

Type:

DEPARTMENT OF HEALTH CARE ACCESS AND INFORMATION FACILITIES DEVELOPMENT DIVISION

APPLICATION FOR HCAI PREAPPROVAL OF MANUFACTURER'S CERTIFICATION (OPM)

OFFICE USE ONLY

APPLICATION #: OPM-0401

HCAI Preapproval of Manufacturer's Certification (OPM)

New X Renewal/Update

Manufacturer Information

Manufacturer: CalDyn

Manufacturer's Technical Representative: Efrain Escobedo

Mailing Address: 5572 Alhambra Ave, Los Angeles, CA 90032

Telephone: (323) 223-3882

Email: ee@caldyn.com

Product Information

Product Name: CalDyn CQA Vibration Isolator With Restraints (VIWR)

Product Type: CQA VIWR supporting HVAC / Fan Equipment (See OSP-0102-10)

Product Model Number: CPV 60 - CPV 135 (See OSP-0102-10) ikumoto

General Description: HVAC / Fan Unit Supports and Attachments. This OPM includes CalDyn Vibration Isolator With Restraints (VIWR) Strength and Stiffness that can potentially be used with any equipment.

Applicant Information

Applicant Company Name: CalDyn

Contact Person: Efrain Escobedo

Mailing Address: 5572 Alhambra Ave, Los Angeles, CA 90032

Telephone: (323) 223-3882

Email: ee@caldyn.com

Title: Engineer

"Access to Safe, Quality Healthcare Environments that Meet California's Diverse and Dynamic Needs"

STATE OF CALIFORNIA - HEALTH AND HUMAN SERVICES AGENCY

DEPARTMENT OF HEALTH CARE ACCESS AND INFORMATION FACILITIES DEVELOPMENT DIVISION

Registered Design Professonal Preparing E	ngineering Recommendations
Company Name: SAID AMIRSOLAIMANY, CIVIL E	NGINEER
Name: Said Amirsolaimany	California License Number: CE37835
Mailing Address: 196 The Masters Circle, Costa M	esa, CA 92627
Telephone: () -	Email:
HCAI Special Seismic Certification Preappre	oval (OSP)
X Special Seismic Certification is preapproved ur	nder OSP OSP Number: OSP-0102-10
E CONTRACTOR OF CONTRACTOR	ORCODECO
Certification Method	
Testing in accordance with: ICC-ES AC156	FM 1950-16
X Other(s) (Please Specify): Testing in accordan	1ce with FM 1950-10
and attachments are not permitted. For distribution	ifornia Building Standards Code, 2022 (CBSC 2022) for component supports system, interior partition wall, and suspended ceiling seismic bracings, test may be used when approved by HCAI prior to testing.
Analysis	
Experience Data	TE: 06/05/2023
Combination of Testing, Analysis, and/or Expe	ience Data (Please Specify):
ORNI	
	RUDDING
HCAI Approval	BUILDING
Date: <u>6/5/2023</u>	
Name: Jeffrey Kikumoto	Title: Senior Structural Engineer
Condition of Approval (if applicable):	

"Access to Safe, Quality Healthcare Environments that Meet California's Diverse and Dynamic Needs"

Table of Contents

Cover Sheet	1
Table of Contents	2
General Notes	3
CQA Style V VIWR Design Procedure for Example	
Determine "g" Force	4
Equipment Information	5-6
Determine T _u & V _u Seismic Demands	7-9
CQA Style V VIWR Seismic & Stiffness Capacities	10-11
CQA Style V VIWR Spring Capacities	12-13
VIWR Installation Instructions': Jeffrey Kikumoto	14
DATE: 06/05/2023	

6/5/2023

OPM-0401

Loren Cook Company CPV60 to CPV135 HVAC Fans w/ CalDyn CQA Vibration Isolator With Restraint (CQA Style V VIWR)

Code: CBC 2022, ASCE 7-16

OPM-0401: Reviewed for Code Compliance by Jeffrey Kikumoto

GENERAL NOTES

- 1. This OSHPD Preapproval of Manufacturer's Certification (OPM) is based on the CBC 2022. The demand (design forces) for use with this OPM shall be based on the CBC 2022.
- 2. For support and attachment of Cook Fans (applicable to various models as listed on this report), the maximum seismic parameters are as follows: $S_{DS} = 2.0$ (Design Short Period Spectral Acceleration) $z/h \le 1.0$ (Component Located at Roof or below) $a_p = 2.5$ (Component Amplification Factor) $R_p = 2.0$ (Response Modification coefficient) $I_p = 1.5$ (Component Importance Factor) Ω_0 (Overstrength Factor) *** **** $\Omega_0 = 1.0$ for VIWR attachment to steel supports (steel connection) $\Omega_0 = 2.0$ for VIWR attachment to concrete supports
 - Note1: Overstrength factor (Ω_0) of 2.0 was applied to sample calculation herein to illustrate VIWR demands under a conservative overstrength factor for a steel connection BY-Leffrey Kikumoto
 - 3. Strength and Stiffness for CalDyn type CQA Vibration Isolator with Restraints (VIWRs) are applicable to any z/h & Sps ≤ 2.0, subject to project specific review and OSHPD approval of supports and attachments design. <u>Registered Design Professional (RDP)</u> shall coordinate with CalDyn in selection of VIWRs.
 - 4. The Structural Engineer of Record (SEOR) shall verify the adequacy of the supporting structure and shall be responsible for obtaining project specific OSHPD approval for structures, components, supports and attachments.

VIWR DESIGN PROCEDURE EXAMPLE

1) DETERMINE 'G' FORCE:

LATERAL F_{ph} & VERTICAL F_{pv} USING ASCE 7-16, CHAPTER 13 NON-STRUCTURAL COMPONENTS, SITE SPECIFIC S_{DS} (5% DAMPED DESIGN SPECTRAL RESPONSE ACCELERATION AT SHORT PERIODS) AND z/h (HEIGHT IN STRUCTURE OF COMPONENT / AVERAGE ROOF HEIGHT).

EXAMPLE: DETERMINE THE "g" FORCES FOR EXAMPLE LOREN COOK FAN MODEL # CPV 60

Code: CBC 2022, ASCE 7-16

OPM-0401: Reviewed for Code Compliance by Jeffrey Kikumoto

Office (323) 223-3882

Website: Caldyn.com

6/5/2023

Page 4 of 14 6 of 16

2) Determine dimensions & operating weight from Manufacturer's literature.

Example: Loren Cook Fan MODEL# CPV 60

- W_p = Operating Weight = 250 lbs
- $\mathbf{d} = VIWR$ Mounting Depth = 24 in.
- $\mathbf{w} = \text{VIWR}$ Mounting Width = 33.4 in.
- \mathbf{h} = Vertical Center of Gravity = 18 in.
- \mathbf{R} = VIWR Quantity along Width = 2
- $\mathbf{Q} = VIWR$ Quantity along Depth = 2

N = Total VIWR Quantity = 4

Mode Line	Model	Dir	Weight		
		Depth	Width	Height	(lb)
	60	22.3	25.6	36.8	250
	70	22.3	25.6	36.8	250
CPV	80	22.3	25.6	36.8	250
(Belt Drive)	100	22.3	25.6	36.8	250
	120	24.8	29.6	36.8	265
	135	26.7	31.7	37.8	297

TABLE 1: Loren Cook Fan information

NOTES:

- 1) Equipment data from OSP-0102-10.
- 2) Equipment models listed in Table 1 represent Loren Cook Fans that could be supported on CQA Style V VIWRS.

06/05/2023

CODE

3) Equipment depth and width dimensions do not correspond to w & d VIWR placement dimensions as noted on page 5 of this report.

3) Determine seismic forces T_u & V_u using the sum of the moments overturning method.

APPLIED SEISMIC FORCE / CALCULATION:

 $z / h \le 1.0; S_{DS} = 2.0$

 F_{ph} = Applied Lateral Seismic Force = (F_p / W_p) * W_p = 4.5 * 250 lbs = 1,125 lbs

 F_{pv} = Applied Component of Seismic Force = 0.2 * S_{ds} * W_p = 0.2 * 2.0 * 250 lbs = 100 lbs

 $(0.9 * W_p) - E_V = (0.9 * 250) - 100 = 125$ lbs $(1.2 * W_p) + E_V = (1.2 * 250) + 100 = 400$ lbs

CALCULATE PULLOUT LOAD DUE TO OVERTURNING (WORST CASE @ VIWR):

 $M_{oT} = Overturning Moment = (F_{ph} * h_{cg}) = 1,125 lbs * 18 inch = 20,250 lb-in.$

 $T_{ux} = Pullout Load Demand (about Y-Y) = (M_{OT}) / (w * Q) = (20,250 \text{ lb-in}) / (33.4 \text{ in } * 2) = 303 \text{ lbs}$

 T_{uy} = Pullout Load Demand (about X-X) = (M_{OT}) / (d * R)

= (20,250 lb-in) / (24 in * 2) = 422 lbs

CALCULATE SHEAR LOAD (WORST CASE):

 V_U = APPLIED LATERAL SEISMIC FORCE / TOTAL VIWR QUANTITY = = (F_{ph} / N) = 1,125 lbs / 4 = 281 lbs

T_u & V_u with orthogonality effect (ASCE 7-16 Section 13.3-1):

$$\begin{split} \textbf{T}_{\text{UO}} &= [422 + (0.3 * 303)] * \Omega_{\text{o}} = 1026 \text{ lbs.} \\ \textbf{V}_{\text{UO}} &= [1.3 * 281] * \Omega_{\text{o}} = 731 \text{ lbs.} \end{split}$$

LRFD TENSION & SHEAR using 0.9D-1.0E :

 $\begin{array}{l} \textbf{T}_{\textbf{Uxt}} = -303 \, ^{*} \Omega_{o} \, + \, (125 \, / \, 4) = -575 \, \text{lbs}; & \textbf{V}_{\textbf{U}} = 281 \, ^{*} \Omega_{o} = 562 \, \text{lbs} \\ \textbf{T}_{\textbf{Uyt}} = -422 \, ^{*} \Omega_{o} \, + \, (125 \, / \, 4) = -813 \, \text{lbs}; & \textbf{V}_{\textbf{U}} = 281 \, ^{*} \Omega_{o} = 562 \, \text{lbs} \\ \textbf{T}_{\textbf{Uot}} = -513 \, ^{*} \Omega_{o} \, + \, (125 \, / \, 4) = -995 \, \text{lbs}; & \textbf{V}_{\textbf{UO}} = 1.3 \, ^{*} 281 \, ^{*} \Omega_{o} = 731 \, \text{lbs} \end{array}$

LRFD TENSION & SHEAR using 1.2D-1.0E :

 $\begin{aligned} \mathbf{T}_{\mathsf{Uxc}} &= 303 * \Omega_{\circ} + (400 / 4) = 706 \text{ [bs; } \mathbf{V}_{\mathsf{U}} = 281 * \Omega_{\circ} = 562 \text{ [bs]} \\ \mathbf{T}_{\mathsf{Uyc}} &= 422 * \Omega_{\circ} + (400 / 4) = 944 \text{ [bs; } \mathbf{V}_{\mathsf{U}} = 281 * \Omega_{\circ} = 562 \text{ [bs]} \\ \mathbf{T}_{\mathsf{Uoc}} &= 513 * \Omega_{\circ} + (400 / 4) = 1126 \text{ [bs; } \mathbf{V}_{\mathsf{UO}} = 1.3 * 281 * \Omega_{\circ} = 731 \text{ [bs]} \end{aligned}$

BY: Jeffrey Kikumoto

4) Select VIWR size based on seismic forces T_u & V_u in X, Y & Orthogonal directions (Capacity at 45° is permitted to be used for orthogonal direction) using the interaction graph or equation.

 $T_{UX} - V_U$, $T_{UY} - V_U$, and $T_{UO} - V_{UO}$ all must satisfy the following LRFD Demand to Capacity Ratio (DCR) equation:

 $\begin{array}{l} (T_U \,/\, T_S) + (V_U \,/\, V_S) < 1.0 \\ T_S = LRFD \mbox{ Vertical Seismic Strength Rating in Tables 2 & 3 (on page 10 & 11 of this report) \\ V_S = LRFD \mbox{ Horizontal Seismic Strength Rating in Tables 2 & 3 (on page 10 & 11 of this report) \\ DCR_x = (706 \,/\, 3176) + (562 \,/\, 1983) = 0.51 < 1.0 \\ DCR_Y = (944 \,/\, 3176) + (562 \,/\, 1163) = 0.78 < 1.0 \\ DCR_O = (1126 \,/\, 3176) + (731 \,/\, 1212) = 0.96 < 1.0 \end{array}$

NOTE: $\Omega_o = 2.0$ (a conservative overstrength factor was applied to this sample calculation to verify capacities under more conservative demands).

Table 2: CQA Seismic Capacity (LRFD)

VIWR	Rated Vertical (Z) Seismic Capacity Ibs	Rated Perpendicular (X) Horizontal Seismic Capacity Ibs	Horizontal Seismic	Rated Orthogonal (45° to X-Y) Horizontal Seismic Capacity Ibs
CQA	3,176	1,983	1,163	1,212

CQA STYLE V X, Y, Z & 45° DIRECTIONS

Table 3	3: CQA Stiffn	ess for X, Y,	Z & 45° Direc	ction with the	e weakest sp	ring

CQA-	Rated K1 Stiffness (Ibs/in)	Rated K3 Stiffness (Ibs/in)	Rated K1-K3 Transition Load (Ibs)	Rated K1-K3 Transition Displacement (in.)
X Direction	1,686	2,353	833	0.43
Y Direction	2,411	943	717	0.33
Z Direction	2,918 R	8,583	1,150	0.33
45° Direction	2,119	1,312	500	0.29

5) Select Spring Capacity using the spring Selection Procedure.

Project Name:	Example
Equipment Mark:	Example
Equipment Make / Model:	Loren Cook Fan / CPV 60
Maximum Weight:	250 lbs
CQA VIWR Selection:	See Table 4 (on page 13)
Average Gravity Load Per VIWR:	75.0 lbs
Number of CQA VIWR:	4
CQA Seismic Capacity:	See Table 2 (on page 10)
CQA X, Y, Z & 45° Stiffness:	See Table 3 (on page 11)

6/5/2023

OPM-0401: Reviewed for Code Compliance by Jeffrey Kikumoto

Page 12 of 14

	CQA VIWR NUMBER	Pounds Theoretical Rated	Design Load Ratings (Ibs)	Theoretical (K1) Spring Rate (Ibs/in.)	Spring Arrangement	
	CQA-F59	59	47	27	Single Spring	
7	CQA-F83	83	66	43	Single Spring	
	CQA-F120	120	96	56	Single Spring	
	CQA-F155	155	124	70	Single Spring	
	CQA-F195	195	156	85	Single Spring	
	CQA-F236	236	177	106	Double Spring	
	CQA-F300	300	R 225	JF 139	Double Spring	

Table 4: CQA VIWR Gravity Load Rating

6) Instructions For Use:

- Add 20% to the weight of the Non-Structural Component & divide by the number of VIWRs to get average weight per VIWR.
- Select Spring number closest to average weight per VIWR based on theoretical rating.
 DATF: 06/05/2023
- Enter as CQA-F83 VIWR Selection.
 Note: CQA VIWR Number selection noted in Table 4 pertains to sample
 calculation only

A BUILDING CO

5572 Alhambra Ave. Los Angeles, CA 90032 Office (323) 223–3882 Website: Caldyn.com

OPM-0401

Loren Cook Company CPV60 to CPV135 HVAC Fans w/ CalDyn CQA Vibration Isolator With Restraint (CQA Style V VIWR)

Code: CBC 2022, ASCE 7-16

OPM-0401: Reviewed for Code Compliance by Jeffrey Kikumoto

15 of 16 13 of 14

VIWR INSTALLATION INSTRUCTIONS

6/5/2023

OPM-0401: Reviewed for Code Compliance by Jeffrey Kikumoto

Page 14 of 14