

2025 CBC Changes to HCAI Preapprovals

Timothy Piland, Senior Structural Engineer April 9th, 2025

Proudly Partnered with AIA California

Attendees will earn 1.5 AIA LU/HSW for attending this presentation live. AIA CA will submit you for AIA credit within 10 days of the presentation.

AIA Continuing Education Provider

2025 CBC Changes to HCAI Preapprovals (ASCE 7-22 Chapter 13 Nonstructural Components)

ASCE 7-22 will be incorporated into the 2025 CBC, with significant changes to the seismic horizontal nonstructural component lateral forces within Chapter 13.

Specifically, Eqn 13.3-1 (F_P), Table 13.5-1 Architectural Components and Table 13.6-1 Mechanical and Electrical Components.

The changes reflect a more refined approach to the behavioral response of nonstructural components during major seismic events, via testing and the collaborative efforts of ASCE 7-22 Seismic Committee.

OFFICE USE ONLY

APPLICATION #: OPM-0669

Type: X New

DEPARTMENT OF HEALTH CARE ACCESS AND INFORM	ATION
FACILITIES DEVELOPMENT DIVISION	

APPLICATION FOR HCAI PREAPPROVAL OF MANUFACTURER'S CERTIFICATION (OPM)

HCAI Preapproval of Manufacturer's Certification (OPM)

Renewal/Update

OFFICE OF STATEWIDE HEALTH PLANNING AND DEVELOPMENT FACILITIES DEVELOPMENT DIVISION

APPLICATION FOR OSHPD SPECIAL SEISMIC	OFFICE USE ONLY				
CERTIFICATION PREAPPROVAL (OSP)	APPLICATION #: OSP-0699				
OSHPD Special Seismic Certification Preapproval (OSP)					
Type: X New Renewal					

2025 CBC Changes to HCAI Preapprovals (ASCE 7-22 Chapter 13 Nonstructural Components)

Webinar will review the new horizontal seismic design force, F_P (eqn. 13.3-1), within ASCE 7-22 Chapter 13, used in existing, renewal, and new HCAI preapprovals, focusing on the *DPOR responsibilities* by the:

- 1) DPOR for preapproval submittals (*Preapproval DPOR*) with added focus on preapproval-project efficiency
- 2) DPOR for preapproval project use (*Project DPOR*)
- Changes to the seismic design force, F_p used in eqn. 13.3-1 from ASCE 7-16 => 7-22
- Review of new variables introduced within eqn. 13.3-1
- ASCE 7-16 => 7-22 F_P comparison plots for components in Tables 13.5-1 & 13.6-1
- Application of horizontal seismic design force F_p for both preapproval submittals and projects use
- OPM and OSP preapproval examples and DPOR responsibilities

The OSHPD preapproval programs are defined on the HCAI website within PIN 62 and PIN 55 for the OPM and OSP programs, respectively.

Adaptation of the ASCE 7-22 Nonstructural Component to the Preapproval Programs; OPM/OSP

ASCE 7-22 Seismic Design Force,
$$\mathbf{F}_{\mathbf{P}}$$
:
 $F_p = 0.4S_{DS}I_pW_p \left[\frac{H_f}{R_{\mu}}\right] \left[\frac{C_{AR}}{R_{po}}\right]$ (13.3-1)

Citing Sir Issac Newton's *2nd Law of Motion*: Force = Mass times Acceleration

F = m * a where:

tural Component to thePreapproval capacities for F_p , can no longer be
determined by simply specifying S_{DS} and z/h!Per ASCE 7-22, S_{DS} and H_f/R_{μ} are now required.
OSHPD, however, decided to extend the requirements
to the mass coefficient (accelerations).

$$\frac{\text{Note:}}{C_{P}} \text{ for the OPMs} \neq \text{OSPs} \Longrightarrow C_{Pm} \neq C_{Ps}$$

$$OPM \quad C_{Pm} \sim \text{analytical value (eqn 13.3-1)}$$

$$OSP \quad C_{Ps} \sim \text{tested spectral acceleration value (C_{AR}, R_{po}, \text{and } I_{P} = 1)}$$

 $F_p = \frac{C_p}{W_p} = F_p / W_p = \frac{C_p}{W_p}$ where:

 $C_P = mass \ coefficient$ (accelerations), referenced as the <u>component design force coefficient</u>

For OPMs... the <u>component design force coefficient</u>, $C_{Pm} = 0.4S_{DS}I_p \left[\frac{H_f}{R_{\mu}}\right] \left[\frac{C_{AR}}{R_{po}}\right]$; Analytical \checkmark (supports and attachments)

For OSPs... the *tested component design force coefficient*,

 $C_{Ps} = \text{RRS}$ accelerations (A_{FLX-H} , A_{RIG-H} , A_{FLX-V} , A_{RIG-V}); Tested Spectral Accelerations $\sqrt{}$

ASCE 7-16 vs 7-22 Nonstructural Horizontal Seismic Component Equation Comparison

ASCE 7-16 vs 7-22 Nonstructural Component Equation Comparison

 F_p = Horizontal seismic component design force equation comparison (*changes*)

$$F_{p} = \frac{0.4 a_{p} S_{DS} W_{p}}{\left(\frac{R_{p}}{I_{p}}\right)} \left(1 \pm 2\frac{z}{h}\right) \text{ ASCE 7-16}$$

$$F_{p} = 0.4 S_{DS} I_{p} W_{p} \left[\frac{H_{f}}{R_{\mu}}\right] \left[\frac{C_{AR}}{R_{po}}\right] \text{ ASCE 7-22}$$

$$a_{p} = \text{Component amplification factor}$$

$$R_{p} = \text{Component response modification factor}$$

$$\left(1 + 2\frac{z}{h}\right) z = \text{height in structure of point of attachment}$$

$$H_{f} = \text{Force amplification as a function of height of structure}$$

For all practical purposes:

- $a_p \approx C_{AR}$ as both variables possibly amplify the component response (ability to achieve resonance) Where: C_{AR} = Peak Component Acceleration/Peak Floor Acceleration (PCA/PFA) (component flexibility, ratio of component to building period, and ductility)
- $R_p \approx R_{po}$ as both variables possibly reduce the component response Where: R_{po} = Component inherent overstrength

ASCE 7-16 vs 7-22 Nonstructural Component Equation Variables

 H_f = Force amplification as a function of height *(New)* Where: H_f is based upon the Ratio of *Peak Floor Acceleration / Peak Ground Acceleration (PFA)/(PGA)*.

 $H_f = 1 + a_1 \left(\frac{z}{h}\right) + a_2 \left(\frac{z}{h}\right)^{10}$ (13.3-4) $H_f \approx 2.46 \ (T_a = 2; a_1 = 0.5; a_2 = 0.96) \ (based upon building period = 2s.)$

$$H_f = 1 + 2.5 \left(\frac{z}{h}\right)$$
 Default

(13.3-5) $H_{fMAX} = 3.5$ <u>At or below grade:</u> $H_{fMIN} = 1$

Above Grade:

Where:

 $a_1 = 1/T_a \le 2.5$

 $a_2 = 1 - 0.4 / T_a^2 \ge 0$

z = Height above the base of structure to component attachment

h = Average roof height of structure with respect to the base

 T_a = Lowest approximate fundamental period of the supporting building or nonbuilding structure in either orthogonal direction. For structures with combinations of seismic force- resisting systems (SFRSs), the SFRS that produces the lowest value of T_a shall be used.

F_p is *now* a function of the Building Seismic Force Resisting Systems (SFRS)

 $\boldsymbol{F_p} = 0.4S_{DS}I_pW_p \left[\frac{H_f}{\boldsymbol{R_\mu}}\right] \left[\frac{C_{AR}}{R_{po}}\right]$

 $R_{\mu} = [1.1 R/(I_e \Omega_0)]^{1/2} \ge 1.3$ (13.3-6)

 R_{μ} = Structure *ductility* reduction factor, based upon the SFRS

R = Response modification coefficient, SFRS in Table 12.2-1, 15.4-1, or 15.4-2

 I_e = Importance Factor

 Ω_0 = Overstrength factor as defined in Table 12.2-1, 15.4-1, or 15.4-2

Concrete Shear wall

Moment Frame

Steel Braced Frame

Effect of building stiffness on PCA/PGA for instrumental recordings

ASCE 7-16 vs 7-22 Nonstructural Component Equation Variables

 R_{μ} = Structure Ductility Reduction Factor (*New*)

Where: R_{μ} *is based upon the building's ductility* within the Seismic Lateral Force System *(SFRS)*

$$\left[\frac{H_f}{R_{\mu}}\right] \qquad R_{\mu} = \left[1.1 \frac{R}{I_e \Omega_0}\right]^{1/2} \ge 1.3 \quad (13.3-6)$$

Where:

R = Response modification factor $\Omega_0 = Overstrength factor$ (both from Tables 12.2-1, 15.4-1, or 15.4-2)

<u>Above grade:</u> $R_{\mu MAX} = 1.71$ (only for a single SFRS within Table 12.2-1) $R_{\mu MIN} = 1.30$ (min within Table 12.2-1 or when SFRS is not listed or specified)

 $\frac{At \text{ or below grade:}}{R_{\mu MIN}} = 1.0$

Resulting in:

 $\left[\frac{H_f}{R_{\mu}}\right]_{MAX} = 2.69 \text{ (with } H_{f \text{ MAX}} / R_{\mu \text{ MIN}} \text{) (Above grade)}$

 $\left[\frac{H_f}{R_{\mu}}\right]_{MIN} = 1.0 \quad (\text{At or below grade})$

<u>As a minimum</u>, all preapprovals must be certified for either one or both conditions, dependent upon the nonstructural component.

$R\mu$ as a function of SFRS within Table 12.2-1

	Seismic Force-Resisting System	ASCE 7 Section Where Detailing Requirements Are Specified	Response Modi fication Coefficient, R °	Overstrength Factor, Ω ₀ ^b	Deflection Amplification Factor, C _d ^c	R _µ
A. BH	ARING WALL SYSTEMS				Î	
A.1	Special reinforced concrete shear walls ^{g,h}	14.2	5	2.5	5	1.30
A.3	Ordinary reinforced concrete shear walls ^g	14.2	4	2.5	4	1.30
A.4	Detailed plain concrete shear walls ^g	14.2	2	2.5	2	1.30
A.5	Ordinary plain concrete shear walls ²	14.2	1.5	2.5	1.5	1.30
A.6	Intermediate precast shear walls ^g	14.2	4	2.5	4	1.30
A.7	Ordinary precast shear walls ²	14.2	3	2.5	3	1.30
A.8	Special reinforced masonry shear walls	14.4	5	2.5	3.5	1.30
A.9	Intermediate reinforced masonry shear walls	14.4	3.5	2.5	2.25	1.30
A.10	Ordinary reinforced masonry shear walls	14.4	2	2.5	1.75	1.30
A.11	Detailed plain masonry shear walls	14.4	2	2.5	1.75	1.30
A.12	Ordinary plain masonry shear walls	14.4	1.5	2.5	1.25	1.30
A.13	Prestressed masonry shear walls	14.4	1.5	2.5	1.75	1.30
A.14	Ordinary reinforced AAC masonry shear walls	14.4	2	2.5	2	1.30
A.15	Ordinary plain AAC masonry shear walls	14.4	1.5	2.5	1.5	1.30
A.16	Light-frame (wood) walls sheathed with wood structural panels rated for shear resistance	14.5	6.5	3	4	1.30
A.17	Light-frame (cold-formed steel) walls sheathed with wood structural panels rated for shear resistance or steel sheets	14.1	6.5	3	4	1.30
A.18	Light-frame walls with shear panels of all other materials	14.1 and 14.5	2	2.5	2	1.30
A.19	Light-frame (cold-formed steel) wall systems using flat strap bracing	14.1	4	2	3.5	1.30
A.20	Cross-laminated timber shear walls	14.5	3	3	3	1.30
A.21	Cross-laminated timber shear walls with shear resistance	14.5	4	3	4	1.30

$F_{p} = 0.4S_{DS}I_{p}W_{p} \left[\frac{H_{f}}{R_{\mu}}\right] \left[\frac{C_{AR}}{R_{po}}\right]; \ R_{\mu} = [1.1R(I_{e}\Omega_{0})]^{1/2} \ge 1.3 \quad (13.3-6)$

B. BI	ILDING FRAME SYSTEMS					
B 3	Steel ordinary concentrically braced frames	14.1	3 25	2	3 25	1 30
B.4	Special reinforced concrete shear walls ^{g,h}	14.2	6	2.5	5	1.33
B.6	Ordinary reinforced concrete shear walls ^g	14.2	5	2.5	4.5	1.30
B.7	Detailed plain concrete shear walls ^g	14.2 and 14.2.2.7	2	2.5	2	1.30
B.8	Ordinary plain concrete shear walls ^g	14.2	1.5	2.5	1.5	1.30
B.9	Intermediate precast shear walls ^g	14.2	5	2.5	4.5	1.30
B.10	Ordinary precast shear walls ^g	14.2	4	2.5	4	1.30
B.12	Steel and concrete composite special concentrically braced frames	14.3	5	2	4.5	1.35
B.13	Steel and concrete composite ordinary braced frames	14.3	3	2	3	1.30
B.14	Steel and concrete composite plate shear walls	14.3	6.5	2.5	5.5	1.38
B.15	Steel and concrete composite special shear walls	14.3	6	2.5	5	1.33
B.16	Steel and concrete composite ordinary shear walls	14.3	5	2.5	4.5	1.30
B.17	Special reinforced masonry shear walls	14.4	5.5	2.5	4	1.30
B.18	Intermediate reinforced masonry shear walls	14.4	4	2.5	4	1.30
B.19	Ordinary reinforced masonry shear walls	14.4	2	2.5	2	1.30
B.20	Detailed plain masonry shear walls	14.4	2	2.5	2	1.30
B.21	Ordinary plain masonry shear walls	14.4	1.5	2.5	1.25	1.30
B.22	Prestressed masonry shear walls	14.4	1.5	2.5	1.75	1.30
B.25	Light-frame walls with shear panels of all other materials	14.1 and 14.5	2.5	2.5	2.5	1.30
С. М	O MENT-RESISTING FRAME SYSTEMS					
C.2	Steel special truss moment frames	14.1	7	3	5.5	1.31
C.3	Steel intermediate moment frames	12.2.5.7 and 14.1	4.5	3	4	1.30
C.4	Steel ordinary moment frames	12.2.5.6 and 14.1	3.5	3	3	1.30
C.6	Intermediate reinforced concrete moment frames	14.2	5	3	4.5	1.30
C.7	Ordinary reinforced concrete moment frames	14.2	3	3	2.5	1.30
C.9	Steel and concrete composite intermediate moment	14.3	5	3	4.5	1.30
C.10	Steel and concrete composite partially restrained moment frames	14.3	6	3	5.5	1.30
C.11	Steel and concrete composite ordinary moment frames	14.3	3	3	2.5	1.30
C.12	Cold-formed steel—special bolted moment frame ⁿ	14.1	3.5	3	3.5	1.30

D. DU CAP. PRES	JAL SYSTEMS WITH SPECIAL MOMENT FRAMES ABLE OF RESISTING AT LEAST 25% OF CRIBED SEISMIC FORCES	12.2.5.1				
D.5	Ordinary reinforced concrete shear walls ^g	14.2	6	2.5	5	1.33
D.7	Steel and concrete composite special concentrically braced frames	14.3	6	2.5	5	1.33
D.10	Steel and concrete composite ordinary shear walls	14.3	6	2.5	5	1.33
D.11	Special reinforced masonry shear walls	14.4	5.5	3	5	1.30
D.12	Intermediate reinforced masonry shear walls	14.4	4	3	3.5	1.30
E. DUAL SYSTEMS WITH INTERMEDIATE MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES		12.2.5.1				
E.1	Steel special concentrically braced frames ^p	14.1	6	2.5	5	1.33
E.2	Special reinforced concrete shear walls ^{g,h}	14.2	6.5	2.5	5	1.38
E.3	Ordinary reinforced masonry shear walls	14.4	3	1.30		
E.4	Intermediate reinforced masonry shear walls	14.4	3.5 3 3		1.30	
E.5	Steel and concrete composite special concentrically	14.3	5.5	2.5	4.5	1.30
E.6	Steel and concrete composite ordinary braced frames	14.3	3.5	2.5	3	1.30
E.7	Steel and concrete composite ordinary shear walls	14.3	5	3	4.5	1.30
E.8	Ordinary reinforced concrete shear walls ^g	14.2	5.5	2.5	4.5	1.30
F. SH O RD FRAM SHE/	IEAR WALL-FRAME INTERACTIVE SYSTEM WITH INARY REINFORCED CONCRETE MOMENT MES AND ORDINARY REINFORCED CONCRETE R WALLS	12.2.5.8 and 14.2	4.5	2.5	4	1.30
G. C. CON	ANTILEVERED COLUMN SYSTEMS DETAILED TO FORM TO THE REQUIREMENTS FOR:	12.2.5.2				
G.1	Steel special cantilever column systems	14.1	2.5	2.5	2.5	1.30
G.2	Steel ordinary cantilever column systems	14.1	1.25	1.25	1.25	1.30
G.3	Special reinforced concrete moment frames ^m	12.2.5.5 and 14.2	2.5	2.5	2.5	1.30
G.4	Intermediate reinforced concrete moment frames	14.2	1.5	1.5	1.5	1.30
G.5	Ordinary reinforced concrete moment frames	14.2	1	1.25	1	1.30
G.6	Timber frames	14.5	1.5	1.5	1.5	1.30
H. ST SEISI COL	FEEL SYSTEMS NOT SPECIFICALLY DETAILED FOR MIC RESISTANCE, EXCLUDING CANILEVER UMN SYSTEMS	14.1	3	3	3	1.30

$R\mu$ as a function of SFRS within Table 12.2-1

$F_{p} = 0.4S_{DS}I_{p}W_{p} \left[\frac{H_{f}}{R_{\mu}}\right] \left[\frac{C_{AR}}{R_{po}}\right]; \ R_{\mu} = [1.1R(I_{e}\Omega_{0})]^{1/2} \ge 1.3 \quad (13.3-6)$

Seismic Force-Resisting System		ASCE 7 Section Where Detailing Requirements Are Specified	Response Modi fication Coefficient, <i>R</i> ^a	Overstrength Factor, Ω_0^{b}	Deflection Amplification Factor, C _d ^c	R _µ
B. BI	JILDING FRAME SYSTEMS					
B.2	Steel special concentrically braced frames	14.1	6	2	5	1.48
B.23	Light-frame (wood) walls sheathed with wood structural panels rated for shear resistance	14.5	7	2.5	4.5	1.43
B.24	Light-frame (cold-formed steel) walls sheathed with wood structural panels rated for shear resistance or steel sheets	14.1	7	2.5	4.5	1.43
C. MO MENT-RESISTING FRAME SYSTEMS						
C.1	Steel special moment frames	14.1 and 12.2.5.5	8	3	5.5	1.40
C.5	Special reinforced concrete moment frames ^m	12.2.5.5 and 14.2	8	3	5.5	1.40
C.8	Steel and concrete composite special moment frames	12.2.5.5 and 14.3	8	3	5.5	1.40
D. DUAL SYSTEMS WITH SPECIAL MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES		12.2.5.1				
D.2	Steel special concentrically braced frames	14.1	7	2.5	5.5	1.43
D.3	Special reinforced concrete shear walls ^{g,h}	14.2	7	2.5	5.5	1.43
D.8	Steel and concrete composite plate shear walls	14.3	7.5	2.5	6	1.48
D.9	Steel and concrete composite special shear walls	14.3	7	2.5	6	1.43

$R\mu$ as a function of SFRS within Table 12.2-1

 $F_{p} = 0.4S_{DS}I_{p}W_{p} \left[\frac{H_{f}}{R_{\mu}}\right] \left[\frac{C_{AR}}{R_{po}}\right]; \ R_{\mu} = [1.1R(I_{e}\Omega_{0})]^{1/2} \ge 1.3 \quad (13.3-6)$

R_{μ} for different SFRS $1.50 \le R_{\mu}$

Seismic Force-Resisting System		ASCE 7 Section Where Detailing Requirements Are Specified	Response Modi fication Coefficient, <i>R</i> ^a	Overstrength Factor, Ω_0^{b}	Deflection Amplification Factor, <i>C</i> _d ^c	R _µ
A. BE	EARING WALL SYSTEMS					
A.2	Reinforced concrete ductile coupled walls ^q	14.2	8	2.5	8	1.53
3. BI	UILDING FRAME SYSTEMS					
B. 1	Steel eccentrically braced frames	14.1	8	2	4	1.71
B.5	Reinforced concrete ductile coupled walls ^q	14.2	8	2.5	8	1.53
B.11	Steel and concrete composite eccentrically braced frames	14.3	8	2.5	4	1.53
B.26	Steel buckling-restrained braced frames	14.1	8	2.5	5	1.53
B. 27	Steel special plate shear walls	14.1	7	2	6	1.60
B.28	Steel and concrete coupled composite plate shear walls	14.3	8	2.5	5.5	1.53
D. DUAL SYSTEMS WITH SPECIAL MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES		12.2.5.1				
D.1	Steel eccentrically braced frames	14.1	8	2.5	4	1.53
D.4	Reinforced concrete ductile coupled walls ^q	14.2	8	2.5	8	1.53
D.6	Steel and concrete composite eccentrically braced frames	14.3	8	2.5	4	1.53
D.13	Steel buckling-restrained braced frames	14.1	8	2.5	5	1.53
D.14	Steel special plate shear walls	14.1	8	2.5	6.5	1.53
D.15	Steel and concrete coupled composite plate shear walls	14.3	8	2.5	5.5	1.53

ASCE 7-16 vs 7-22 Nonstructural Component Table Comparisons

Partial Table 13.6-1 Mechanical and Electrical Components comparison 7-16 => 7-22

(changes are also within Architectural Components Table 13.5-1)

Table 13.6-1	Seismic	Coefficients	for	Mechanical	and	Electrical	Component	s
--------------	---------	--------------	-----	------------	-----	------------	-----------	---

Mechanical and Electrical Components	$a_p{}^a$	$R_p^{\ b}$
Air-side HVAC, fans, air handlers, air conditioning units, cabinet heaters, air distribution boxes, and other mechanical components constructed of sheet metal framing	2.5	6.0
Wet-side HVAC, boilers, furnaces, atmospheric tanks and bins, chillers, water heaters, heat exchangers, evaporators, air separators, manufacturing or process equipment, and other mechanical components constructed of high-deformability materials	1.0	2.5

Table 13.6-1. Seismic Coefficients for Mechanical and Electrical Components.

Where: The *addition of* $C_{AR} \leq grade \& > grade$ is based on the

component amplification at grade being typically < component amplification within a building

ASCE 7-22 Nonstructural Component Table 13.6-1 Additions

New additions to ASCE 7-22 Table 13.6-1 Mechanical and Electrical Components

A new separate section for *component supports (>24")* and *distributions supports* have been added to Table 13.6-1.

Table 13.6-1. Seismic Coefficients for Mechanical and Electrical Components.

NA

1.4

1.8

2.2

1.8

1.8

	Gan Supported at above grade		
EQUIPMENT SUPPOR	T STRUCTURES AND PL	ATFORMS	
Support structures and pla	tforms where $T_p/T_a < 0.2$, or	$T_p \le 0.06$ s, per Section	on 13.6.4.6
Seismic force-resisting sys	stems with $R > 3$		
Seismic force-resisting sys	stems with $R \le 3$		
Other systems	- set		
DISTRIBUTION SYSTE	EM SUPPORTS		
Tension-only and cable br	acing	a summer	
Cold-formed steel rigid br	acing		
Hot-rolled steel bracing			
Other rigid bracing		12/100	

Lateral resistance provided by rods in flexure

Vertical cantilever supports such as pipe tees and moment frames above and supported by a floor or roof

1.5

1.5

1.5

1.5

1.5 1.5 1.5 1.5

1.5

1.5

1.4

2.2

2.8

2.2

2.2

ASCE 7-22 Nonstructural Component Table 13.6-1 Support Structure / Platform Definitions

New additions to ASCE 7-22 Table 13.6-1 Mechanical and Electrical Components ~ cont'd

What constitutes Equipment Support Structures and Platforms?

Per the ASCE 7-22 Commentary §C13.6.4

Equipment supports are classified into *three (3)* groups (distribution supports are not equipment supports)

• *Integral(1) Supports* ≤ 24" (NOT an Equipment Support)

Supports which are directly connected to both the component and the attachment to the structure or foundation *up to 24 inches* in length (height); i.e., lugs, skirts, saddles, and short legs.

• Equipment Support Structures(2) and Platforms(3) > 24"

Assemblies of structural members that provide support for a piece of equipment or system, including moment frames, braced frames, skids, or legs greater than 24 inches.

The commentary also delineates equipment Supports from equipment Platforms, with Platforms supporting multiple components or systems. The differences are inconsequential as both equipment Supports and Platforms have the same C_{AR} lateral coefficients.

ASCE 7-22 Nonstructural Component Support Structures / Platforms

New additions to ASCE 7-22 Table 13.6-1 Mechanical and Electrical Components ~ cont'd

ASCE 7-22 Nonstructural Component Table 13.6-1 Support/Platform Design Requirements

New additions to ASCE 7-22 Table 13.6-1 Mechanical and Electrical Components ~ cont'd

	C_{A}	1R	R_{PO}
*EQUIPMENT SUPPORT STRUCTURES AND PLATFORMS	\leq grd	> grd	
Support structures and platforms where $T_p/T_a < 0.2$, or $T_p \le 0.06$ s, per Section 13.6.4.6	NA	1	1.5
Seismic force-resisting systems with $R > 3$ (from Table 12.2-1, 15.4-1)	1.4	1.4	1.5
Seismic force-resisting systems with $R \leq 3$ (from Table 12.2-1, 15.4-1)	1.8	2.2	1.5
Other systems	2.2	2.8	1.5

where:

 \rightarrow $T_p =$ Fundamental period of the component, <u>including the support/platform and attachments (per Section 13.3.3)</u>

(i.e., the <u>component assembly</u>).

 T_a = Approximate fundamental period of the building as determined in Section 12.8.2

13.3.1.3 Component Resonance Ductility Factor, C_{AR}

The component resonance ductility factor (C_{AR}) for mechanical and electrical equipment mounted on the equipment support structures or platforms shall not be less than the component resonance ductility factor **used** for the equipment support structure or platform itself.

Translation:

If a component is attached to a support > 24", the *component* $C_{AR} \ge support C_{AR}$.

ASCE 7-22 Nonstructural Component Table 13.6-1 Support/Platform Design Requirements

<u>Period Determination</u> of Component and Component Assemblies

 T_p = Fundamental period of the component, *including the support/platform and its attachment per Section 13.3.3* (i.e., *the <u>component assembly</u>*).

Component period, T_p is not a function, nor is related to C_{AR} (component resonance ductility factor - ability to achieve resonance).

§13.3.3 **Component Period** states in part... The fundamental period, $\mathbf{T}_{\mathbf{p}}$... shall be determined by... $T_p = 2\pi \sqrt{\frac{W_p}{K_p g}}$ Further stating: ...**provided** the component, supports, and attachment can be reasonably represented analytically <u>by a simple single-degree-of-freedom spring-and-mass system</u> (active and energized systems typically cannot be modeled)

The §C13.3.3 (commentary) states ... Determination of the fundamental period of an architectural, mechanical, or electrical component <u>using analytical, or test methods is often difficult</u> and, if not properly performed, <u>may yield incorrect results</u>.

Further stating: ...A resonant frequency search procedure, such as that given in the *ICC-ES AC156*..., may be used to identify the dominant modes of vibration of a component.

Note: Supports used during Special Seismic Certification (SSC) of active or energized components <u>are deemed</u> to meet the lateral force requirements for equipment Supports/Platforms. The *attachments*, however, <u>must still be designed</u> according to Table 13.6-1.

ASCE 7-22 Nonstructural Component Support/Platform

	C_{A}	R	R_{PO}
EQUIPMENT SUPPORT STRUCTURES AND PLATFORMS ~ cont'd.	≤grd	> grd	
¹ Support structures and platforms where ${}^{1a}T_p/T_a < 0.2$, or ${}^{1b}T_p \leq 0.06$ s, per Section 13.6.4.6	NA^*	1	1.5
² Seismic force-resisting systems with $R > 3$ (must conform to Table 12.2-1, 15.4-1)	1.4	1.4	1.5
² Seismic force-resisting systems with $R \leq 3$ (must conform to Table 12.2-1, 15.4-1)	1.8	2.2	1.5
³ Other systems (none of the above)	2.2	2.8	1.5

*must use one of the other 3 remaining supports conditions.

Clarification:

For Components on Equipment Supports or Platforms

1

^{1a}Component is *within a building/nonbuilding structure*, and T_p/T_a < 0.2 (i.e., <u>component assembly period</u> < 20% building period) the component assembly C_{AR}=1, R_p=1.5, using a support/platform designed using a Chp 14 material standard.
 ^{1b}Component is *within a building/nonbuilding structure*, the component assembly is rigid (T_p ≤ 0.06 s), C_{AR}=1, R_p=1.5, using a support/platform designed using a Chp 14 material standard.

²To date, equipment supports/platforms designed using an SFRS from Tables 12.2-1, and 15.4-1 are rarely used (typically project specific).

³Component is *flexible* ($T_p > 0.06 \text{ s}$), regardless of the Equipment Support or Platform stiffness, *the entire component assembly is flexible and must use* <u>Other Systems</u> with C_{AR}=2.2 or 2.8, R_p=1.5, using a support/platform designed using a Chp 14 material standard.

ASCE 7-22 Nonstructural Component Support Structures / Platforms

Example of a *Flexible* Component on a *Rigid* Support

Support > 24" Support is rigid, Mechanical component is flexible Resulting component assembly $T_p > 0.06$ s.

Component assembly (component, support, and attachments), must be designed to *Other Systems* within Table 13.6-1 *Equipment Supports and Platforms*

May apply to *computer racks, suspended supported components* i.e., *mobile lighting fixtures, X-ray booms*.

 Ω_0

2

2

1.75

1.5

EQUIPMENT SUPPORT STRUCTURES AND PLATFORMS	C _{Al}	R	R _{PO}
Support structures and platforms where $T_p/T_a < 0.2$, or $T_p \le 0.06$ s, per Section 13.6.4.6	NA	1	1.5
Seismic force-resisting systems with $R > 3$	1.4	1.4	1.5
Seismic force-resisting systems with $R \le 3$	1.8	2.2	1.5
Other systems	2.2	2.8	1.5

ASCE 7-22 Nonstructural Component Distribution System Support Design Requirements

New additions to ASCE 7-22 Table 13.6-1 Mechanical and Electrical Components

DISTRIBUTION SYSTEM SUPPORTS*		C_{AR}	
Tension-only and cable bracing	1	1	1.5
Cold-formed steel rigid bracing	1	1	1.5
Hot-rolled steel bracing	1	1	1.5
Other rigid bracing	1	1	1.5
¹ Lateral resistance provided by rods in flexure	1.8	2.2	1.5
¹ Vertical cantilever supports such as pipe tees and moment frames above			
and supported by a floor or roof	1.8	2.2	1.5

¹Other than bracing supports

13.6.4.7 Distribution System Supports

Seismic loads for distribution system supports and trapeze assemblies shall be based on the *weight of the distribution system tributary to the supports*, including fittings and in-line components. See Sections 13.6.5, 13.6.6, and 13.6.7 for specific system requirements.

*Note: The design of distribution system supports is now a separate design from distribution systems.

Facility S_{DS} percent change enforced within ASCE 7-22.

ASCE 7-22 §11.2 Definitions: USGS SEISMIC DESIGN GEODATABASE: The USGS Seismic Design Geodatabase is available at the ASCE 7 Hazard Tool https://asce7hazardtool.online/

Table 13.6-1. Seismic Coefficients for Mechanical and Electrical Components.

Mechanical and Electrical Components Air-side HVACR, fans, air handlers, air conditioning units... Motor control centers, panel boards, switch gear...

On Projects:

Do not simply compare the preapproval S_{DS} to the project S_{DS} !

Other variables, i.e., H_f and R_{μ} may reduce project demands and use of *Hybrid RRS spectrums for OSPs may* allow for project use of preapprovals with higher S_{DS} levels.

Table 13.6-1. Seismic Coefficients for Mechanical and Electrical Components.

Mechanical and Electrical Components Other mechanical or electrical components, i.e., Medical Imaging Equipment

Table 13.6-1. Seismic Coefficients for Mechanical and Electrical Components.

Vibration-Isolated Components and Systems Spring-isolated components and systems and vibration-isolated floors closely restrained using built-in or separate elastomeric snubbing devices or resilient perimeter stops

Internally isolated components and systems

Table 13.6-1. Seismic Coefficients for Mechanical and Electrical Components.

Vibration-Isolated Components and Systems

Components and systems isolated using *neoprene* elements and neoprene isolated floors with built-in or separate *elastomeric snubbing devices* or resilient perimeter stops

Suspended vibration-isolated equipment, including in-line duct devices and suspended internally isolated components

Table 13.6-1. Seismic Coefficients for Mechanical and Electrical Components.

Distribution Systems (copper pipe)

Piping in accordance with ASME B31 (2001, 2002, 2008, 2010), including in-line components with joints made by welding or brazing

Table 13.6-1. Seismic Coefficients for Mechanical and Electrical Components.

Distribution Systems (scheduled pipe)

Piping in accordance with ASME B31, including in-line components, constructed of high-limited-deformability materials, with joints made by threading, bonding, compression couplings, or grooved couplings

Piping and tubing not in accordance with ASME B31, including in-line components, constructed of high-deformability materials, with joints made by welding or brazing

Duct systems, including in-line components, constructed of high-deformability materials, with joints made by welding or brazing

Table 13.6-1. Seismic Coefficients for Mechanical and Electrical Components.

Distribution System Supports (New) Tension-only and cable bracing Cold-formed steel rigid bracing Hot-rolled steel bracing Other rigid bracing

Distribution Systems

Electrical conduit, cable trays, and raceways

Affected OSHPD Preapproval Programs:

OPD-0001 Standard Partition Wall Details* OPD-0002 Standard Suspended Ceiling Details* OPD-0003 Standard Gypsum Board Ceiling Details* OPM – OSHPD Preapproval of Manufacturer's Certification OSP – OSHPD Special Seismic Certification Preapproval

*Efforts to update the inhouse OPD to the current Code are currently underway.

Continued use of the all existing preapprovals, if not expired, are valid, if project demands \leq preapproval capacities.

Existing OPM Preapprovals valid for use on any project, regardless of CBC version (including 2025 CBC).

<u>Renewal and New OPM Preapprovals to the 2025 CBC</u> (ASCE 7-22) requires updated calculations and drawing revisions reflecting the current Code. OPM will have a new updated Application for the 2025 CBC via eSP.

Existing OSP Preapprovals which have not expired, are valid for use on any project, regardless of CBC version (including 2025 CBC). Existing shake table tests are valid on any project (including 2025 CBC).

<u>Renewal and New OSP Preapprovals to the 2025 CBC</u> (ASCE 7-22) requires a new updated Application for the 2025 CBC via eSP.

Existing OPD Preapprovals valid for use on any project, regardless of CBC version (including 2025 CBC).

Preapproval Design Professionals of Record

Although readily apparent, two Design Professionals of Record (DPOR) are involved in preapprovals:

- *1. Preapproval DPOR* who submits a new or renewal preapproval to OSHPD
- 2. *Project DPOR* who submits the preapproval for project use

OPM

888 HHF C.G. WT. = 913 LB (INCLUDES CONTENTS) USE 4- 1/2" # HILTI KB-TZ2 (CS) EXPANSION ANCHORS (MIN. EMBED. (het) = 2.5") 32.4" 5" (MIN) NORMAL WEIGHT CONCRETE 15" 14.5" FLOOR SLAB (BY STRUCTURAL ENGINEER OF RECORD) $(f'_{c} = 3000 \text{ PSI MIN})$ FRONT ELEVATION (WITH CTS SHOWN)

Use of Existing OPM for 2025 CBC

<u>Project DPOR</u> Submittal Responsibilities:

Calculate the OPM design force capacities for both horizontal and vertical, using ASCE 7-16 lateral coefficients

$$F_p = \frac{0.4a_p S_{DS} W_p}{\left(\frac{R_p}{I_p}\right)} \left(1 + 2\frac{z}{h}\right)$$
(13.3-1)

13.3.1.2 Vertical Force: $F_v = 0.2S_{DS} W_p$

Calculate the 2025 CBC project demands, using the ASCE 7-22 lateral force eqn. $F_{p (Project)} demands \leq F_{p (Preapproval)} capacities$

OPM design force coefficients for both the Preapproval and the Project must be listed on:

- 1. Project calculations.
- 2. May be included on the construction drawings (CD), to possibly reduce an Amended Construction Document (ACD) to a Non-Material Alteration (NMA) saving time and costs.

Use of Existing ASCE 7-16 OPM for 2025 CBC

Use of Existing OPM: Example

The OPM *component design force coefficient*, C_P must be determined.

 $F_{p}/W_{p} = C_{Pm}$ where: $C_{Pm} = Component \ design \ force \ coefficient$ $W_{p} = \text{Component operating weight}$ $F_{p}/W_{p} = C_{Pm} = 0.4S_{DS}I_{p}W_{p} \left[\frac{H_{f}}{R_{\mu}}\right] \left[\frac{C_{AR}}{R_{po}}\right]$ $C_{Pm} = 0.4S_{DS}I_{p} \left[\frac{H_{f}}{R_{\mu}}\right] \left[\frac{C_{AR}}{R_{po}}\right]$

<u>Preapproval</u> DPOR Submittal Responsibilities:

Updated ASCE 7-22 drawings, depicting:

- a. C_{Pm} for both F_P/W_P and F_V/W_P , S_{DS} , I_P , C_{AR} , R_{PO} , Ω_0 , H_f , R_μ , *updated or added* anchorage forces ($T_U \& V_U$) specifying Ω_0 , *for each different component configuration*, for ease of use by the *Project DPOR*.
- b. As a minimum, H_f/R_{μ} must be listed for above grade (2.69) and/or at or below grade (1).
 - Specific intermediate building elevations and SFRS only, *are not allowed*, as specific conditions may be overlooked during design / installation or future equipment relocation.
- c. Revise KB-TZ anchors to KB-TZ2 (if applicable)
- d. Update anchorage capacities to latest ICC-ESR version
- e. Update all listed reference Standards
- f. Manufacturer's cut sheets depicting model numbers, configurations, dimensions, wts, etc. used within the OPM.
 - Catalogs may be provided, but only for units included within the preapproval, depicting the above cut sheet requirements. Do not submit entire manufacturer's catalogs for review.
- g. Additional top-sided only post-installed anchor configuration & drawings see next slide

<u>Preapproval DPOR Submittal Responsibilities:</u> ~ cont'd

Additional requirements to the OPM Preapprovals:

- *If applicable and within reason*, add <u>conc/mtl deck</u> component anchorage, using <u>top-sided only</u> post-installed anchor connections, as opposed to through-bolts, which may be achieved by:
- 1. Reducing the OPM design force (F_p), albeit within reason, i.e.; an $S_{DS} = 0.25$ serves no purpose.
- 2. Providing additional supports and attachments, may redistribute the component attachment forces.
- 3. Using larger post installed anchors.
- 4. Changing the mounting configuration, if possible.
- 5. If omitted, a written valid basis must be provided.

Intended to:

- 1. *Reduce project change orders* observed with through-bolts.
- 2. *Reduce labor costs* associated with through-bolts.

Top Sided Post-Installed Anchor *Through-bolt* Post-Installed Anchor

Preapproval DPOR Submittal Responsibilities: ~ cont'd

Although not required, may be beneficial listing both the ASCE 7-16 AND the 7-22 versions within the same preapproval, for use with past and current codes. Within the preapproval drawings, one version would be attached as an *Appendix*, referenced within the Table of Contents.

<u>Project DPOR Submittal Responsibilities</u> Calculate the 2025 CBC project demands, using the ASCE 7-22 lateral force eqn. $F_{p (Project)}$ demands $\leq F_{p (Preapproval)}$ capacities

OPM design force coefficients for both the Preapproval and the Project must be listed on:

- 1. Project calculations.
- 2. May be included on the construction drawings (CD), to possibly reduce an Amended Construction Document (ACD) to a Non-Material Alteration (NMA) saving time and costs.

Renewal Update or New OPM to 2025 CBC: Example

<u>Renewal Update or New OPM:</u> Example

OSP

OSP Preapproval

The OSP *tested component design force coefficient*, C_{Ps} , is defined using a simple method.

 $F_p = \text{RRS} \text{ accelerations} (A_{FLX-H}, A_{RIG-H}, A_{FLX-V}, A_{RIG-V}) * W_p$

Where: RRS accelerations = C_{Ps} (tested component design force coefficient) The certified RRS values are listed on the UUT sheets.

ASCE 7-22 Proposed Changes to ICC-ES AC156 Required Response Spectra (RRS)

The equation parameters $[C_{AR}/R_{po}]$ represent the dynamic characteristics and capacity of the component and *do not affect the dynamic test demand motion*. Thus, $[C_{AR}/R_{po}] = 1.0$ for all spectra. I_P is a measure of the component's functionality after the test $\therefore I_P = 1$.

Figure 11.4-1. Two-period design response spectrum.

For the <u>normalized response spectra accelerations</u> within ICC-ES AC156: $0.4S_{DS}$ (40% of peak spectral design response acceleration) is an accepted approximation of the peak ground acceleration at zero period, T = 0 (rigid region)

where: S_{DS} = the **peak spectral design response** acceleration at **0.2s period** (T = 0.2s) (5Hz flexible region) Resulting in:

 $2.5(0.4 S_{DS}) = S_{DS} \implies 2.5$ (Peak Ground) equates to Peak Response

 $\frac{\text{ICC-ES AC156 RRS Eqns for ASCE 7-22}}{\frac{\text{Horizontal Response}}{A_{FLX-H}} = (2.5) \ 0.4 \ S_{DS} \left(\frac{\text{Hf}}{\text{R}\mu}\right) \qquad A_{RIG-H} = 0.4 \ S_{DS} \left(\frac{\text{Hf}}{\text{R}\mu}\right)}{S_{DS} \left(\frac{\text{Hf}}{\text{R}\mu}\right) : S_{DS} (1.6)_{cap}}$

ICC-ES AC156 Required Response Spectrums (RRS)

Using the *maximum ASCE Code limits* of the RRS, only results in a slight reduction for $A_{RIG-H} = 2.15 > \text{grade} (2.40 \text{ for ASCE 7-16})$, with all other spectral accelerations remaining the same, as in ASCE 7-16.

The *RRS accelerations* are the OSP *tested component design force coefficients*, C_{Ps} \checkmark

5% Damped Spectral Response / 2-Point Spectra relative to ICC-ES AC156 Shake Table Test (> Grade) Response spectrum regions, as related to shake table tested regions.

Use of Existing OSP for 2025 CBC

<u>Use of Existing OSP:</u> Example

<u>Project DPOR Responsibilities:</u>

RRS accelerations are listed, for all tested components, on the UUT Sheets Interpolated values must use the most conservative value.

The OSP component tested capacities:

 $F_{ph (Tested)} = \text{RRS Accelerations} \left(A_{FLX-H} \& A_{RIG-H}\right) * W_p$ $F_{pv (Tested)} = \text{RRS Accelerations} \left(A_{FLX-V} \& A_{RIG-V}\right) * W_p$

By substituting the project variables S_{DS} , H_f , and R_{μ} into the ICC-ES AC156 RRS eqns., the project component demands: $F_{ph (Project)} =$ Calculated accelerations $(A_{FLX-H} \& A_{RIG-H}) * W_p$ $F_{pv (Project)} =$ Calculated accelerations $(A_{FLX-V} \& A_{RIG-V}) * W_p$ $F_{p (Project)} demands \leq F_{p (Tested)}$ capacities

$$\frac{\text{ICC-ES AC156 RRS Eqns}}{\text{Horizontal Response}:}$$

$$A_{FLX-H} = (2.5) \ 0.4 \ S_{DS} \ (^{Hf}/_{R\mu}) \qquad A_{RIG-H} = 0.4 \ S_{DS} \ (^{Hf}/_{R\mu})$$

$$= S_{DS} \ (^{Hf}/_{R\mu})$$

$$\frac{\text{Vertical Response}: \ (^{2}/_{3}) \text{ horizontal with } \frac{z}{_{h}} = 0, \ ^{Hf}/_{R\mu} = 1$$

$$A_{FLX-V} = (^{2}/_{3}) \ S_{DS} \ (^{Hf}/_{R\mu}) \qquad A_{RIG-V} = (^{2}/_{3}) \ 0.4 \ S_{DS} \ (^{Hf}/_{R\mu})$$

$$= 0.27 \ S_{DS}$$

Use of Renewal Update or New OSP for 2025 CBC

<u>Use of Renewal or New OSP:</u> Example

<u>Project</u> DPOR Responsibilities:

RRS accelerations are listed, for all tested components, on the UUT Sheets and will be listed on the New OSP Applications and/or within the Certified Product tables. Interpolated values must use the most conservative values.

The OSP *component tested capacities*:

 $F_{ph (Tested)} = \text{RRS Accelerations} \left(A_{FLX-H} \& A_{RIG-H}\right) * W_p$ $F_{pv (Tested)} = \text{RRS Accelerations} \left(A_{FLX-V} \& A_{RIG-V}\right) * W_p$

By substituting the project variables S_{DS} , H_f , and R_{μ} into the ICC-ES AC156 RRS eqns., the project component demands: $F_{ph (Project)} =$ Calculated accelerations $(A_{FLX-H} \& A_{RIG-H}) * W_p$ $F_{pv (Project)} =$ Calculated accelerations $(A_{FLX-V} \& A_{RIG-V}) * W_p$

 $F_{p (Project)}$ demands $\leq F_{p (Tested)}$ capacities

Preapproval DPOR Responsibilities:

- 1. Updated Application with minimum seismic parameters as listed below:
 - C_{Ps} for both horizontal and vertical forces (i.e., A_{FLX-H} , A_{RIG-H} , A_{FLX-V} , A_{RIG-V}), and corresponding S_{DS} , H_f , R_{μ} , and I_P .
- 2. Manufacturer's cut sheets depicting model numbers, configurations, dimensions, wts, etc. used within the OSP.
 - Catalogs may be provided, but only for units included within the preapproval, depicting only the above cut sheet requirements. Do not submit entire manufacturer's catalogs for review.
- 3. Other submittal requirements as listed within PIN 55.

Comparing Component SSC Capacity to Project Site-Specific Demand

If not readily apparent that component capacity meets project specific demand, a more detailed approach may be used.

Method: For a specific component*, per direction (horizontal and vertical)

- 1) Using an OSP, UUT sheets, or Test Report, select:
 - a. The component's resonance natural frequencies (x,y,z: typically, front-back, side-side, vertical) and corresponding RRS accelerations (A_{FLX-H}, A_{RIG-H}, A_{FLX-V}, A_{RIG-V})
- 2) Using the site-specific 2-point design response spectral acceleration plot, select:
 - a. S_{a Resonance Period} (design response acceleration) corresponding to the *period* of the above component *lowest* NF, *per direction*.

Example:

For the *horizontal direction*, the component *lowest* NF *between the x and y directions* is either within the *flexible or rigid* region.

- 1) If within *flexible* region (1.30Hz 8.33Hz), A_{FLX-H} (value is *constant*)
 - a. Calculate $F_{PH-TESTED}$; $F_{PH-TESTED} = A_{FLX-H} (W_P)$
 - b. Calculate $F_{PH-PROJECT} = S_{a Resonance Period} (H_f/R_{\mu})W_P : F_{PH-PROJECT} \le F_{PH-TESTED}$
- 2) If within *rigid* region (8.34Hz 33.33Hz), A_{RIG-H Resonance} (value varies)
 - a. Calculate $F_{PH-TESTED}$; $F_{PH-TESTED} = A_{RIG-H Resonance}$ (corresponding to component NF) (W_P)
 - b. Calculate $F_{PH-PROJECT} = S_{a \text{ Resonance Period}} (H_f/R_{\mu})W_P : F_{PH-PROJECT} \le F_{PH-TESTED}$

<u>Vertical direction</u> must be checked similar to above horizontal direction, using equations for A_{FLX-V} , A_{RIG-V}

*may only be valid for the tested component, not interpolated or extrapolated components, as NF may vary.

Questions/Thoughts?

Timothy.Piland@hcai.ca.gov

