
50TCQ*06	5	15	2	Carrier	Interpolated
50TCQ*07	6	21.3	2	Carrier	Interpolated
50TCQ*08	7.5	25.1	2	Carrier	Interpolated
50TCQ*09	8.5	25.1	2	Carrier	Interpolated
50TCQ*12	10	25.1	3	Carrier	Tested
50TCQ*14	12.5	36.1	2	Carrier	Interpolated
50TCQ*17	15	42.8	2	Carrier	Interpolated
50TCQ*24	20	42.8	2	Carrier	Interpolated

* Round Tube Plate Fin Coils

Table 3c. 50TCQ Major-Component List (Cont'd)

Evaporator					
Model Number	Nominal Tons	Face Area (Sq Ft)	Rows	Manufacturer	Interpolated/ Included With Test
50TCQ*04	3	5.5	3	Carrier	Interpolated
50TCQ*05	4	5.5	3	Carrier	Interpolated
50TCQ*06	5	7.3	4	Carrier	Interpolated
50TCQ*07	6	7.3	4	Carrier	Interpolated
50TCQ*08	7.5	11.1	3	Carrier	Interpolated
50TCQ*09	8.5	11.1	4	Carrier	Interpolated
50TCQ*12	10	11.1	4	Carrier	Tested
50TCQ*14	12.5	17.5	3	Carrier	Interpolated
50TCQ*17	15	19.6	3	Carrier	Interpolated
50TCQ*24	20	22.0	4	Carrier	Interpolated

Control Box					
Model Number	Nominal Tons	Electromechanical	PremierLink /RTU-Open	Manufacturer	Interpolated/ Included With Test
50TCQ*04	3	X	X	Carrier/Whitepath	Interpolated
50TCQ*05	4	X	X	Carrier/Whitepath	Interpolated
50TCQ*06	5	X	X	Carrier/Whitepath	Interpolated
50TCQ*07	6	X	X	Carrier/Whitepath	Interpolated
$50 T C Q * 08$	7.5	X	X	Carrier/Whitepath	Interpolated
50TCQ*09	8.5	X	X	Carrier/Whitepath	Interpolated
$50 T C Q * 12$	10	X	X	Carrier/Whitepath	Tested
$50 T C Q^{* 14}$	12.5	X	X	Carrier/Whitepath	Interpolated
50TCQ*17	15	X	X	Carrier/Whitepath	Interpolated
50TCQ*24	20	X	X	Carrier/Whitepath	Interpolated

\left.| Condenser Fan Motor (s) | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Model Number | Nominal Tons | HP | | | |
| Interpolated/ | | | | | |
| Included With | | | | | |
| Test | | | | | |$\right]$

Evaporator Fan Motor					
Model Number	Nominal Tons	$\begin{gathered} \text { Smallest } \\ H P \\ \hline \end{gathered}$	Largest $H P$	Manufacturer*	Interpolated/ Included With Test
$50 T C Q * 04$	3	1	2	Regal Beloit	Interpolated
50TCQ*05	4	1	2	Regal Beloit	Interpolated
50TCQ*06	5	1	2.9	Regal Beloit	Interpolated
$50 T C Q * 07$	6	1.5	2.9	Regal Beloit	Interpolated
$50 T C Q^{* 08}$	7.5	1.2	2.9	Regal Beloit	Interpolated
50TCQ*09	8.5	1.2	2.9	Regal Beloit	Interpolated
$50 T C Q^{* 12}$	10	2.4	4.7	Regal Beloit	Tested
50TCQ*14	12.5	2.9	6.1	Regal Beloit/AO Smith	Interpolated
50TCQ*17	15	2.2	4.9	Regal Beloit	Interpolated
50TCQ*24	20	3.3	6.5	Regal Beloit/AO Smith	Interpolated

[^0]: *Round Tube Plate Fin Coils by Carrier and Novation (Microchannel) by Delphi

