

APPLICATION FOR OSHPD SPECIAL SEISMIC	OFFICI	E USE ONLY
CERTIFICATION PREAPPROVAL (OSP)	APPLICATION #:	OSP – 0204
OSHPD Special Seismic Certification Preapproval (OSP)		
Type: 🗌 New 🛛 Renewal		
Manufacturer Information		
Manufacturer: Multistack, LLC		
Manufacturer's Technical Representative: Dennis Manthei		
Mailing Address: _ 1065 Maple Ave, Sparta, WI 54656		
Telephone: 608.366.2400	hei@multistack.com	
Product Information	MD,	
Product Name: Mag Lev Flooded Chiller Line, Gen 25HPD	- P	
Product Type: Water Cooled Chiller OSP-0204	ŝ	
Product Model Number: See attached summary table. (List all unique product identification numbers and/or part numbers) hammad Alia		
General Description: Water cooled mag lev flooded chillers in stack		figuration ranging in size
from 4,500 pounds to 22,300 pounds.		
Mounting Description: Flexible base mount with neoprene pads or rig		
	20	
Applicant Information Applicant Company Name: Multistack, LLC	ODE	
Applicant Company Name: Multistack, LLC		
Contact Person: Dennis Manthei		
Mailing Address:1065 Maple Ave, Sparta, WI 54656		
Telephone: <u>608.366.2400</u> Email: <u>dmant</u>	hei@multistack.com	
I hereby agree to reimburse the Office of Statewide Health I accordance with the California Administrative Code, 2016.	Planning and Develo	opment review fees in
Signature of Applicant:envir L-Man	The Date	e:May 1, 2020
Title: Sr. Staff Engineer Company Name: Multist	ack, LLC	
"Access to Safe, Quality Healthcare Environments that Meet California's Diverse and Dynamic Needs"	AL ALA	OSHPD
STATE OF CALIFORNIA – HEALTH AND HUMAN SERVICES AGENCY OSH-FD-759 (REV 12/16/15)	<u> Awak namana</u>	Page 1 of 3
· /		U

OFFICE OF STATEWIDE HEALTH PLANNING AND DEVELOPMENT FACILITIES DEVELOPMENT DIVISION

California Licensed Structural Engineer Responsible for the Engineering and Test Report(s) Company Name: Degenkolb Engineers Name: Adrian Nacamuli California License Number: SE 4857 Mailing Address: 1300 Clay Street, Suite 900, Oakland, CA 94612 Telephone: 510.250.1216 Email: nacamuli@degenkolb.com **Supports and Attachments Preapproval** Supports and attachments are preapproved under OPM-(Separate application for OSHPD Preapproval of Manufacturer's Certification (OPM) of Supports and attachments is required) \boxtimes Supports and attachments are not preapproved **Certification Method** C ICC-ES AC156 \boxtimes Testing in accordance with: Other (Please Specify): **Testing Laboratory BY** Mohammad Aliaari UC Berkeley, PEER Center (UUT-7) Company Name: DATE: 05/12/2020 Contact Name: Amarnath Kasalanti 1301 S. 46th Street, Ricmond, CA 94804 Mailing Address: amarnath1@berkeley.edu Telephone: (510) 642-6475 Email: Dynamic Certification Laboratories (UUT-6) Company Name: Contact Name: Kelly Laplace Mailing Address: 1315 Greg Street, Suite 109, Sparks, NV 89431 Telephone: (775) 358-5085 Email: Kelly@shaketest.com Construction Engineering Research Laboratory (UUT-5) Company Name: Contact Name: James Wilcoski Mailing Address: 2902 Newmark Drive, Champaign, IL 61822 Email: James.Wilcoski@usace.army.mil Telephone: (217) 373-6763

"Access to Safe, Quality Healthcare Environments that Meet California's Diverse and Dynamic Needs"

STATE OF CALIFORNIA – HEALTH AND HUMAN SERVICES AGENCY OSH-FD-759 (REV 12/16/15)

Page 2 of 3

Seismic Parameters

Design in accordance with ASCE 7-10 Chapter 13: 🛛 Yes 🗌 No
Design Basis of Equipment or Components $(F_p/W_p) = 3.60$
S _{DS} (Design spectral response acceleration at short period, g) = <u>2.00</u>
a _p (In-structure equipment or component amplification factor) = <u>2.5</u>
R_{P} (Equipment or component response modification factor) = <u>2.5</u>
Ω_0 (System overstrength factor) = 2.5
I_p (Importance factor) = 1.5
z/h (Height factor ratio) = <u>1.0</u>
Equipment or Component Natural Frequencies (Hz) = <u>See attachment</u>
s Overall dimensions and weight (or range thereof) = <u>See attachment</u>
Equipment or Components @ grade designed in accordance with ASCE 7-10 Chapter 15: Yes No Design Basis of Equipment or Components (V/W) =
S _{DS} (Design spectral response acceleration at short period, g) =
S _{D1} (Design spectral response acceleration at 1 second period, g) =
R (Response modification coefficient) = Mohammad Aliaari
Ω_0 (System overstrength factor) =
C₄ (Deflection amplification factor) =DATE: 05/12/2020
I_p (Importance factor) = 1.5 C
Height to Center of Gravity above base =
Equipment or Component Natural Frequencies (Hz) =
Overall dimensions and weight (or range thereof) =
Tank(s) designed in accordance with ASME BPVC, 2015: Yes X No
List of Attachments Supporting Special Seismic Certification
Image: Second control of the second
OSHPD Approval (For Office Use Only) – Approval Expires on December 31, 2025
Signatura: May 12, 2020
Signature: May 12, 2020 Print Name: Mohammad Aliaari Title: SSE
Special Seismic Certification Valid Up to : $S_{DS}(g) = 2.00$ $z/h = 1$
Condition of Approval (if applicable):
"Access to Safe, Quality Healthcare Environments that Meet California's Diverse and Dynamic Needs"

OSHPD Special Seismic Certification Summary of Certified Units

Manufacturer: Multistack, LLC

Product Line: MS_F MagLev Flooded Chiller: Gen 2

Product Construction Summary: Painted shell (carbon steel) and tube (copper) heat exchanger.

Mounting Condition Tested: Base mounted - bolted with neoprene pads.

Model Number (Old Model Number)	Length (in)	Width (in)	Height (in)	Operating Weight (Ibs)	Unit
MSF0122 (MS0122FC1)	139 1/8	32 1/2	63 7/8	4,500	Extrapolated
MSF0132 (MS0132FC1)	139 1/8	32 1/2	63 3/4	4,670	UUT6
MSF0152 (MS0152FC1)	139 1/8	<u>34 5/8</u>	77 1/16	6,270	Interpolated
MSF0162 (MS0162FC1)	139 1/8	R 34 5/8 E	77	6,990	Interpolated
MSF0192 (MS0192FC1)	140 11/16	35 9/16	77 3/16	7,150	Interpolated
MSF0202 (MS0202FC1)	140 11/16	35 9/16	77 3/16	7,860	Interpolated
MSF0242 (MS0242FC1)	142 3/16	35 1/4	77 3/16	8,670	Interpolated
MSF0292 (MS0292FC1)	143 5/16	37 1/4	77 3/16	9,840	Interpolated
MSF0332 (MS0332FC1)	143 5/16	DS 137-1/4204	77 3/16	9,960	Interpolated
MSF0392 (MS0392FC1)	143 5/16	39 1/2	80 3/4	11,350	Interpolated
MSF0412 (MS0412FC1)	167 11/16	ha 39 1/2 A	88 3/4	13,050	Interpolated
MSF0482 (MS0482FC1)	171 11/16	48	94 3/8	<mark>15</mark> ,350	UUT5
MSF0542 (MS0542FC1)	171	82	82	17,660	Interpolated
MSF0602 (MS0602FC1)	171 ^{TE:}	05/186/202	86	19,560	Interpolated
MSF0612 (MS0612FC1)	171	86	86 📿	20,100	Interpolated
MSF0622 (MS0622FC1)	171	86	86	20,160	Interpolated
MSF0702 (MS0702FC1)	147 3/16	89 3/4	85 5/8"	21,150	Interpolated
MSF0703 (MS0703FC1)	149	90	90	20,800	Interpolated
MSF0803 (MS0803FC1)	149	BUI10DING	96	22,300	UUT-7

Multistack	MagLev Flo	oded Chillers	- Certified S	ub-Compone	nts
COMPRESSORS	MANUFACTU	IRER: DANFOSS TU	RBOCOR		
PART NUMBER	QUANTITY TESTED	DIMENSIONS	MATERIAL	WEIGHT (Lbs.)	UNIT
TT-300	2	31.0 x 20.4 x 19.2	Fe, Al, Cu, Plastic	265	UUT-6
TT-350	N/A	31.0 x 20.4 x 19.2	Ee AL Cu	290	Interpolated
TT-400	2	31.0 x 20.4 x 19.2	Fe, Al, Cu, Plastic	290	UUT-5
TT-500	1	31.0 x 20.4 x 19.2	Eo Al Cu	318	UUT-5
TT-700	1	31.0 x 20.4 x 19.2	Ee AL Cu	318	UUT-7
VTT-1200	2	44.5 x 26.9 x 29.5	Ee Al Cu	977	UUT-7
CONDENSERS	MANUFACTU	IRER: STANDARD R			
PART NUMBER		DIMENSIONS	MATERIAL	WEIGHT (Lbs.)	UNIT
HSE1210	N/A	12" dia x 10' tube	Fe, Cu	1300	Extrapolated
HSE1410		14" dia x 10' tube	Fe, Cu	1620	UUT-6
HSE1610	R N/A	16" dia x 10' tube	O4 Fe, Cu	1910	Interpolated
HSE1810	N/A	18" dia x 10' tube	Fe, Cu	2320	Interpolated
HSE2010	N/A BY	20" dia x 10' tube	Alja Fei Cu	2570	Interpolated
HSE2212	P N/A	22" dia x 12' tube	Fe, Cu	3100	Interpolated
HSE2412	1/	24" dia x 12' tube	Fe, Cu	4620	UUT-5
HSE2612	N/A	26" dia x 12' tube	Fe, Cu	5950	Interpolated
HSE2812	N/A	28" dia x 12' tube	Fe, Cu	6510	Interpolated
HSE3010	N/A	30" dia x 10' tube	Fe, Cu	6800	Interpolated
HSE3012	N/A	30" dia x 12' tube	Fe, Cu	7520	Interpolated
HSE3210	1	32" dia x 10' tube	G Fe, Cu	7550	UUT-7
EVAPORATORS	MANUFACTU	IRER: STANDARD R	EFRIGERATION		
PART NUMBER	QUANTITY TESTED	DIMENSIONS	MATERIAL	WEIGHT (Lbs.)	UNIT
FEV1410	N/A	14" dia x 10' tube	Fe, Cu	1190	Extrapolated
FEV1610	1	16" dia x 10' tube	Fe, Cu	1490	UUT-6
FEV1810	N/A	18" dia x 10' tube	Fe, Cu	1810	Interpolated
FEV2010	N/A	20" dia x 10' tube	Fe, Cu	2100	Interpolated
FEV2212	N/A	22" dia x 10' tube	Fe, Cu	2970	Interpolated
FEV2412	N/A	24" dia x 12' tube	Fe, Cu	3790	Interpolated
FEV2612	1	26" dia x 12' tube	Fe, Cu	4120	UUT-5
FEV2812	N/A	28" dia x 12' tube	Fe, Cu	7050	Interpolated
FEV3012	N/A	30" dia x 12' tube	Fe, Cu	8070	Interpolated
FEV3210	1	32" dia x 10' tube	Fe, Cu	8230	UUT-7

CONDENSER/EVAPORATO R EXPANSION VALVES	MANUFACTU	JRER: CAREL					
PART NUMBER	QUANTITY TESTED	DIMENSIONS			UNIT		
E7V	2	16.4 x 5.3 x 16.8	Cu, Fe, Brass, SS, Nylon	9	UUT-6		
EXPANSION VALVES	MANUFACTURER: SPORLAN						
PART NUMBER	QUANTITY TESTED	DIMENSIONS	MATERIAL	WEIGHT (Lbs.)	UNIT		
Y12-31	4	11.0x5.5x2.5	Cu, Fe, Brass, SS, Nylon	15	UUT-5		
SEHI-T	2	14.4x6.5x3.5	Cu, Fe, Brass, SS, Nylon	20	UUT-7		
ECONIMIZER	MANUFACTU	-					
PART NUMBER	QUANTITY TESTED	DIMENSIONS, WxHxD, (in)	MATERIAL	WEIGHT (Lbs.)	UNIT		
V200THx40	1	9.6x20.6x4.0	316 SS	58	UUT-6		
V200THx60	N/A	9.6x20.6x5.8	316 SS	76	Interpolated		
V200THx80	N/A	9.6x20.6x7.6	316 SS	95	Interpolated		
FS250x120	2	8.0x24.4x9.6	316 SS	111	UUT-7		
V200THx130	N/A	9.6x20.6x12.1	316 SS	141	Interpolated		
S400x120	N/A	12.0x27.3x11.5	316 SS	220	Interpolated		
S400THx120		12.0x27.3x11.5	316 SS	219	UUT-5		
ECONIMIZER EXPANSION VALVES	MANUFACTU	JRER: SPORLAN 2	04	m			
PART NUMBER	QUANTITY TESTED	DIMENSIONS WxHxD (in)	MATERIAL	WEIGHT (Lbs.)	UNIT		
SERI-G		7.3x4.6x1.9	Cu, Fe, Brass, SS, Nylon	5	UUT-6		
SERI-J	2	7.5x4.8x1.9	Cu, Fe, Brass, SS, Nylon	6	UUT-7		
SERI-K		7.9x4.9x1.9	Cu, Fe, Brass, SS, Nylon	7	UUT-5		
FLEXSYS CONTROL SYSTEM	MANUFACTU	JRER: MULTISTACK	0				
PART NUMBER	QUANTITY	DIMENSIONS	MATERIAL	WEIGHT (Lbs.)	UNIT		
FLEXSYS	N/A	32 x 18 x 10, 22 x 44 x 10, 44 x 12 x 10, 32 x 32 x 10	Fe, Cu, Al, Plastic	60, 80, 80, 90 (310)	Extrapolated		
FLEXSYS	N/A	36 x 22 x 8.5, 30 x 16 x 12, 40 x 13 x 8.5	Fe, Cu, Al, Plastic	90, 130,100 (320)	Extrapolated		
FLEXSYS	4	30 x 16 x 12, 36 x 22 x 8.5, 30 x 16 x 12, 40 x 13 x 8.5	Fe, Cu, Al, Plastic	130, 90,130,100 (450)	UUT-6		
FLEXSYS	5	30 x 16 x 12, 30 x 16 x 12, 36 x 22 x 8.5, 30 x 16 x 12, 40 x 13 x 8.5	Fe, Cu, Al, Plastic	130, 130, 90, 130, 100 (580)	UUT-5		
FLEXSYS	N/A	30 x 16 x 12, 30 x 16 x 12, 30 x 16 x 12, 36 x 22 x 8.5, 30 x 16 x 12, 96 x 16 x 12	Fe, Cu, Al, Plastic	130(4), 90, 400 (1010)	Interpolated		
FLEXSYS	N/A	60x36x14;44x17x 14(2);22x44x14	Fe, Cu, Al, Plastic	400, 275, 110, 275 (1060)	Interpolated		
FLEXSYS	5	60x36x14;44x17x 14(2);22x44x14, 30 x 16 x 12	Fe, Cu, Al, Plastic	450, 275, 110, 275, 130 (1240)	UUT-7		

OSHPD Special Seismic Certification Unit Under Test Summary UUT-5

MULTISTACK

Unit N								
	lumb	er: UUT-	5					
Manuf	actur	er: Multis	tack, LLC					
Produ	ct Lir	-	•	oded	Chiller, Gen 2			
Model N	lumb	er: MS04	82FC1					
Product Desc	Product Description: Water cooled chiller with condensers, evaporators, expansion valves, economize compressors and controllers.							economizers,
Product Cons	tructi	on Summa	ary:					
Painted shell (d			•	r) hea	at exchanger.			
Econimizer: (1) Flexsys Contro Note: Unit was	SWE Syst	P S400TH em: (5) Mu d at its ope	x120, Econin Itistack Flexs trating weight	nizer E sys t and i	Expansion Valv	es: (4) Sporlan S es: (1) Sporlan S observed follow by Multistack at t	ERI-K	e testing.
Unit Proper	ties							
Operating			Dimension	ns (in)	mad Aliaar	Lowest	Natural Frequ	encv (Hz)
Operating Weight (lbs)			KVMA XXI VVXXXXYVVVVAAAAA		nmad Aliaar		Natural Frequ	
Weight (lbs)		Length	Width	n	Height	Front-Back	Side-Side	Vertical
		Length 71 11/16	KVMA XXI VVXXXXYVVVVAAAAA	n			-	
Weight (lbs)		71 1 <mark>1/16</mark> Bolted to sl	Width DA 48" hake table wi	n 05/ th 3/8	Height	Front-Back	Side-Side	Vertical 18.3
Weight (lbs) 15,350	1 1 1g: 1	71 1 <mark>1/16</mark> Bolted to sl steel bolts	Width DAT48" nake table wi per support fr	n 05/ th 3/8	Height	Front-Back 6.5 e pads and four (Side-Side	Vertical 18.3
Weight (Ibs) 15,350 Unit Mountin	1 ng: 4	71 11/16 Bolted to sl steel bolts rameters	Width DAT48" nake table wi per support fr	n 05/ th 3/8 rame	Height 94 3/8 " thick neoprend (8 bolts total) to	Front-Back 6.5 e pads and four (Side-Side	Vertical 18.3
Weight (Ibs) 15,350 Unit Mountin Seismic Tes	1 ng: 1 st Pa de: 2	71 11/16 Bolted to sl steel bolts rameters	Width DA 48" hake table wi per support fr per support fr pornia Building	n 05/ th 3/8 rame	Height 94 3/8 " thick neoprend (8 bolts total) to	Front-Back 6.5 e pads and four (Side-Side	Vertical 18.3
Weight (Ibs) 15,350 Unit Mountin Seismic Tes Building Cod	1 ng: 1 st Pa de: 2	71 11/16 Bolted to sl steel bolts rameters 2016 Califo	Width DA 48" hake table wi per support fr per support fr pornia Building	th 3/8 rame (Height 94 3/8 " thick neoprend (8 bolts total) to	Front-Back 6.5 e pads and four (Side-Side	Vertical 18.3

OSHPD Special Seismic Certification Unit Under Test Summary UUT-6

Unit								
	Number:	UUT-6						
Manu	Manufacturer: Multistack, LLC							
Product Line: MS_F MagLev Flooded Chiller, Gen 2 Model Number MS0132FC1								
Product Cons	truction S	ummary:						
Painted shell (c	arbon ste	el) and tube (copp	er) heat exchange	er.				
Condenser/Èvá Econimizer Exp Flexsys Contro Note: Unit was	aporator Ex pansion Va I System: tested at st shake ta	Refrigeration FEV (pansion Valves: (lives: (1) Sporlan (4) Multistack Flex ts operating weigh able test functiona	(2) Carel E7V, Eco SERI-G (sys) ht and no damage	was observed f	ollowing shake ta			
		BY.	Mohammad	Aliaari				
Operating		Dimensions	Mohammad (in)	Aliaari Lowest	Natural Freque	ncy (Hz)		
Operating Weight (Ibs)	Length		(in) Height /20	Aliaari Lowest	Natural Freque Side-Side	ncy (Hz) Vertical		
		Width						
Weight (Ibs) 4,670	Length 139 1/8	Width	Height 63 3/4 th 3/8" thick neop	Front-Back 8.5 ene pads and fo	Side-Side 7.3 ur (4) 5/8" diame	Vertical 14.5		
Weight (Ibs) 4,670 Unit Mounting	Length 139 1/8 : Bolted steel b	Width 32 1/2 to shake table wit olts per support fr	Height 63 3/4 th 3/8" thick neop	Front-Back 8.5 ene pads and fo	Side-Side 7.3 ur (4) 5/8" diame	Vertical 14.5		
Weight (lbs)	Length 139 1/8 : Bolted steel b st Param	Width 32 1/2 to shake table wit olts per support fr	63 3/4 63 3/4 th 3/8" thick neopr ame (8 bolts total	Front-Back 8.5 ene pads and fo	Side-Side 7.3 ur (4) 5/8" diame	Vertical 14.5		
Weight (Ibs) 4,670 Unit Mounting Seismic Tes Building Code	Length 139 1/8 : Bolted steel b st Param : 2016 0	Width 32 1/2 to shake table with olts per support fr eters	63 3/4 63 3/4 th 3/8" thick neopr ame (8 bolts total	Front-Back 8.5 ene pads and fo	Side-Side 7.3 ur (4) 5/8" diame	Vertical 14.5		
Weight (Ibs) 4,670 Unit Mounting Seismic Tes	Length 139 1/8 : Bolted steel b st Param : 2016 0	Width 32 1/2 to shake table wit olts per support fr eters California Building	63 3/4 63 3/4 th 3/8" thick neopr ame (8 bolts total	Front-Back 8.5 ene pads and fo	Side-Side 7.3 ur (4) 5/8" diame	Vertical 14.5		

OSHPD Special Seismic Certification Unit Under Test Summary UUT-7

001-7									
Unit	Number:								
Manu	facturer:	Multistack, LLC							
Prod	uct Line:	MS_F MagLev	Flooded Chiller,	Gen 2					
Model	Number:	MS0803FC1							
Product Des	cription:	otion: Water cooled chiller with condensers, evaporators, expansion valves, economizers, compressors and controllers.							
Product Cons	truction S	ummary:							
Painted shell (carbon stee	el) and tube (cop	per) heat exchar	nger.					
Flexsys Contro Note: Unit was	l System: tested at i st shake ta	(5) Multistack Fle ts operating weig able test function	ght and no dama ality testing perfo OSP-02	ge was observe ormed by Multist	d following shak ack at their facto	ory.			
Operating		Dimensio	ns (in)	Low	es <mark>t Nat</mark> ural Fre	quency (Hz)			
Weight (Ibs)	Len	g <mark>th Width</mark>	Height (in) Front-E	ack Side	-Side Vertical			
22,300	14	.9 101	TE 05/962/2	13.0	11	.8 11.2			
Unit Mounting		to <mark>shake</mark> table v fixture.			5 steel bolts per	leg (16 bolts total)			
Seismic Tes	st Param	eters		1	2				
Building Code	2016	California Buildin	g Code	OF.					
Test Criteria:	ICC-E	S AC156	VIA BIIII	NGCU					
S _{DS} (g)	IP	z/h	A _{RIG} (g) (horizontal)	A _{FLX} (g) (horizontal)	A _{RIG} (g) (vertical)	A _{FLX} (g) (vertical)			
2.00	1.5	1.0	2.4	3.2	0.54	1.34			

Figure 3 UUT-7 Test Configuration